Skip to content

vllm.model_executor.layers.quantization.marlin

logger module-attribute

logger = init_logger(__name__)

MarlinConfig

Bases: QuantizationConfig

Config class for Marlin.

Reference: https://github.com/IST-DASLab/marlin/tree/master

Source code in vllm/model_executor/layers/quantization/marlin.py
class MarlinConfig(QuantizationConfig):
    """Config class for Marlin.

    Reference: https://github.com/IST-DASLab/marlin/tree/master
    """

    def __init__(
        self,
        group_size: int,
        lm_head_quantized: bool,
    ) -> None:
        super().__init__()

        # Group size for the quantization.
        self.group_size = group_size
        self.lm_head_quantized = lm_head_quantized
        if self.group_size != 128 and self.group_size != -1:
            raise ValueError(
                "Currently, only group size 128 and -1 (channelwise) "
                "is supported for Marlin, but got group_size of "
                f"{self.group_size}")

        # 4 Bits packed into 32 bit datatype.
        self.pack_factor = 32 // 4

        # Tile size used by marlin kernels.
        self.tile_size = 16

        # Min out_features dim
        self.min_n_threads = 64

        # Min in_features dim
        self.min_k_threads = 128

        # Max parallel problems to solve at once (improves large
        # batch performance)
        self.max_parallel = 16

        # Permutation length used by the marlin kernels.
        self.perm_len = 1024

    def __repr__(self) -> str:
        return (f"MarlinConfig(group_size={self.group_size}, "
                f"lm_head_quantized={self.lm_head_quantized})")

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "marlin"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.half]

    @classmethod
    # Need to figure it out
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return ["quantize_config.json"]

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "MarlinConfig":
        group_size = cls.get_from_keys(config, ["group_size"])
        lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
                                                 default=False)
        return cls(group_size, lm_head_quantized)

    @classmethod
    def override_quantization_method(
            cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
        # compat: autogptq >=0.8.0 use checkpoint_format: str
        # compat: autogptq <=0.7.1 is_marlin_format: bool
        is_marlin_format = (hf_quant_cfg.get("checkpoint_format") == "marlin"
                            or hf_quant_cfg.get("is_marlin_format", False))

        is_valid_user_quant = (user_quant is None or user_quant == "gptq"
                               or user_quant == "marlin")

        if is_marlin_format and is_valid_user_quant:
            msg = ("The model is serialized in {} format. Using {} kernel.".
                   format(cls.get_name(), cls.get_name()))
            logger.info(msg)
            return cls.get_name()

        return None

    def get_quant_method(self, layer: torch.nn.Module,
                         prefix: str) -> Optional["MarlinLinearMethod"]:
        if (isinstance(layer, LinearBase) or
            (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
            return MarlinLinearMethod(self)
        return None

group_size instance-attribute

group_size = group_size

lm_head_quantized instance-attribute

lm_head_quantized = lm_head_quantized

max_parallel instance-attribute

max_parallel = 16

min_k_threads instance-attribute

min_k_threads = 128

min_n_threads instance-attribute

min_n_threads = 64

pack_factor instance-attribute

pack_factor = 32 // 4

perm_len instance-attribute

perm_len = 1024

tile_size instance-attribute

tile_size = 16

__init__

__init__(group_size: int, lm_head_quantized: bool) -> None
Source code in vllm/model_executor/layers/quantization/marlin.py
def __init__(
    self,
    group_size: int,
    lm_head_quantized: bool,
) -> None:
    super().__init__()

    # Group size for the quantization.
    self.group_size = group_size
    self.lm_head_quantized = lm_head_quantized
    if self.group_size != 128 and self.group_size != -1:
        raise ValueError(
            "Currently, only group size 128 and -1 (channelwise) "
            "is supported for Marlin, but got group_size of "
            f"{self.group_size}")

    # 4 Bits packed into 32 bit datatype.
    self.pack_factor = 32 // 4

    # Tile size used by marlin kernels.
    self.tile_size = 16

    # Min out_features dim
    self.min_n_threads = 64

    # Min in_features dim
    self.min_k_threads = 128

    # Max parallel problems to solve at once (improves large
    # batch performance)
    self.max_parallel = 16

    # Permutation length used by the marlin kernels.
    self.perm_len = 1024

__repr__

__repr__() -> str
Source code in vllm/model_executor/layers/quantization/marlin.py
def __repr__(self) -> str:
    return (f"MarlinConfig(group_size={self.group_size}, "
            f"lm_head_quantized={self.lm_head_quantized})")

from_config classmethod

from_config(config: dict[str, Any]) -> MarlinConfig
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
def from_config(cls, config: dict[str, Any]) -> "MarlinConfig":
    group_size = cls.get_from_keys(config, ["group_size"])
    lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
                                             default=False)
    return cls(group_size, lm_head_quantized)

get_config_filenames classmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
def get_config_filenames(cls) -> list[str]:
    return ["quantize_config.json"]

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
    return 80

get_name classmethod

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
def get_name(cls) -> QuantizationMethods:
    return "marlin"

