Skip to content

vllm.entrypoints.openai.tool_parsers.deepseekv3_tool_parser

logger module-attribute

logger = init_logger(__name__)

DeepSeekV3ToolParser

Bases: ToolParser

Source code in vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py
@ToolParserManager.register_module("deepseek_v3")
class DeepSeekV3ToolParser(ToolParser):

    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)

        self.current_tool_name_sent: bool = False
        self.prev_tool_call_arr: list[dict] = []
        self.current_tool_id: int = -1
        self.streamed_args_for_tool: list[str] = (
            [])  # map what has been streamed for each tool so far to a list

        self.tool_calls_start_token: str = "<|tool▁calls▁begin|>"
        self.tool_calls_end_token: str = "<|tool▁calls▁end|>"

        self.tool_call_start_token: str = "<|tool▁call▁begin|>"
        self.tool_call_end_token: str = "<|tool▁call▁end|>"

        self.tool_call_regex = re.compile(
            r"<|tool▁call▁begin|>(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n```json\n(?P<function_arguments>.*)\n```<|tool▁call▁end|>"
        )

        self.stream_tool_call_portion_regex = re.compile(
            r"(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n```json\n(?P<function_arguments>.*[^\n`])"
        )

        self.stream_tool_call_name_regex = re.compile(
            r"(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n")

        if not self.model_tokenizer:
            raise ValueError(
                "The model tokenizer must be passed to the ToolParser "
                "constructor during construction.")
        self.tool_calls_start_token_id = self.vocab.get(
            self.tool_calls_start_token)
        self.tool_calls_end_token_id = self.vocab.get(
            self.tool_calls_end_token)

        self.tool_call_start_token_id = self.vocab.get(
            self.tool_call_start_token)
        self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)

        if (self.tool_calls_start_token_id is None
                or self.tool_calls_end_token_id is None):
            raise RuntimeError(
                "DeepSeek-V3 Tool parser could not locate tool call start/end "
                "tokens in the tokenizer!")

    def extract_tool_calls(
        self,
        model_output: str,
        request: ChatCompletionRequest,
    ) -> ExtractedToolCallInformation:

        # sanity check; avoid unnecessary processing
        if self.tool_calls_start_token not in model_output:
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)

        else:
            try:
                # there are two possible captures - between tags, or between a
                # tag and end-of-string so the result of
                # findall is an array of tuples where one is a function call and
                # the other is None
                function_call_tuples = self.tool_call_regex.findall(
                    model_output)

                tool_calls = []
                for match in function_call_tuples:
                    tool_type, function_name, function_args = match
                    tool_calls.append(
                        ToolCall(
                            type=tool_type,
                            function=FunctionCall(name=function_name,
                                                  arguments=function_args),
                        ))

                content = model_output[:model_output.
                                       find(self.tool_calls_start_token)]
                return ExtractedToolCallInformation(
                    tools_called=True,
                    tool_calls=tool_calls,
                    content=content if content else None,
                )

            except Exception:
                logger.exception(
                    "Error in extracting tool call from response.")
                return ExtractedToolCallInformation(tools_called=False,
                                                    tool_calls=[],
                                                    content=model_output)

    def extract_tool_calls_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
        request: ChatCompletionRequest,
    ) -> Union[DeltaMessage, None]:

        logger.debug("delta_text: %s", delta_text)
        logger.debug("delta_token_ids: %s", delta_token_ids)
        # check to see if we should be streaming a tool call - is there a
        if self.tool_calls_start_token_id not in current_token_ids:
            logger.debug("No tool call tokens found!")
            return DeltaMessage(content=delta_text)
        delta_text = delta_text.replace(self.tool_calls_start_token,
                                        "").replace(self.tool_calls_end_token,
                                                    "")
        try:

            # figure out where we are in the parsing by counting tool call
            # start & end tags
            prev_tool_start_count = previous_token_ids.count(
                self.tool_call_start_token_id)
            prev_tool_end_count = previous_token_ids.count(
                self.tool_call_end_token_id)
            cur_tool_start_count = current_token_ids.count(
                self.tool_call_start_token_id)
            cur_tool_end_count = current_token_ids.count(
                self.tool_call_end_token_id)
            tool_call_portion = None
            text_portion = None

