Bases: QuantizeMethodBase
Quant method that adds _k_scale
and _v_scale
attributes to the
Attention layer to support loading those scaling factors from checkpoints.
The k/v_scale will be used to:
- quantize k/v_cache entries before saving them to the cache
- dequantize k/v_cache entries before fetching them from the cache
:param quant_config: the appropriate QuantizationConfig
Source code in vllm/model_executor/layers/quantization/kv_cache.py
| class BaseKVCacheMethod(QuantizeMethodBase):
"""
Quant method that adds `_k_scale` and `_v_scale` attributes to the
Attention layer to support loading those scaling factors from checkpoints.
The k/v_scale will be used to:
- quantize k/v_cache entries before saving them to the cache
- dequantize k/v_cache entries before fetching them from the cache
:param quant_config: the appropriate QuantizationConfig
"""
def __init__(self, quant_config: QuantizationConfig):
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module):
"""
Create "weight" (aka q_scale, k_scale and v_scale)
for an attention layer.
"""
# Initialize the Q and KV cache scales to -1.0, an invalid value.
# If the q and k/v_scales appear in the checkpoint, it will be
# overwritten when loading weights.
layer.q_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
# Initialize P = softmax(QK^T) scales
layer.prob_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
def apply(self, layer: torch.nn.Module) -> torch.Tensor:
raise RuntimeError(
f"{self.__class__.__name__}.apply should not be called.")
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0
# regardless whether the kv-scale is available in the checkpoint.
# No need to process kv scales after loading if we are going to
# calculate them on the fly.
if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales:
if layer.k_scale > 0.0 and layer.v_scale > 0.0:
# We prefer to use separate k_scale and v_scale if present
k_scale = layer.k_scale.to("cpu").tolist()
v_scale = layer.v_scale.to("cpu").tolist()
if current_platform.is_fp8_fnuz():
k_scale *= 2
v_scale *= 2
elif layer.k_scale < 0.0 and layer.v_scale < 0.0:
# If no scales were loaded (both scales are invalid negative
# values), use the default value of 1.0
k_scale = 1.0
v_scale = 1.0
else:
# If we find a single kv_scale in the checkpoint, we remap
# kv_scale to k_scale during weight loading, and duplicate
# k_scale to v_scale here
assert layer.k_scale > 0.0
scale_to_duplicate = max(layer.k_scale, layer.v_scale)
k_scale = scale_to_duplicate.to("cpu").tolist()
v_scale = scale_to_duplicate.to("cpu").tolist()
if current_platform.is_fp8_fnuz():
k_scale *= 2
v_scale *= 2
if not isinstance(k_scale, float) or not isinstance(
v_scale, float):
raise ValueError("Only support per-tensor scaling factor "
"for fp8 KV cache")
if layer.q_scale < 0.0:
logger.warning_once(
"Checkpoint does not provide a q scaling factor. "
"Setting it to k_scale. This only matters for "
"the flash-attn backend.")
layer._q_scale.copy_(k_scale)
# These are used in the final Attention.forward()
layer._k_scale.copy_(k_scale)
layer._v_scale.copy_(v_scale)
layer._k_scale_float = k_scale
layer._v_scale_float = v_scale
if (k_scale == 1.0 and v_scale == 1.0
and "e5m2" not in layer.kv_cache_dtype):
logger.warning_once(
"Using KV cache scaling factor 1.0 for fp8_e4m3. This "
"may cause accuracy issues. Please make sure k/v_scale "
"scaling factors are available in the fp8 checkpoint.")
if layer.q_scale > 0.0:
q_scale = layer.q_scale
if current_platform.is_fp8_fnuz():
q_scale *= 2
layer.calculate_kv_scales = False
else:
q_scale = 1.0
if layer.prob_scale > 0.0:
prob_scale = layer.prob_scale
if current_platform.is_fp8_fnuz():
prob_scale *= 2
else:
prob_scale = 1.0
is_singleton_float = lambda x: isinstance(x, float) or isinstance(
x, torch.Tensor) and x.numel() == 1 and x.is_floating_point()
if not is_singleton_float(q_scale) or not is_singleton_float(
prob_scale):
raise ValueError("Only support per-tensor scaling factor"
"for fp8-quantized Q/prob")
# These are used in the final Attention.forward()
layer._q_scale.copy_(q_scale)
layer._prob_scale.copy_(prob_scale)
if layer.kv_cache_dtype == "fp8" and (q_scale == 1.0
or prob_scale == 1.0):
logger.warning_once(
f"Using uncalibrated q_scale {q_scale} and/or prob_scale "
f"{prob_scale} with fp8 attention. This may cause accuracy "
"issues. Please make sure q/prob scaling factors are "
"available in the fp8 checkpoint.")
