@ToolParserManager.register_module("granite")
class GraniteToolParser(ToolParser):
"""
Tool call parser for the granite 3.0 models. Intended
for use with the examples/tool_chat_template_granite.jinja
template.
Used when --enable-auto-tool-choice --tool-call-parser granite
are all set
"""
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
# for granite 3.0, the token `<|tool_call|>`
self.bot_token = "<|tool_call|>"
# for granite 3.1, the string `<tool_call>`
self.bot_string = "<tool_call>"
def extract_tool_calls(
self, model_output: str,
request: ChatCompletionRequest) -> ExtractedToolCallInformation:
stripped = model_output.strip()\
.removeprefix(self.bot_token)\
.removeprefix(self.bot_string)\
.lstrip()
if not stripped or stripped[0] != '[':
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
try:
raw_function_calls = json.loads(stripped)
if not isinstance(raw_function_calls, list):
raise Exception(
f"Expected dict or list, got {type(raw_function_calls)}")
logger.debug("Extracted %d tool calls", len(raw_function_calls))
tool_calls = [
ToolCall(
type="function",
function=FunctionCall(
name=function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(function_call["arguments"],
ensure_ascii=False),
),
) for function_call in raw_function_calls
]
return ExtractedToolCallInformation(
tools_called=True,
tool_calls=tool_calls,
content=None,
)
except Exception as e:
logger.error("Error in extracting tool call from response %s", e)
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
start_idx = consume_space(0, current_text)
if current_text[start_idx:].startswith(self.bot_token):
start_idx = consume_space(start_idx + len(self.bot_token),
current_text)
if current_text[start_idx:].startswith(self.bot_string):
start_idx = consume_space(start_idx + len(self.bot_string),
current_text)
if not current_text or start_idx >= len(current_text)\
or current_text[start_idx] != '[':
return DeltaMessage(content=delta_text)
# bit mask flags for partial JSON parsing. If the name hasn't been
# sent yet, don't allow sending
# an incomplete string since OpenAI only ever (as far as I have
# seen) allows sending the entire tool/ function name at once.
flags = Allow.ALL if self.current_tool_name_sent \
else Allow.ALL & ~Allow.STR
try:
tool_call_arr = None
is_complete = None
try:
tool_calls, end_idx = partial_json_loads(
current_text[start_idx:], flags)
if type(tool_calls) is list:
tool_call_arr = tool_calls
else:
return DeltaMessage(content=delta_text)
is_complete = [True] * len(tool_calls)
if not is_complete_json(
current_text[start_idx:start_idx + end_idx]):
is_complete[-1] = False
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug('not enough tokens to parse into JSON yet')
return None
# case -- if no tokens have been streamed for the tool, e.g.
# only the array brackets, stream nothing
if not tool_call_arr:
return None
# select as the current tool call the one we're on the state at
current_tool_call: dict = tool_call_arr[self.current_tool_id]
delta = None
# case: we are starting a new tool in the array
# -> array has > 0 length AND length has moved past cursor
if len(tool_call_arr) > self.current_tool_id + 1:
# if we're moving on to a new call, first make sure we
# haven't missed anything in the previous one that was
# auto-generated due to JSON completions, but wasn't
# streamed to the client yet.
if self.current_tool_id >= 0:
cur_arguments = current_tool_call.get("arguments")
if cur_arguments:
cur_args_json = json.dumps(cur_arguments,
ensure_ascii=False)
sent = len(
self.streamed_args_for_tool[self.current_tool_id])
argument_diff = cur_args_json[sent:]
logger.debug("got arguments diff: %s", argument_diff)
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff).
model_dump(exclude_none=True))
])
self.streamed_args_for_tool[
self.current_tool_id] += argument_diff
# re-set stuff pertaining to progress in the current tool
self.current_tool_id = len(tool_call_arr) - 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("starting on new tool %d", self.current_tool_id)
return delta
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
elif not self.current_tool_name_sent:
function_name = current_tool_call.get("name")
if function_name:
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
type="function",
id=random_tool_call_id(),
function=DeltaFunctionCall(
name=function_name).model_dump(
exclude_none=True))
])
self.current_tool_name_sent = True
# now we know we're on the same tool call and we're streaming
# arguments
else:
cur_arguments = current_tool_call.get("arguments")
if cur_arguments:
sent = len(
self.streamed_args_for_tool[self.current_tool_id])
cur_args_json = json.dumps(cur_arguments,
ensure_ascii=False)
prev_arguments = self.prev_tool_call_arr[
self.current_tool_id].get("arguments")
argument_diff = None
if is_complete[self.current_tool_id]:
argument_diff = cur_args_json[sent:]
elif prev_arguments:
prev_args_json = json.dumps(prev_arguments,
ensure_ascii=False)
if cur_args_json != prev_args_json:
prefix = find_common_prefix(
prev_args_json, cur_args_json)
argument_diff = prefix[sent:]
if argument_diff is not None:
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff).
model_dump(exclude_none=True))
])
self.streamed_args_for_tool[
self.current_tool_id] += argument_diff
self.prev_tool_call_arr = tool_call_arr
return delta
except Exception as e:
logger.error("Error trying to handle streaming tool call: %s", e)
logger.debug(
"Skipping chunk as a result of tool streaming extraction "
"error")
return None