Skip to content

vllm.model_executor.layers.quantization.kv_cache

logger module-attribute

logger = init_logger(__name__)

BaseKVCacheMethod

Bases: QuantizeMethodBase

Quant method that adds _k_scale and _v_scale attributes to the Attention layer to support loading those scaling factors from checkpoints. The k/v_scale will be used to: - quantize k/v_cache entries before saving them to the cache - dequantize k/v_cache entries before fetching them from the cache

:param quant_config: the appropriate QuantizationConfig

Source code in vllm/model_executor/layers/quantization/kv_cache.py
class BaseKVCacheMethod(QuantizeMethodBase):
    """
    Quant method that adds `_k_scale` and `_v_scale` attributes to the
    Attention layer to support loading those scaling factors from checkpoints. 
    The k/v_scale will be used to:
        - quantize k/v_cache entries before saving them to the cache
        - dequantize k/v_cache entries before fetching them from the cache

    :param quant_config: the appropriate QuantizationConfig 
    """

    def __init__(self, quant_config: QuantizationConfig):
        self.quant_config = quant_config

    def create_weights(self, layer: torch.nn.Module):
        """
        Create "weight" (aka q_scale, k_scale and v_scale)
        for an attention layer.
        """
        # Initialize the Q and KV cache scales to -1.0, an invalid value.
        # If the q and k/v_scales appear in the checkpoint, it will be
        # overwritten when loading weights.
        layer.q_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                           requires_grad=False)
        layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                           requires_grad=False)
        layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                           requires_grad=False)
        # Initialize P = softmax(QK^T) scales
        layer.prob_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                              requires_grad=False)

    def apply(self, layer: torch.nn.Module) -> torch.Tensor:
        raise RuntimeError(
            f"{self.__class__.__name__}.apply should not be called.")

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0
        # regardless whether the kv-scale is available in the checkpoint.
        # No need to process kv scales after loading if we are going to
        # calculate them on the fly.
        if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales:
            if layer.k_scale > 0.0 and layer.v_scale > 0.0:
                # We prefer to use separate k_scale and v_scale if present
                k_scale = layer.k_scale.to("cpu").tolist()
                v_scale = layer.v_scale.to("cpu").tolist()
                if current_platform.is_fp8_fnuz():
                    k_scale *= 2
                    v_scale *= 2
            elif layer.k_scale < 0.0 and layer.v_scale < 0.0:
                # If no scales were loaded (both scales are invalid negative
                # values), use the default value of 1.0
                k_scale = 1.0
                v_scale = 1.0
            else:
                # If we find a single kv_scale in the checkpoint, we remap
                # kv_scale to k_scale during weight loading, and duplicate
                # k_scale to v_scale here
                assert layer.k_scale > 0.0
                scale_to_duplicate = max(layer.k_scale, layer.v_scale)
                k_scale = scale_to_duplicate.to("cpu").tolist()
                v_scale = scale_to_duplicate.to("cpu").tolist()
                if current_platform.is_fp8_fnuz():
                    k_scale *= 2
                    v_scale *= 2

            if not isinstance(k_scale, float) or not isinstance(
                    v_scale, float):
                raise ValueError("Only support per-tensor scaling factor "
                                 "for fp8 KV cache")

            if layer.q_scale < 0.0:
                logger.warning_once(
                    "Checkpoint does not provide a q scaling factor. "
                    "Setting it to k_scale. This only matters for "
                    "the flash-attn backend.")
                layer._q_scale.copy_(k_scale)

            # These are used in the final Attention.forward()
            layer._k_scale.copy_(k_scale)
            layer._v_scale.copy_(v_scale)
            layer._k_scale_float = k_scale
            layer._v_scale_float = v_scale
            if (k_scale == 1.0 and v_scale == 1.0
                    and "e5m2" not in layer.kv_cache_dtype):
                logger.warning_once(
                    "Using KV cache scaling factor 1.0 for fp8_e4m3. This "
                    "may cause accuracy issues. Please make sure k/v_scale "
                    "scaling factors are available in the fp8 checkpoint.")

        if layer.q_scale > 0.0:
            q_scale = layer.q_scale
            if current_platform.is_fp8_fnuz():
                q_scale *= 2
            layer.calculate_kv_scales = False
        else:
            q_scale = 1.0
        if layer.prob_scale > 0.0:
            prob_scale = layer.prob_scale
            if current_platform.is_fp8_fnuz():
                prob_scale *= 2
        else:
            prob_scale = 1.0

        is_singleton_float = lambda x: isinstance(x, float) or isinstance(
            x, torch.Tensor) and x.numel() == 1 and x.is_floating_point()
        if not is_singleton_float(q_scale) or not is_singleton_float(
                prob_scale):
            raise ValueError("Only support per-tensor scaling factor"
                             "for fp8-quantized Q/prob")

        # These are used in the final Attention.forward()
        layer._q_scale.copy_(q_scale)
        layer._prob_scale.copy_(prob_scale)
        if layer.kv_cache_dtype == "fp8" and (q_scale == 1.0
                                              or prob_scale == 1.0):
            logger.warning_once(
                f"Using uncalibrated q_scale {q_scale} and/or prob_scale "
                f"{prob_scale} with fp8 attention. This may cause accuracy "
                "issues. Please make sure q/prob scaling factors are "
                "available in the fp8 checkpoint.")