del layer.k_scale
del layer.v_scale
del layer.q_scale
del layer.prob_scale
|
quant_config
instance-attribute
quant_config = quant_config
__init__
Source code in vllm/model_executor/layers/quantization/kv_cache.py
| def __init__(self, quant_config: QuantizationConfig):
self.quant_config = quant_config
|
apply
Source code in vllm/model_executor/layers/quantization/kv_cache.py
| def apply(self, layer: torch.nn.Module) -> torch.Tensor:
raise RuntimeError(
f"{self.__class__.__name__}.apply should not be called.")
|
create_weights
Create "weight" (aka q_scale, k_scale and v_scale)
for an attention layer.
Source code in vllm/model_executor/layers/quantization/kv_cache.py
| def create_weights(self, layer: torch.nn.Module):
"""
Create "weight" (aka q_scale, k_scale and v_scale)
for an attention layer.
"""
# Initialize the Q and KV cache scales to -1.0, an invalid value.
# If the q and k/v_scales appear in the checkpoint, it will be
# overwritten when loading weights.
layer.q_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
# Initialize P = softmax(QK^T) scales
layer.prob_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
|
process_weights_after_loading
process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/kv_cache.py
| def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0
# regardless whether the kv-scale is available in the checkpoint.
# No need to process kv scales after loading if we are going to
# calculate them on the fly.
if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales:
if layer.k_scale > 0.0 and layer.v_scale > 0.0:
# We prefer to use separate k_scale and v_scale if present
k_scale = layer.k_scale.to("cpu").tolist()
v_scale = layer.v_scale.to("cpu").tolist()
if current_platform.is_fp8_fnuz():
k_scale *= 2
v_scale *= 2
elif layer.k_scale < 0.0 and layer.v_scale < 0.0:
# If no scales were loaded (both scales are invalid negative
# values), use the default value of 1.0
k_scale = 1.0
v_scale = 1.0
else:
# If we find a single kv_scale in the checkpoint, we remap
# kv_scale to k_scale during weight loading, and duplicate
# k_scale to v_scale here
assert layer.k_scale > 0.0
scale_to_duplicate = max(layer.k_scale, layer.v_scale)
k_scale = scale_to_duplicate.to("cpu").tolist()
v_scale = scale_to_duplicate.to("cpu").tolist()
if current_platform.is_fp8_fnuz():
k_scale *= 2
v_scale *= 2
if not isinstance(k_scale, float) or not isinstance(
v_scale, float):
raise ValueError("Only support per-tensor scaling factor "
"for fp8 KV cache")
if layer.q_scale < 0.0:
logger.warning_once(
"Checkpoint does not provide a q scaling factor. "
"Setting it to k_scale. This only matters for "
"the flash-attn backend.")
layer._q_scale.copy_(k_scale)
# These are used in the final Attention.forward()
layer._k_scale.copy_(k_scale)
layer._v_scale.copy_(v_scale)
layer._k_scale_float = k_scale
layer._v_scale_float = v_scale
if (k_scale == 1.0 and v_scale == 1.0
and "e5m2" not in layer.kv_cache_dtype):
logger.warning_once(
"Using KV cache scaling factor 1.0 for fp8_e4m3. This "
"may cause accuracy issues. Please make sure k/v_scale "
"scaling factors are available in the fp8 checkpoint.")
if layer.q_scale > 0.0:
q_scale = layer.q_scale
if current_platform.is_fp8_fnuz():
q_scale *= 2
layer.calculate_kv_scales = False
else:
q_scale = 1.0
if layer.prob_scale > 0.0:
prob_scale = layer.prob_scale
if current_platform.is_fp8_fnuz():
prob_scale *= 2
else:
prob_scale = 1.0
is_singleton_float = lambda x: isinstance(x, float) or isinstance(
x, torch.Tensor) and x.numel() == 1 and x.is_floating_point()
if not is_singleton_float(q_scale) or not is_singleton_float(
prob_scale):
raise ValueError("Only support per-tensor scaling factor"
"for fp8-quantized Q/prob")
# These are used in the final Attention.forward()
layer._q_scale.copy_(q_scale)
layer._prob_scale.copy_(prob_scale)
if layer.kv_cache_dtype == "fp8" and (q_scale == 1.0
or prob_scale == 1.0):
logger.warning_once(
f"Using uncalibrated q_scale {q_scale} and/or prob_scale "
f"{prob_scale} with fp8 attention. This may cause accuracy "
"issues. Please make sure q/prob scaling factors are "
"available in the fp8 checkpoint.")
del layer.k_scale
del layer.v_scale
del layer.q_scale
del layer.prob_scale
|