            # case: if we're generating text, OR rounding out a tool call
            if (cur_tool_start_count == cur_tool_end_count
                    and prev_tool_end_count == cur_tool_end_count
                    and self.tool_call_end_token not in delta_text):
                logger.debug("Generating text content! skipping tool parsing.")
                return DeltaMessage(content=delta_text)

            if self.tool_call_end_token in delta_text:
                logger.debug("tool_call_end_token in delta_text")
                full_text = current_text + delta_text
                tool_call_portion = full_text.split(
                    self.tool_call_start_token)[-1].split(
                        self.tool_call_end_token)[0].rstrip()
                delta_text = delta_text.split(
                    self.tool_call_end_token)[0].rstrip()
                text_portion = delta_text.split(
                    self.tool_call_end_token)[-1].lstrip()

            # case -- we're starting a new tool call
            if (cur_tool_start_count > cur_tool_end_count
                    and cur_tool_start_count > prev_tool_start_count):
                if len(delta_token_ids) > 1:
                    tool_call_portion = current_text.split(
                        self.tool_call_start_token)[-1]
                else:
                    tool_call_portion = None
                    delta = None

                text_portion = None

                # set cursors and state appropriately
                self.current_tool_id += 1
                self.current_tool_name_sent = False
                self.streamed_args_for_tool.append("")
                logger.debug("Starting on a new tool %s", self.current_tool_id)

            # case -- we're updating an existing tool call
            elif (cur_tool_start_count > cur_tool_end_count
                  and cur_tool_start_count == prev_tool_start_count):

                # get the portion of the text that's the tool call
                tool_call_portion = current_text.split(
                    self.tool_call_start_token)[-1]
                text_portion = None

            # case -- the current tool call is being closed.
            elif (cur_tool_start_count == cur_tool_end_count
                  and cur_tool_end_count >= prev_tool_end_count):
                if self.prev_tool_call_arr is None or len(
                        self.prev_tool_call_arr) == 0:
                    logger.debug(
                        "attempting to close tool call, but no tool call")
                    return None
                diff = self.prev_tool_call_arr[self.current_tool_id].get(
                    "arguments")
                if diff:
                    diff = (diff.encode("utf-8").decode("unicode_escape")
                            if diff is str else diff)
                    if '"}' not in delta_text:
                        return None
                    end_loc = delta_text.rindex('"}')
                    diff = delta_text[:end_loc] + '"}'
                    logger.debug(
                        "Finishing tool and found diff that had not "
                        "been streamed yet: %s",
                        diff,
                    )
                    self.streamed_args_for_tool[self.current_tool_id] += diff
                    return DeltaMessage(tool_calls=[
                        DeltaToolCall(
                            index=self.current_tool_id,
                            function=DeltaFunctionCall(
                                arguments=diff).model_dump(exclude_none=True),
                        )
                    ])

            # case -- otherwise we're just generating text
            else:
                text = delta_text.replace(self.tool_call_start_token, "")
                text = text.replace(self.tool_call_end_token, "")
                delta = DeltaMessage(tool_calls=[], content=text)
                return delta

            current_tool_call = dict()
            if tool_call_portion:
                current_tool_call_matches = (
                    self.stream_tool_call_portion_regex.match(
                        tool_call_portion))
                if current_tool_call_matches:
                    tool_type, tool_name, tool_args = (
                        current_tool_call_matches.groups())
                    current_tool_call["name"] = tool_name
                    current_tool_call["arguments"] = tool_args
                else:
                    current_tool_call_name_matches = (
                        self.stream_tool_call_name_regex.match(
                            tool_call_portion))
                    if current_tool_call_name_matches:
                        tool_type, tool_name = (
                            current_tool_call_name_matches.groups())
                        current_tool_call["name"] = tool_name
                        current_tool_call["arguments"] = ""
                    else:
                        logger.debug("Not enough token")
                        return None

            # case - we haven't sent the tool name yet. If it's available, send
            #   it. otherwise, wait until it's available.
            if not self.current_tool_name_sent:
                if current_tool_call is None:
                    return None
                function_name: Union[str, None] = current_tool_call.get("name")
                if function_name:
                    self.current_tool_name_sent = True
                    return DeltaMessage(tool_calls=[
                        DeltaToolCall(
                            index=self.current_tool_id,
                            type="function",
                            id=f"chatcmpl-tool-{random_uuid()}",
                            function=DeltaFunctionCall(
                                name=function_name).model_dump(
                                    exclude_none=True),
                        )
                    ])
                else:
                    return None

