Skip to content

vllm.model_executor.layers.quantization.ipex_quant

MIN_IPEX_VERSION module-attribute

MIN_IPEX_VERSION = '2.6.0'

IPEXAWQLinearMethod

Bases: AWQLinearMethod

AWQ linear method using IPEX for the CPU/XPU backend.

Source code in vllm/model_executor/layers/quantization/ipex_quant.py
class IPEXAWQLinearMethod(AWQLinearMethod):
    """AWQ linear method using IPEX for the CPU/XPU backend.
    """

    def __init__(self, quant_config: IPEXConfig):
        self.quant_config = quant_config  # type: ignore

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        super().process_weights_after_loading(layer=layer)

        bias = layer.bias if not layer.skip_bias_add else None

        try:
            import intel_extension_for_pytorch as ipex
            if ipex.__version__ < MIN_IPEX_VERSION:
                raise ImportError(
                    "intel_extension_for_pytorch version is "
                    "wrong. Please install "
                    f"intel_extension_for_pytorch>={MIN_IPEX_VERSION}.")
        except ImportError as err:
            raise ImportError(
                "Please install "
                f"intel_extension_for_pytorch>={MIN_IPEX_VERSION} via "
                f"`pip install intel_extension_for_pytorch>={MIN_IPEX_VERSION}`"
                " to use IPEX-AWQ linear method.") from err

        # Using the compute dtype (lowp_mode) as INT8 to leverage instructions
        # with better performance.
        lowp_mode = ipex.quantization.WoqLowpMode.INT8
        # The weight will be de-packed from INT4 to INT8.
        weight_dtype = ipex.quantization.WoqWeightDtype.INT4
        # The float activation will be quantized (dynamic, per-token) to INT8.
        act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH

        qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
            weight_dtype=weight_dtype,
            lowp_mode=lowp_mode,
            act_quant_mode=act_quant_mode,
            group_size=self.quant_config.group_size,
        )

        layer.ipex_output_size = layer.qweight.size(
            1) * self.quant_config.pack_factor
        layer.ipex_qlinear = ipex.llm.quantization.woq_linear. \
            IPEXWeightOnlyQuantizedLinear.from_weight(
            layer.qweight,
            layer.scales,
            layer.qzeros,
            layer.qweight.size(0),
            layer.ipex_output_size,
            qconfig=qconfig,
            bias=bias,
            group_size=self.quant_config.group_size,
            quant_method=IPEXConfig.IPEX_QUANT_METHOD_MAP["awq"]  # type: ignore
        )

    def apply(self,
              layer: torch.nn.Module,
              x: torch.Tensor,
              bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        reshaped_x = x.reshape(-1, x.shape[-1])
        out = layer.ipex_qlinear(reshaped_x)
        return out.reshape(x.shape[:-1] + (layer.ipex_output_size, ))

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: IPEXConfig)
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def __init__(self, quant_config: IPEXConfig):
    self.quant_config = quant_config  # type: ignore

apply

apply(
    layer: Module, x: Tensor, bias: Optional[Tensor] = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def apply(self,
          layer: torch.nn.Module,
          x: torch.Tensor,
          bias: Optional[torch.Tensor] = None) -> torch.Tensor:
    reshaped_x = x.reshape(-1, x.shape[-1])
    out = layer.ipex_qlinear(reshaped_x)
    return out.reshape(x.shape[:-1] + (layer.ipex_output_size, ))

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    super().process_weights_after_loading(layer=layer)

    bias = layer.bias if not layer.skip_bias_add else None

    try:
        import intel_extension_for_pytorch as ipex
        if ipex.__version__ < MIN_IPEX_VERSION:
            raise ImportError(
                "intel_extension_for_pytorch version is "
                "wrong. Please install "
                f"intel_extension_for_pytorch>={MIN_IPEX_VERSION}.")
    except ImportError as err:
        raise ImportError(
            "Please install "
            f"intel_extension_for_pytorch>={MIN_IPEX_VERSION} via "
            f"`pip install intel_extension_for_pytorch>={MIN_IPEX_VERSION}`"
            " to use IPEX-AWQ linear method.") from err