        del layer.k_scale
        del layer.v_scale
        del layer.q_scale
        del layer.prob_scale

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: QuantizationConfig)
Source code in vllm/model_executor/layers/quantization/kv_cache.py
def __init__(self, quant_config: QuantizationConfig):
    self.quant_config = quant_config

apply

apply(layer: Module) -> Tensor
Source code in vllm/model_executor/layers/quantization/kv_cache.py
def apply(self, layer: torch.nn.Module) -> torch.Tensor:
    raise RuntimeError(
        f"{self.__class__.__name__}.apply should not be called.")

create_weights

create_weights(layer: Module)

Create "weight" (aka q_scale, k_scale and v_scale) for an attention layer.

Source code in vllm/model_executor/layers/quantization/kv_cache.py
def create_weights(self, layer: torch.nn.Module):
    """
    Create "weight" (aka q_scale, k_scale and v_scale)
    for an attention layer.
    """
    # Initialize the Q and KV cache scales to -1.0, an invalid value.
    # If the q and k/v_scales appear in the checkpoint, it will be
    # overwritten when loading weights.
    layer.q_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                       requires_grad=False)
    layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                       requires_grad=False)
    layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                       requires_grad=False)
    # Initialize P = softmax(QK^T) scales
    layer.prob_scale = torch.nn.Parameter(torch.tensor(-1.0),
                                          requires_grad=False)

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/kv_cache.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0
    # regardless whether the kv-scale is available in the checkpoint.
    # No need to process kv scales after loading if we are going to
    # calculate them on the fly.
    if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales:
        if layer.k_scale > 0.0 and layer.v_scale > 0.0:
            # We prefer to use separate k_scale and v_scale if present
            k_scale = layer.k_scale.to("cpu").tolist()
            v_scale = layer.v_scale.to("cpu").tolist()
            if current_platform.is_fp8_fnuz():
                k_scale *= 2
                v_scale *= 2
        elif layer.k_scale < 0.0 and layer.v_scale < 0.0:
            # If no scales were loaded (both scales are invalid negative
            # values), use the default value of 1.0
            k_scale = 1.0
            v_scale = 1.0
        else:
            # If we find a single kv_scale in the checkpoint, we remap
            # kv_scale to k_scale during weight loading, and duplicate
            # k_scale to v_scale here
            assert layer.k_scale > 0.0
            scale_to_duplicate = max(layer.k_scale, layer.v_scale)
            k_scale = scale_to_duplicate.to("cpu").tolist()
            v_scale = scale_to_duplicate.to("cpu").tolist()
            if current_platform.is_fp8_fnuz():
                k_scale *= 2
                v_scale *= 2

        if not isinstance(k_scale, float) or not isinstance(
                v_scale, float):
            raise ValueError("Only support per-tensor scaling factor "
                             "for fp8 KV cache")

        if layer.q_scale < 0.0:
            logger.warning_once(
                "Checkpoint does not provide a q scaling factor. "
                "Setting it to k_scale. This only matters for "
                "the flash-attn backend.")
            layer._q_scale.copy_(k_scale)

        # These are used in the final Attention.forward()
        layer._k_scale.copy_(k_scale)
        layer._v_scale.copy_(v_scale)
        layer._k_scale_float = k_scale
        layer._v_scale_float = v_scale
        if (k_scale == 1.0 and v_scale == 1.0
                and "e5m2" not in layer.kv_cache_dtype):
            logger.warning_once(
                "Using KV cache scaling factor 1.0 for fp8_e4m3. This "
                "may cause accuracy issues. Please make sure k/v_scale "
                "scaling factors are available in the fp8 checkpoint.")

    if layer.q_scale > 0.0:
        q_scale = layer.q_scale
        if current_platform.is_fp8_fnuz():
            q_scale *= 2
        layer.calculate_kv_scales = False
    else:
        q_scale = 1.0
    if layer.prob_scale > 0.0:
        prob_scale = layer.prob_scale
        if current_platform.is_fp8_fnuz():
            prob_scale *= 2
    else:
        prob_scale = 1.0

    is_singleton_float = lambda x: isinstance(x, float) or isinstance(
        x, torch.Tensor) and x.numel() == 1 and x.is_floating_point()
    if not is_singleton_float(q_scale) or not is_singleton_float(
            prob_scale):
        raise ValueError("Only support per-tensor scaling factor"
                         "for fp8-quantized Q/prob")

    # These are used in the final Attention.forward()
    layer._q_scale.copy_(q_scale)
    layer._prob_scale.copy_(prob_scale)
    if layer.kv_cache_dtype == "fp8" and (q_scale == 1.0
                                          or prob_scale == 1.0):
        logger.warning_once(
            f"Using uncalibrated q_scale {q_scale} and/or prob_scale "
            f"{prob_scale} with fp8 attention. This may cause accuracy "
            "issues. Please make sure q/prob scaling factors are "
            "available in the fp8 checkpoint.")

    del layer.k_scale
    del layer.v_scale
    del layer.q_scale
    del layer.prob_scale