Skip to content

vllm.model_executor.layers.quantization.awq_triton

AWQ_TRITON_SUPPORTED_GROUP_SIZES module-attribute

AWQ_TRITON_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]

awq_dequantize_kernel

awq_dequantize_kernel(
    qweight_ptr,
    scales_ptr,
    zeros_ptr,
    group_size,
    result_ptr,
    num_cols,
    num_rows,
    BLOCK_SIZE_X: constexpr,
    BLOCK_SIZE_Y: constexpr,
)
Source code in vllm/model_executor/layers/quantization/awq_triton.py
@triton.jit
def awq_dequantize_kernel(
        qweight_ptr,  # quantized matrix
        scales_ptr,  # scales, per group
        zeros_ptr,  # zeros, per group
        group_size,  # Should always be one of the supported group sizes
        result_ptr,  # Output matrix
        num_cols,  # input num cols in qweight
        num_rows,  # input num rows in qweight
        BLOCK_SIZE_X: tl.constexpr,
        BLOCK_SIZE_Y: tl.constexpr):
    # Setup the pids.
    pid_x = tl.program_id(axis=0)
    pid_y = tl.program_id(axis=1)

    # Compute offsets and masks for qweight_ptr.
    offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
    offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
    offsets = num_cols * offsets_y[:, None] + offsets_x[None, :]

    masks_y = offsets_y < num_rows
    masks_x = offsets_x < num_cols

    masks = masks_y[:, None] & masks_x[None, :]

    # Compute offsets and masks for result output ptr.
    result_offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
    result_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(
        0, BLOCK_SIZE_X * 8)
    result_offsets = (8 * num_cols * result_offsets_y[:, None] +
                      result_offsets_x[None, :])

    result_masks_y = result_offsets_y < num_rows
    result_masks_x = result_offsets_x < num_cols * 8
    result_masks = result_masks_y[:, None] & result_masks_x[None, :]

    # Load the weights.
    iweights = tl.load(qweight_ptr + offsets, masks, 0.0)
    iweights = tl.interleave(iweights, iweights)
    iweights = tl.interleave(iweights, iweights)
    iweights = tl.interleave(iweights, iweights)

    # Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
    # that will map given indices to the correct order.
    reverse_awq_order_tensor = ((tl.arange(0, 2) * 4)[None, :] +
                                tl.arange(0, 4)[:, None]).reshape(8)

    # Use this to compute a set of shifts that can be used to unpack and
    # reorder the values in iweights and zeros.
    shifts = reverse_awq_order_tensor * 4
    shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_Y * BLOCK_SIZE_X, 8))
    shifts = tl.reshape(shifts, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))

    # Unpack and reorder: shift out the correct 4-bit value and mask.
    iweights = (iweights >> shifts) & 0xF

    # Compute zero offsets and masks.
    zero_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
    zero_offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
    zero_offsets = num_cols * zero_offsets_y[:, None] + zero_offsets_x[None, :]

    zero_masks_y = zero_offsets_y < num_rows // group_size
    zero_masks_x = zero_offsets_x < num_cols
    zero_masks = zero_masks_y[:, None] & zero_masks_x[None, :]

    # Load the zeros.
    zeros = tl.load(zeros_ptr + zero_offsets, zero_masks, 0.0)
    zeros = tl.interleave(zeros, zeros)
    zeros = tl.interleave(zeros, zeros)
    zeros = tl.interleave(zeros, zeros)
    zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))

    # Unpack and reorder: shift out the correct 4-bit value and mask.
    zeros = (zeros >> shifts) & 0xF

    # Compute scale offsets and masks.
    scale_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
    scale_offsets_x = (pid_x * BLOCK_SIZE_X * 8 +
                       tl.arange(0, BLOCK_SIZE_X * 8))
    scale_offsets = (num_cols * 8 * scale_offsets_y[:, None] +
                     scale_offsets_x[None, :])
    scale_masks_y = scale_offsets_y < num_rows // group_size
    scale_masks_x = scale_offsets_x < num_cols * 8
    scale_masks = scale_masks_y[:, None] & scale_masks_x[None, :]

    # Load the scales.
    scales = tl.load(scales_ptr + scale_offsets, scale_masks, 0.0)
    scales = tl.broadcast_to(scales, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))