    # Using the compute dtype (lowp_mode) as INT8 to leverage instructions
    # with better performance.
    lowp_mode = ipex.quantization.WoqLowpMode.INT8
    # The weight will be de-packed from INT4 to INT8.
    weight_dtype = ipex.quantization.WoqWeightDtype.INT4
    # The float activation will be quantized (dynamic, per-token) to INT8.
    act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH

    qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
        weight_dtype=weight_dtype,
        lowp_mode=lowp_mode,
        act_quant_mode=act_quant_mode,
        group_size=self.quant_config.group_size,
    )

    layer.ipex_output_size = layer.qweight.size(
        1) * self.quant_config.pack_factor
    layer.ipex_qlinear = ipex.llm.quantization.woq_linear. \
        IPEXWeightOnlyQuantizedLinear.from_weight(
        layer.qweight,
        layer.scales,
        layer.qzeros,
        layer.qweight.size(0),
        layer.ipex_output_size,
        qconfig=qconfig,
        bias=bias,
        group_size=self.quant_config.group_size,
        quant_method=IPEXConfig.IPEX_QUANT_METHOD_MAP["awq"]  # type: ignore
    )

IPEXConfig

Bases: QuantizationConfig

INT8 quantization config class using IPEX for the CPU/XPU backend, including AWQ, GPTQ.

Source code in vllm/model_executor/layers/quantization/ipex_quant.py
class IPEXConfig(QuantizationConfig):
    """INT8 quantization config class using IPEX for the CPU/XPU backend,
    including AWQ, GPTQ.
    """

    IPEX_QUANT_METHOD_MAP = {
        "awq": 1,
        "gptq": 0,
    }

    def __init__(
        self,
        method: str,
        weight_bits: int,
        group_size: int,
        modules_to_not_convert: Optional[list[str]] = None,
        desc_act: Optional[bool] = None,
        lm_head_quantized: Optional[bool] = None,
    ) -> None:
        super().__init__()
        self.method = method
        self.weight_bits = weight_bits
        self.group_size = group_size
        self.modules_to_not_convert = modules_to_not_convert or []
        self.desc_act = desc_act
        self.lm_head_quantized = lm_head_quantized
        self.pack_factor = 32 // self.weight_bits

        if self.weight_bits not in [4]:
            raise ValueError(f"IPEX quantization supports weight bits [4], "
                             f"but got {self.weight_bits}.")

        if self.method not in ["awq", "gptq"]:
            raise ValueError(f"IPEX quantization supports [awq, gptq], "
                             f"but got {self.method}.")

    def __repr__(self) -> str:
        return (f"IPEXConfig(method={self.method},"
                f"weight_bits={self.weight_bits}, "
                f"group_size={self.group_size})")

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "ipex"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16, torch.float16]

    @classmethod
    def get_min_capability(cls) -> int:
        return -1

    @staticmethod
    def get_config_filenames() -> list[str]:
        return [
            "quant_config.json",
            "quantize_config.json",
        ]

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "IPEXConfig":
        method = cls.get_from_keys(config, ["quant_method"]).lower()
        if method == "awq":
            weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
            group_size = cls.get_from_keys(config,
                                           ["q_group_size", "group_size"])
            modules_to_not_convert = cls.get_from_keys_or(
                config, ["modules_to_not_convert"], None)
            return cls(method, weight_bits, group_size, modules_to_not_convert,
                       False, False)
        # otherwise for gptq
        weight_bits = cls.get_from_keys(config, ["bits"])
        group_size = cls.get_from_keys(config, ["group_size"])
        lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
                                                 default=False)
        desc_act = cls.get_from_keys_or(config, ["desc_act"], default=False)
        return cls(method, weight_bits, group_size, [], desc_act,
                   lm_head_quantized)

    @classmethod
    def override_quantization_method(
            cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
        if not current_platform.is_cpu() and not current_platform.is_xpu():
            return None

        quant_method = hf_quant_cfg.get("quant_method", "").lower()

        if quant_method in ["awq", "gptq"]:
            return cls.get_name()

        return None

    def get_quant_method(self, layer: torch.nn.Module,
                         prefix: str) -> Optional["LinearMethodBase"]:
        if isinstance(layer, LinearBase):
            if self.method == "awq":
                if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
                    return UnquantizedLinearMethod()
                return IPEXAWQLinearMethod(self)
            if self.method == "gptq":
                return IPEXGPTQLinearMethod(self)
        return None