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[MarlinLinearMethod]
Source code in vllm/model_executor/layers/quantization/marlin.py
def get_quant_method(self, layer: torch.nn.Module,
                     prefix: str) -> Optional["MarlinLinearMethod"]:
    if (isinstance(layer, LinearBase) or
        (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
        return MarlinLinearMethod(self)
    return None

get_supported_act_dtypes classmethod

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.half]

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> Optional[QuantizationMethods]
Source code in vllm/model_executor/layers/quantization/marlin.py
@classmethod
def override_quantization_method(
        cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
    # compat: autogptq >=0.8.0 use checkpoint_format: str
    # compat: autogptq <=0.7.1 is_marlin_format: bool
    is_marlin_format = (hf_quant_cfg.get("checkpoint_format") == "marlin"
                        or hf_quant_cfg.get("is_marlin_format", False))

    is_valid_user_quant = (user_quant is None or user_quant == "gptq"
                           or user_quant == "marlin")

    if is_marlin_format and is_valid_user_quant:
        msg = ("The model is serialized in {} format. Using {} kernel.".
               format(cls.get_name(), cls.get_name()))
        logger.info(msg)
        return cls.get_name()

    return None

MarlinLinearMethod

Bases: LinearMethodBase

Linear method for Marlin.

Parameters:

Name Type Description Default
quant_config MarlinConfig

The Marlin quantization config.

required
Source code in vllm/model_executor/layers/quantization/marlin.py
class MarlinLinearMethod(LinearMethodBase):
    """Linear method for Marlin.

    Args:
        quant_config: The Marlin quantization config.
    """

    def __init__(self, quant_config: MarlinConfig):
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del output_size  # Unused.
        weight_loader = extra_weight_attrs["weight_loader"]

        if params_dtype != torch.float16:
            raise ValueError(
                f"The params dtype must be float16, but got {params_dtype}")

        # Validate output_size_per_partition
        output_size_per_partition = sum(output_partition_sizes)
        if output_size_per_partition % self.quant_config.min_n_threads != 0:
            raise ValueError(
                f"Weight output_size_per_partition = "
                f"{output_size_per_partition} is not divisible by "
                f"min_n_threads = {self.quant_config.min_n_threads}.")
        if output_size_per_partition % self.quant_config.pack_factor != 0:
            raise ValueError(
                f"Weight output_size_per_partition = "
                f"{output_size_per_partition} is not divisible by "
                f"pack_factor = {self.quant_config.pack_factor}.")

        # Validate input_size_per_partition
        if input_size_per_partition % self.quant_config.min_k_threads != 0:
            raise ValueError(
                f"Weight input_size_per_partition = "
                f"{input_size_per_partition} is not divisible by "
                f"min_k_threads = {self.quant_config.min_k_threads}.")
        if (self.quant_config.group_size != -1 and
                input_size_per_partition % self.quant_config.group_size != 0):
            raise ValueError(f"Weight input_size_per_partition = "
                             f"{input_size_per_partition} is not divisible by "
                             f"group_size = {self.quant_config.group_size}.")

        # Check that we have at least 4 tiles horizontally in the shard
        num_tiles_per_perm = self.quant_config.perm_len // (
            self.quant_config.tile_size**2)
        if output_size_per_partition % num_tiles_per_perm != 0:
            raise ValueError(
                "Each permutation group must reside on the same gpu")

        # Quantized 4Bit weights packed into Int32.
        qweight = PackedvLLMParameter(
            data=torch.empty(
                input_size_per_partition // self.quant_config.tile_size,
                output_size_per_partition * self.quant_config.tile_size //
                self.quant_config.pack_factor,
                device="cuda",
                dtype=torch.int32,
            ),
            input_dim=0,
            output_dim=1,
            packed_dim=1,
            packed_factor=self.quant_config.pack_factor,
            marlin_tile_size=self.quant_config.tile_size,
            weight_loader=weight_loader)

        # Determine if channelwise or not
        input_groups = (1 if self.quant_config.group_size == -1 else
                        input_size_per_partition //
                        self.quant_config.group_size)

        weight_scale_args = {
            "data":
            torch.empty(
                input_groups,
                output_size_per_partition,
                device="cuda",
                dtype=params_dtype,
            ),
            "weight_loader":
            weight_loader
        }
        if input_groups == 1:
            scales = ChannelQuantScaleParameter(output_dim=1,
                                                **weight_scale_args)
        else:
            scales = GroupQuantScaleParameter(output_dim=1,
                                              input_dim=0,
                                              **weight_scale_args)

        # Allocate workspace (Used for internal locking mechanism)
        max_workspace_size = (
            output_size_per_partition //
            self.quant_config.min_n_threads) * self.quant_config.max_parallel

        workspace = BasevLLMParameter(data=torch.zeros(max_workspace_size,
                                                       device="cuda",
                                                       dtype=torch.int),
                                      weight_loader=weight_loader)

        layer.register_parameter("B", qweight)
        layer.register_parameter("s", scales)
        layer.register_parameter("workspace", workspace)