    # Dequantize.
    iweights = (iweights - zeros) * scales
    iweights = iweights.to(result_ptr.type.element_ty)

    # Finally, store.
    tl.store(result_ptr + result_offsets, iweights, result_masks)

awq_dequantize_triton

awq_dequantize_triton(
    qweight: Tensor,
    scales: Tensor,
    zeros: Tensor,
    block_size_x: int = 32,
    block_size_y: int = 32,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/awq_triton.py
def awq_dequantize_triton(qweight: torch.Tensor,
                          scales: torch.Tensor,
                          zeros: torch.Tensor,
                          block_size_x: int = 32,
                          block_size_y: int = 32) -> torch.Tensor:
    K = qweight.shape[0]
    M = scales.shape[1]
    group_size = qweight.shape[0] // scales.shape[0]

    assert K > 0 and M > 0
    assert scales.shape[0] == K // group_size and scales.shape[1] == M
    assert zeros.shape[0] == K // group_size and zeros.shape[1] == M // 8
    assert group_size <= K
    assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K

    # Result tensor:
    # number of rows = same as input tensor
    # number of cols = 8 x input tensor num cols
    result = torch.empty(qweight.shape[0],
                         qweight.shape[1] * 8,
                         device=qweight.device,
                         dtype=scales.dtype)

    Y = qweight.shape[0]  # num rows
    X = qweight.shape[1]  # num cols

    grid = lambda META: (
        triton.cdiv(X, META['BLOCK_SIZE_X']),
        triton.cdiv(Y, META['BLOCK_SIZE_Y']),
    )
    awq_dequantize_kernel[grid](qweight,
                                scales,
                                zeros,
                                group_size,
                                result,
                                X,
                                Y,
                                BLOCK_SIZE_X=block_size_x,
                                BLOCK_SIZE_Y=block_size_y)

    return result

awq_gemm_kernel

awq_gemm_kernel(
    a_ptr,
    b_ptr,
    c_ptr,
    zeros_ptr,
    scales_ptr,
    M,
    N,
    K,
    group_size,
    BLOCK_SIZE_M: constexpr,
    BLOCK_SIZE_N: constexpr,
    BLOCK_SIZE_K: constexpr,
    SPLIT_K: constexpr,
)
Source code in vllm/model_executor/layers/quantization/awq_triton.py
@triton.jit
def awq_gemm_kernel(a_ptr, b_ptr, c_ptr, zeros_ptr, scales_ptr, M, N, K,
                    group_size, BLOCK_SIZE_M: tl.constexpr,
                    BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
                    SPLIT_K: tl.constexpr):
    pid = tl.program_id(axis=0)
    pid_z = tl.program_id(1)

    # NOTE: This doesn't work in TRITON_INTERPRET=1 mode.  Use below instead.
    # num_pid_n = (N + BLOCK_SIZE_N - 1) // BLOCK_SIZE_N
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)

    pid_m = pid // num_pid_n
    pid_n = pid % num_pid_n

    accumulator_dtype = c_ptr.type.element_ty

    # NOTE: This doesn't work in TRITON_INTERPRET=1 mode.  Use below instead.
    # accumulator = tl.arange(0, BLOCK_SIZE_N)
    # accumulator = tl.broadcast_to(accumulator[None, :],
    # (BLOCK_SIZE_M, BLOCK_SIZE_N))
    # accumulator = accumulator & 0x0
    # accumulator = accumulator.to(accumulator_dtype)
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N),
                           dtype=accumulator_dtype)

    # Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
    # that will map given indices to the correct order.
    reverse_awq_order_tensor = ((tl.arange(0, 2) * 4)[None, :] +
                                tl.arange(0, 4)[:, None]).reshape(8)

    # Create the necessary shifts to use to unpack.
    shifts = reverse_awq_order_tensor * 4
    shifts = tl.broadcast_to(shifts[None, :],
                             (BLOCK_SIZE_K * (BLOCK_SIZE_N // 8), 8))
    shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))