IPEX_QUANT_METHOD_MAP class-attribute instance-attribute

IPEX_QUANT_METHOD_MAP = {'awq': 1, 'gptq': 0}

desc_act instance-attribute

desc_act = desc_act

group_size instance-attribute

group_size = group_size

lm_head_quantized instance-attribute

lm_head_quantized = lm_head_quantized

method instance-attribute

method = method

modules_to_not_convert instance-attribute

modules_to_not_convert = modules_to_not_convert or []

pack_factor instance-attribute

pack_factor = 32 // weight_bits

weight_bits instance-attribute

weight_bits = weight_bits

__init__

__init__(
    method: str,
    weight_bits: int,
    group_size: int,
    modules_to_not_convert: Optional[list[str]] = None,
    desc_act: Optional[bool] = None,
    lm_head_quantized: Optional[bool] = None,
) -> None
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def __init__(
    self,
    method: str,
    weight_bits: int,
    group_size: int,
    modules_to_not_convert: Optional[list[str]] = None,
    desc_act: Optional[bool] = None,
    lm_head_quantized: Optional[bool] = None,
) -> None:
    super().__init__()
    self.method = method
    self.weight_bits = weight_bits
    self.group_size = group_size
    self.modules_to_not_convert = modules_to_not_convert or []
    self.desc_act = desc_act
    self.lm_head_quantized = lm_head_quantized
    self.pack_factor = 32 // self.weight_bits

    if self.weight_bits not in [4]:
        raise ValueError(f"IPEX quantization supports weight bits [4], "
                         f"but got {self.weight_bits}.")

    if self.method not in ["awq", "gptq"]:
        raise ValueError(f"IPEX quantization supports [awq, gptq], "
                         f"but got {self.method}.")

__repr__

__repr__() -> str
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def __repr__(self) -> str:
    return (f"IPEXConfig(method={self.method},"
            f"weight_bits={self.weight_bits}, "
            f"group_size={self.group_size})")

from_config classmethod

from_config(config: dict[str, Any]) -> IPEXConfig
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@classmethod
def from_config(cls, config: dict[str, Any]) -> "IPEXConfig":
    method = cls.get_from_keys(config, ["quant_method"]).lower()
    if method == "awq":
        weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
        group_size = cls.get_from_keys(config,
                                       ["q_group_size", "group_size"])
        modules_to_not_convert = cls.get_from_keys_or(
            config, ["modules_to_not_convert"], None)
        return cls(method, weight_bits, group_size, modules_to_not_convert,
                   False, False)
    # otherwise for gptq
    weight_bits = cls.get_from_keys(config, ["bits"])
    group_size = cls.get_from_keys(config, ["group_size"])
    lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
                                             default=False)
    desc_act = cls.get_from_keys_or(config, ["desc_act"], default=False)
    return cls(method, weight_bits, group_size, [], desc_act,
               lm_head_quantized)

get_config_filenames staticmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@staticmethod
def get_config_filenames() -> list[str]:
    return [
        "quant_config.json",
        "quantize_config.json",
    ]

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@classmethod
def get_min_capability(cls) -> int:
    return -1

get_name classmethod

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@classmethod
def get_name(cls) -> QuantizationMethods:
    return "ipex"

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[LinearMethodBase]
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def get_quant_method(self, layer: torch.nn.Module,
                     prefix: str) -> Optional["LinearMethodBase"]:
    if isinstance(layer, LinearBase):
        if self.method == "awq":
            if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
                return UnquantizedLinearMethod()
            return IPEXAWQLinearMethod(self)
        if self.method == "gptq":
            return IPEXGPTQLinearMethod(self)
    return None

get_supported_act_dtypes classmethod

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.bfloat16, torch.float16]

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> Optional[QuantizationMethods]
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
@classmethod
def override_quantization_method(
        cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
    if not current_platform.is_cpu() and not current_platform.is_xpu():
        return None

    quant_method = hf_quant_cfg.get("quant_method", "").lower()

    if quant_method in ["awq", "gptq"]:
        return cls.get_name()

    return None

IPEXGPTQLinearMethod

Bases: GPTQLinearMethod

GPTQ linear method using IPEX for the CPU/XPU backend.