            # case -- otherwise, send the tool call delta

            # if the tool call portion is None, send the delta as text
            if tool_call_portion is None:
                # if there's text but not tool calls, send that -
                # otherwise None to skip chunk
                delta = (DeltaMessage(
                    content=delta_text) if text_portion is not None else None)
                return delta

            # now, the nitty-gritty of tool calls
            # now we have the portion to parse as tool call.

            logger.debug("Trying to parse current tool call with ID %s",
                         self.current_tool_id)

            # if we're starting a new tool call, push an empty object in as
            #   a placeholder for the arguments
            if len(self.prev_tool_call_arr) <= self.current_tool_id:
                self.prev_tool_call_arr.append({})

            # main logic for tool parsing here - compare prev. partially-parsed
            #   JSON to the current partially-parsed JSON
            prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
                "arguments")
            cur_arguments = current_tool_call.get("arguments")

            logger.debug("diffing old arguments: %s", prev_arguments)
            logger.debug("against new ones: %s", cur_arguments)

            # case -- no arguments have been created yet. skip sending a delta.
            if not cur_arguments and not prev_arguments:
                logger.debug("Skipping text %s - no arguments", delta_text)
                delta = None

            # case -- prev arguments are defined, but non are now.
            #   probably impossible, but not a fatal error - just keep going
            elif not cur_arguments and prev_arguments:
                logger.error("should be impossible to have arguments reset "
                             "mid-call. skipping streaming anything.")
                delta = None

            # case -- we now have the first info about arguments available from
            #   autocompleting the JSON
            elif cur_arguments and not prev_arguments:

                delta = DeltaMessage(tool_calls=[
                    DeltaToolCall(
                        index=self.current_tool_id,
                        function=DeltaFunctionCall(
                            arguments=cur_arguments).model_dump(
                                exclude_none=True),
                    )
                ])
                self.streamed_args_for_tool[
                    self.current_tool_id] = cur_arguments

            # last case -- we have an update to existing arguments.
            elif cur_arguments and prev_arguments:
                if (isinstance(delta_text, str)
                        and cur_arguments != prev_arguments
                        and len(cur_arguments) > len(prev_arguments)
                        and cur_arguments.startswith(prev_arguments)):
                    delta_arguments = cur_arguments[len(prev_arguments):]
                    logger.debug("got diff %s", delta_text)

                    delta = DeltaMessage(tool_calls=[
                        DeltaToolCall(
                            index=self.current_tool_id,
                            function=DeltaFunctionCall(
                                arguments=delta_arguments).model_dump(
                                    exclude_none=True),
                        )
                    ])
                    self.streamed_args_for_tool[
                        self.current_tool_id] = cur_arguments
                else:
                    delta = None

            # handle saving the state for the current tool into
            # the "prev" list for use in diffing for the next iteration
            if self.current_tool_id == len(self.prev_tool_call_arr) - 1:
                self.prev_tool_call_arr[
                    self.current_tool_id] = current_tool_call
            else:
                self.prev_tool_call_arr.append(current_tool_call)

            return delta

        except Exception:
            logger.exception("Error trying to handle streaming tool call.")
            return None  # do not stream a delta. skip this token ID.

current_tool_id instance-attribute

current_tool_id: int = -1

current_tool_name_sent instance-attribute

current_tool_name_sent: bool = False

prev_tool_call_arr instance-attribute

prev_tool_call_arr: list[dict] = []

stream_tool_call_name_regex instance-attribute

stream_tool_call_name_regex = compile(
    "(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\\n"
)

stream_tool_call_portion_regex instance-attribute

stream_tool_call_portion_regex = compile(
    "(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\\n```json\\n(?P<function_arguments>.*[^\\n`])"
)

streamed_args_for_tool instance-attribute

streamed_args_for_tool: list[str] = []

tool_call_end_token instance-attribute

tool_call_end_token: str = '<|tool▁call▁end|>'