    # Offsets and masks.
    offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    masks_am = offsets_am < M

    offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
    masks_bn = offsets_bn < N // 8

    offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
    masks_zn = offsets_zn < N // 8

    offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    masks_sn = offsets_sn < N

    offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
    offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
    offsets_b = (N // 8) * offsets_k[:, None] + offsets_bn[None, :]

    a_ptrs = a_ptr + offsets_a
    b_ptrs = b_ptr + offsets_b

    # NOTE: Use this in TRITON_INTERPRET=1 mode instead of tl.cdiv
    # block_offset = BLOCK_SIZE_K * SPLIT_K
    # for k in range(0, (K + block_offset - 1) // (block_offset)):
    for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
        masks_k = offsets_k < K
        masks_a = masks_am[:, None] & masks_k[None, :]
        a = tl.load(a_ptrs, mask=masks_a, other=0.0)

        masks_b = masks_k[:, None] & masks_bn[None, :]
        b = tl.load(b_ptrs, mask=masks_b, other=0.0)
        b = tl.interleave(b, b)
        b = tl.interleave(b, b)
        b = tl.interleave(b, b)

        # Dequantize b.
        offsets_szk = (
            (BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K) // group_size +
            tl.arange(0, 1))
        offsets_z = (N // 8) * offsets_szk[:, None] + offsets_zn[None, :]
        masks_zk = offsets_szk < K // group_size
        masks_z = masks_zk[:, None] & masks_zn[None, :]
        zeros_ptrs = zeros_ptr + offsets_z
        zeros = tl.load(zeros_ptrs, mask=masks_z, other=0.0)
        zeros = tl.interleave(zeros, zeros)
        zeros = tl.interleave(zeros, zeros)
        zeros = tl.interleave(zeros, zeros)
        zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))

        offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
        masks_sk = offsets_szk < K // group_size
        masks_s = masks_sk[:, None] & masks_sn[None, :]
        scales_ptrs = scales_ptr + offsets_s
        scales = tl.load(scales_ptrs, mask=masks_s, other=0.0)
        scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))

        b = (b >> shifts) & 0xF
        zeros = (zeros >> shifts) & 0xF
        b = (b - zeros) * scales
        b = b.to(c_ptr.type.element_ty)

        # Accumulate results.
        accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)

        offsets_k += BLOCK_SIZE_K * SPLIT_K
        a_ptrs += BLOCK_SIZE_K * SPLIT_K
        b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)

    c = accumulator.to(c_ptr.type.element_ty)
    offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + pid_z * N * M + N * offs_cm[:, None] + offs_cn[None, :]
    c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
    tl.store(c_ptrs, c, mask=c_mask)

awq_gemm_triton

awq_gemm_triton(
    input: Tensor,
    qweight: Tensor,
    scales: Tensor,
    qzeros: Tensor,
    split_k_iters: int,
    block_size_m: int = 32,
    block_size_n: int = 32,
    block_size_k: int = 32,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/awq_triton.py
def awq_gemm_triton(input: torch.Tensor,
                    qweight: torch.Tensor,
                    scales: torch.Tensor,
                    qzeros: torch.Tensor,
                    split_k_iters: int,
                    block_size_m: int = 32,
                    block_size_n: int = 32,
                    block_size_k: int = 32) -> torch.Tensor:
    M, K = input.shape
    N = qweight.shape[1] * 8
    group_size = qweight.shape[0] // qzeros.shape[0]

    assert N > 0 and K > 0 and M > 0
    assert qweight.shape[0] == K and qweight.shape[1] == N // 8
    assert qzeros.shape[0] == K // group_size and qzeros.shape[1] == N // 8
    assert scales.shape[0] == K // group_size and scales.shape[1] == N
    assert split_k_iters & (split_k_iters - 1) == 0 and split_k_iters != 0
    assert split_k_iters <= 32
    assert group_size <= K
    assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K

    grid = lambda META: (
        triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
            N, META['BLOCK_SIZE_N']),
        split_k_iters,
    )

    result = torch.zeros((split_k_iters, M, N),
                         dtype=scales.dtype,
                         device=input.device)

    # A = input, B = qweight, C = result
    # A = M x K, B = K x N, C = M x N
    awq_gemm_kernel[grid](input,
                          qweight,
                          result,
                          qzeros,
                          scales,
                          M,
                          N,
                          K,
                          group_size,
                          BLOCK_SIZE_M=block_size_m,
                          BLOCK_SIZE_N=block_size_n,
                          BLOCK_SIZE_K=block_size_k,
                          SPLIT_K=split_k_iters)

    result = result.sum(0)

    return result