Source code in vllm/model_executor/layers/quantization/ipex_quant.py
class IPEXGPTQLinearMethod(GPTQLinearMethod):
    """GPTQ linear method using IPEX for the CPU/XPU backend.
    """

    def __init__(self, quant_config: IPEXConfig):
        self.quant_config = quant_config  # type: ignore

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        bias = layer.bias if not layer.skip_bias_add else None

        try:
            import intel_extension_for_pytorch as ipex
            if ipex.__version__ < MIN_IPEX_VERSION:
                raise ImportError(
                    "intel_extension_for_pytorch version is "
                    "wrong. Please install "
                    f"intel_extension_for_pytorch>={MIN_IPEX_VERSION}.")
        except ImportError as err:
            raise ImportError(
                "Please install "
                f"intel_extension_for_pytorch>={MIN_IPEX_VERSION} via "
                f"`pip install intel_extension_for_pytorch>={MIN_IPEX_VERSION}`"
                " to use IPEX-AWQ linear method.") from err
        # Using the compute dtype (lowp_mode) as INT8 to leverage instructions
        # with better performance.
        lowp_mode = ipex.quantization.WoqLowpMode.INT8
        # The weight will be de-packed from INT4 to INT8.
        weight_dtype = ipex.quantization.WoqWeightDtype.INT4
        # The float activation will be quantized (dynamic, per-token) to INT8.
        act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH_IC_BLOCK

        qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
            weight_dtype=weight_dtype,
            lowp_mode=lowp_mode,
            act_quant_mode=act_quant_mode,
            group_size=self.quant_config.group_size,
        )
        layer.ipex_output_size = layer.qweight.shape[-1]
        g_idx = layer.g_idx if self.quant_config.desc_act else None
        layer.ipex_qlinear = ipex.llm.quantization.woq_linear. \
            IPEXWeightOnlyQuantizedLinear.from_weight(
            layer.qweight,
            layer.scales,
            layer.qzeros,
            layer.qweight.size(0),
            layer.ipex_output_size,
            qconfig=qconfig,
            g_idx=g_idx,
            bias=bias,
            group_size=self.quant_config.group_size,
            quant_method=IPEXConfig.IPEX_QUANT_METHOD_MAP["gptq"]
        )

    def apply(self,
              layer: torch.nn.Module,
              x: torch.Tensor,
              bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        reshaped_x = x.reshape(-1, x.shape[-1])
        out = layer.ipex_qlinear(reshaped_x)
        return out.reshape(x.shape[:-1] + (layer.ipex_output_size, ))

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(quant_config: IPEXConfig)
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def __init__(self, quant_config: IPEXConfig):
    self.quant_config = quant_config  # type: ignore

apply

apply(
    layer: Module, x: Tensor, bias: Optional[Tensor] = None
) -> Tensor
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def apply(self,
          layer: torch.nn.Module,
          x: torch.Tensor,
          bias: Optional[torch.Tensor] = None) -> torch.Tensor:
    reshaped_x = x.reshape(-1, x.shape[-1])
    out = layer.ipex_qlinear(reshaped_x)
    return out.reshape(x.shape[:-1] + (layer.ipex_output_size, ))

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/ipex_quant.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    bias = layer.bias if not layer.skip_bias_add else None

    try:
        import intel_extension_for_pytorch as ipex
        if ipex.__version__ < MIN_IPEX_VERSION:
            raise ImportError(
                "intel_extension_for_pytorch version is "
                "wrong. Please install "
                f"intel_extension_for_pytorch>={MIN_IPEX_VERSION}.")
    except ImportError as err:
        raise ImportError(
            "Please install "
            f"intel_extension_for_pytorch>={MIN_IPEX_VERSION} via "
            f"`pip install intel_extension_for_pytorch>={MIN_IPEX_VERSION}`"
            " to use IPEX-AWQ linear method.") from err
    # Using the compute dtype (lowp_mode) as INT8 to leverage instructions
    # with better performance.
    lowp_mode = ipex.quantization.WoqLowpMode.INT8
    # The weight will be de-packed from INT4 to INT8.
    weight_dtype = ipex.quantization.WoqWeightDtype.INT4
    # The float activation will be quantized (dynamic, per-token) to INT8.
    act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH_IC_BLOCK

    qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
        weight_dtype=weight_dtype,
        lowp_mode=lowp_mode,
        act_quant_mode=act_quant_mode,
        group_size=self.quant_config.group_size,
    )
    layer.ipex_output_size = layer.qweight.shape[-1]
    g_idx = layer.g_idx if self.quant_config.desc_act else None
    layer.ipex_qlinear = ipex.llm.quantization.woq_linear. \
        IPEXWeightOnlyQuantizedLinear.from_weight(
        layer.qweight,
        layer.scales,
        layer.qzeros,
        layer.qweight.size(0),
        layer.ipex_output_size,
        qconfig=qconfig,
        g_idx=g_idx,
        bias=bias,
        group_size=self.quant_config.group_size,
        quant_method=IPEXConfig.IPEX_QUANT_METHOD_MAP["gptq"]
    )