tool_call_end_token_id instance-attribute

tool_call_end_token_id = get(tool_call_end_token)

tool_call_regex instance-attribute

tool_call_regex = compile(
    "<|tool▁call▁begin|>(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\\n```json\\n(?P<function_arguments>.*)\\n```<|tool▁call▁end|>"
)

tool_call_start_token instance-attribute

tool_call_start_token: str = '<|tool▁call▁begin|>'

tool_call_start_token_id instance-attribute

tool_call_start_token_id = get(tool_call_start_token)

tool_calls_end_token instance-attribute

tool_calls_end_token: str = '<|tool▁calls▁end|>'

tool_calls_end_token_id instance-attribute

tool_calls_end_token_id = get(tool_calls_end_token)

tool_calls_start_token instance-attribute

tool_calls_start_token: str = '<|tool▁calls▁begin|>'

tool_calls_start_token_id instance-attribute

tool_calls_start_token_id = get(tool_calls_start_token)

__init__

__init__(tokenizer: AnyTokenizer)
Source code in vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py
def __init__(self, tokenizer: AnyTokenizer):
    super().__init__(tokenizer)

    self.current_tool_name_sent: bool = False
    self.prev_tool_call_arr: list[dict] = []
    self.current_tool_id: int = -1
    self.streamed_args_for_tool: list[str] = (
        [])  # map what has been streamed for each tool so far to a list

    self.tool_calls_start_token: str = "<|tool▁calls▁begin|>"
    self.tool_calls_end_token: str = "<|tool▁calls▁end|>"

    self.tool_call_start_token: str = "<|tool▁call▁begin|>"
    self.tool_call_end_token: str = "<|tool▁call▁end|>"

    self.tool_call_regex = re.compile(
        r"<|tool▁call▁begin|>(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n```json\n(?P<function_arguments>.*)\n```<|tool▁call▁end|>"
    )

    self.stream_tool_call_portion_regex = re.compile(
        r"(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n```json\n(?P<function_arguments>.*[^\n`])"
    )

    self.stream_tool_call_name_regex = re.compile(
        r"(?P<type>.*)<|tool▁sep|>(?P<function_name>.*)\n")

    if not self.model_tokenizer:
        raise ValueError(
            "The model tokenizer must be passed to the ToolParser "
            "constructor during construction.")
    self.tool_calls_start_token_id = self.vocab.get(
        self.tool_calls_start_token)
    self.tool_calls_end_token_id = self.vocab.get(
        self.tool_calls_end_token)

    self.tool_call_start_token_id = self.vocab.get(
        self.tool_call_start_token)
    self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)

    if (self.tool_calls_start_token_id is None
            or self.tool_calls_end_token_id is None):
        raise RuntimeError(
            "DeepSeek-V3 Tool parser could not locate tool call start/end "
            "tokens in the tokenizer!")

extract_tool_calls

extract_tool_calls(
    model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation
Source code in vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py
def extract_tool_calls(
    self,
    model_output: str,
    request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:

    # sanity check; avoid unnecessary processing
    if self.tool_calls_start_token not in model_output:
        return ExtractedToolCallInformation(tools_called=False,
                                            tool_calls=[],
                                            content=model_output)

    else:
        try:
            # there are two possible captures - between tags, or between a
            # tag and end-of-string so the result of
            # findall is an array of tuples where one is a function call and
            # the other is None
            function_call_tuples = self.tool_call_regex.findall(
                model_output)

            tool_calls = []
            for match in function_call_tuples:
                tool_type, function_name, function_args = match
                tool_calls.append(
                    ToolCall(
                        type=tool_type,
                        function=FunctionCall(name=function_name,
                                              arguments=function_args),
                    ))

            content = model_output[:model_output.
                                   find(self.tool_calls_start_token)]
            return ExtractedToolCallInformation(
                tools_called=True,
                tool_calls=tool_calls,
                content=content if content else None,
            )

        except Exception:
            logger.exception(
                "Error in extracting tool call from response.")
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)

extract_tool_calls_streaming

extract_tool_calls_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]
Source code in vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py
def extract_tool_calls_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:

    logger.debug("delta_text: %s", delta_text)
    logger.debug("delta_token_ids: %s", delta_token_ids)
    # check to see if we should be streaming a tool call - is there a
    if self.tool_calls_start_token_id not in current_token_ids:
        logger.debug("No tool call tokens found!")
        return DeltaMessage(content=delta_text)
    delta_text = delta_text.replace(self.tool_calls_start_token,
                                    "").replace(self.tool_calls_end_token,
                                                "")
    try:

        # figure out where we are in the parsing by counting tool call
        # start & end tags
        prev_tool_start_count = previous_token_ids.count(
            self.tool_call_start_token_id)
        prev_tool_end_count = previous_token_ids.count(
            self.tool_call_end_token_id)
        cur_tool_start_count = current_token_ids.count(
            self.tool_call_start_token_id)
        cur_tool_end_count = current_token_ids.count(
            self.tool_call_end_token_id)
        tool_call_portion = None
        text_portion = None

        # case: if we're generating text, OR rounding out a tool call
        if (cur_tool_start_count == cur_tool_end_count
                and prev_tool_end_count == cur_tool_end_count
                and self.tool_call_end_token not in delta_text):
            logger.debug("Generating text content! skipping tool parsing.")
            return DeltaMessage(content=delta_text)

        if self.tool_call_end_token in delta_text:
            logger.debug("tool_call_end_token in delta_text")
            full_text = current_text + delta_text
            tool_call_portion = full_text.split(
                self.tool_call_start_token)[-1].split(
                    self.tool_call_end_token)[0].rstrip()
            delta_text = delta_text.split(
                self.tool_call_end_token)[0].rstrip()
            text_portion = delta_text.split(
                self.tool_call_end_token)[-1].lstrip()

        # case -- we're starting a new tool call
        if (cur_tool_start_count > cur_tool_end_count
                and cur_tool_start_count > prev_tool_start_count):
            if len(delta_token_ids) > 1:
                tool_call_portion = current_text.split(
                    self.tool_call_start_token)[-1]
            else:
                tool_call_portion = None
                delta = None

            text_portion = None

            # set cursors and state appropriately
            self.current_tool_id += 1
            self.current_tool_name_sent = False
            self.streamed_args_for_tool.append("")
            logger.debug("Starting on a new tool %s", self.current_tool_id)

        # case -- we're updating an existing tool call
        elif (cur_tool_start_count > cur_tool_end_count
              and cur_tool_start_count == prev_tool_start_count):

            # get the portion of the text that's the tool call
            tool_call_portion = current_text.split(
                self.tool_call_start_token)[-1]
            text_portion = None

        # case -- the current tool call is being closed.
        elif (cur_tool_start_count == cur_tool_end_count
              and cur_tool_end_count >= prev_tool_end_count):
            if self.prev_tool_call_arr is None or len(
                    self.prev_tool_call_arr) == 0:
                logger.debug(
                    "attempting to close tool call, but no tool call")
                return None
            diff = self.prev_tool_call_arr[self.current_tool_id].get(
                "arguments")
            if diff:
                diff = (diff.encode("utf-8").decode("unicode_escape")
                        if diff is str else diff)
                if '"}' not in delta_text:
                    return None
                end_loc = delta_text.rindex('"}')
                diff = delta_text[:end_loc] + '"}'
                logger.debug(
                    "Finishing tool and found diff that had not "
                    "been streamed yet: %s",
                    diff,
                )
                self.streamed_args_for_tool[self.current_tool_id] += diff
                return DeltaMessage(tool_calls=[
                    DeltaToolCall(
                        index=self.current_tool_id,
                        function=DeltaFunctionCall(
                            arguments=diff).model_dump(exclude_none=True),
                    )
                ])

        # case -- otherwise we're just generating text
        else:
            text = delta_text.replace(self.tool_call_start_token, "")
            text = text.replace(self.tool_call_end_token, "")
            delta = DeltaMessage(tool_calls=[], content=text)
            return delta

        current_tool_call = dict()
        if tool_call_portion:
            current_tool_call_matches = (
                self.stream_tool_call_portion_regex.match(
                    tool_call_portion))
            if current_tool_call_matches:
                tool_type, tool_name, tool_args = (
                    current_tool_call_matches.groups())
                current_tool_call["name"] = tool_name
                current_tool_call["arguments"] = tool_args
            else:
                current_tool_call_name_matches = (
                    self.stream_tool_call_name_regex.match(
                        tool_call_portion))
                if current_tool_call_name_matches:
                    tool_type, tool_name = (
                        current_tool_call_name_matches.groups())
                    current_tool_call["name"] = tool_name
                    current_tool_call["arguments"] = ""
                else:
                    logger.debug("Not enough token")
                    return None