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        # required by torch.compile
        layer.B = Parameter(layer.B.data, requires_grad=False)
        layer.s = Parameter(layer.s.data, requires_grad=False)
        layer.workspace = Parameter(layer.workspace.data, requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        qweight = layer.B
        scales = layer.s
        workspace = layer.workspace

        x_2d = x.view(-1, x.shape[-1])

        size_m = x_2d.shape[0]
        size_k = x_2d.shape[1]
        size_n = scales.shape[1]

        output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
                                    size_n, size_k)

        output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))

        if bias is not None:
            output.add_(bias)  # In-place add

        return output

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: MarlinConfig)
Source code in vllm/model_executor/layers/quantization/marlin.py
def __init__(self, quant_config: MarlinConfig):
    self.quant_config = quant_config

apply

apply(
    layer: Module, x: Tensor, bias: Optional[Tensor] = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/marlin.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    qweight = layer.B
    scales = layer.s
    workspace = layer.workspace

    x_2d = x.view(-1, x.shape[-1])

    size_m = x_2d.shape[0]
    size_k = x_2d.shape[1]
    size_n = scales.shape[1]

    output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
                                size_n, size_k)

    output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))

    if bias is not None:
        output.add_(bias)  # In-place add

    return output

create_weights

create_weights(
    layer: Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/marlin.py
def create_weights(
    self,
    layer: torch.nn.Module,
    input_size_per_partition: int,
    output_partition_sizes: list[int],
    input_size: int,
    output_size: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    del output_size  # Unused.
    weight_loader = extra_weight_attrs["weight_loader"]

    if params_dtype != torch.float16:
        raise ValueError(
            f"The params dtype must be float16, but got {params_dtype}")

    # Validate output_size_per_partition
    output_size_per_partition = sum(output_partition_sizes)
    if output_size_per_partition % self.quant_config.min_n_threads != 0:
        raise ValueError(
            f"Weight output_size_per_partition = "
            f"{output_size_per_partition} is not divisible by "
            f"min_n_threads = {self.quant_config.min_n_threads}.")
    if output_size_per_partition % self.quant_config.pack_factor != 0:
        raise ValueError(
            f"Weight output_size_per_partition = "
            f"{output_size_per_partition} is not divisible by "
            f"pack_factor = {self.quant_config.pack_factor}.")

    # Validate input_size_per_partition
    if input_size_per_partition % self.quant_config.min_k_threads != 0:
        raise ValueError(
            f"Weight input_size_per_partition = "
            f"{input_size_per_partition} is not divisible by "
            f"min_k_threads = {self.quant_config.min_k_threads}.")
    if (self.quant_config.group_size != -1 and
            input_size_per_partition % self.quant_config.group_size != 0):
        raise ValueError(f"Weight input_size_per_partition = "
                         f"{input_size_per_partition} is not divisible by "
                         f"group_size = {self.quant_config.group_size}.")

    # Check that we have at least 4 tiles horizontally in the shard
    num_tiles_per_perm = self.quant_config.perm_len // (
        self.quant_config.tile_size**2)
    if output_size_per_partition % num_tiles_per_perm != 0:
        raise ValueError(
            "Each permutation group must reside on the same gpu")

    # Quantized 4Bit weights packed into Int32.
    qweight = PackedvLLMParameter(
        data=torch.empty(
            input_size_per_partition // self.quant_config.tile_size,
            output_size_per_partition * self.quant_config.tile_size //
            self.quant_config.pack_factor,
            device="cuda",
            dtype=torch.int32,
        ),
        input_dim=0,
        output_dim=1,
        packed_dim=1,
        packed_factor=self.quant_config.pack_factor,
        marlin_tile_size=self.quant_config.tile_size,
        weight_loader=weight_loader)

    # Determine if channelwise or not
    input_groups = (1 if self.quant_config.group_size == -1 else
                    input_size_per_partition //
                    self.quant_config.group_size)

    weight_scale_args = {
        "data":
        torch.empty(
            input_groups,
            output_size_per_partition,
            device="cuda",
            dtype=params_dtype,
        ),
        "weight_loader":
        weight_loader
    }
    if input_groups == 1:
        scales = ChannelQuantScaleParameter(output_dim=1,
                                            **weight_scale_args)
    else:
        scales = GroupQuantScaleParameter(output_dim=1,
                                          input_dim=0,
                                          **weight_scale_args)

    # Allocate workspace (Used for internal locking mechanism)
    max_workspace_size = (
        output_size_per_partition //
        self.quant_config.min_n_threads) * self.quant_config.max_parallel

    workspace = BasevLLMParameter(data=torch.zeros(max_workspace_size,
                                                   device="cuda",
                                                   dtype=torch.int),
                                  weight_loader=weight_loader)

    layer.register_parameter("B", qweight)
    layer.register_parameter("s", scales)
    layer.register_parameter("workspace", workspace)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/marlin.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    # required by torch.compile
    layer.B = Parameter(layer.B.data, requires_grad=False)
    layer.s = Parameter(layer.s.data, requires_grad=False)
    layer.workspace = Parameter(layer.workspace.data, requires_grad=False)