        # case - we haven't sent the tool name yet. If it's available, send
        #   it. otherwise, wait until it's available.
        if not self.current_tool_name_sent:
            if current_tool_call is None:
                return None
            function_name: Union[str, None] = current_tool_call.get("name")
            if function_name:
                self.current_tool_name_sent = True
                return DeltaMessage(tool_calls=[
                    DeltaToolCall(
                        index=self.current_tool_id,
                        type="function",
                        id=f"chatcmpl-tool-{random_uuid()}",
                        function=DeltaFunctionCall(
                            name=function_name).model_dump(
                                exclude_none=True),
                    )
                ])
            else:
                return None

        # case -- otherwise, send the tool call delta

        # if the tool call portion is None, send the delta as text
        if tool_call_portion is None:
            # if there's text but not tool calls, send that -
            # otherwise None to skip chunk
            delta = (DeltaMessage(
                content=delta_text) if text_portion is not None else None)
            return delta

        # now, the nitty-gritty of tool calls
        # now we have the portion to parse as tool call.

        logger.debug("Trying to parse current tool call with ID %s",
                     self.current_tool_id)

        # if we're starting a new tool call, push an empty object in as
        #   a placeholder for the arguments
        if len(self.prev_tool_call_arr) <= self.current_tool_id:
            self.prev_tool_call_arr.append({})

        # main logic for tool parsing here - compare prev. partially-parsed
        #   JSON to the current partially-parsed JSON
        prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
            "arguments")
        cur_arguments = current_tool_call.get("arguments")

        logger.debug("diffing old arguments: %s", prev_arguments)
        logger.debug("against new ones: %s", cur_arguments)

        # case -- no arguments have been created yet. skip sending a delta.
        if not cur_arguments and not prev_arguments:
            logger.debug("Skipping text %s - no arguments", delta_text)
            delta = None

        # case -- prev arguments are defined, but non are now.
        #   probably impossible, but not a fatal error - just keep going
        elif not cur_arguments and prev_arguments:
            logger.error("should be impossible to have arguments reset "
                         "mid-call. skipping streaming anything.")
            delta = None

        # case -- we now have the first info about arguments available from
        #   autocompleting the JSON
        elif cur_arguments and not prev_arguments:

            delta = DeltaMessage(tool_calls=[
                DeltaToolCall(
                    index=self.current_tool_id,
                    function=DeltaFunctionCall(
                        arguments=cur_arguments).model_dump(
                            exclude_none=True),
                )
            ])
            self.streamed_args_for_tool[
                self.current_tool_id] = cur_arguments

        # last case -- we have an update to existing arguments.
        elif cur_arguments and prev_arguments:
            if (isinstance(delta_text, str)
                    and cur_arguments != prev_arguments
                    and len(cur_arguments) > len(prev_arguments)
                    and cur_arguments.startswith(prev_arguments)):
                delta_arguments = cur_arguments[len(prev_arguments):]
                logger.debug("got diff %s", delta_text)

                delta = DeltaMessage(tool_calls=[
                    DeltaToolCall(
                        index=self.current_tool_id,
                        function=DeltaFunctionCall(
                            arguments=delta_arguments).model_dump(
                                exclude_none=True),
                    )
                ])
                self.streamed_args_for_tool[
                    self.current_tool_id] = cur_arguments
            else:
                delta = None

        # handle saving the state for the current tool into
        # the "prev" list for use in diffing for the next iteration
        if self.current_tool_id == len(self.prev_tool_call_arr) - 1:
            self.prev_tool_call_arr[
                self.current_tool_id] = current_tool_call
        else:
            self.prev_tool_call_arr.append(current_tool_call)

        return delta

    except Exception:
        logger.exception("Error trying to handle streaming tool call.")
        return None  # do not stream a delta. skip this token ID.