@ToolParserManager.register_module("jamba")
class JambaToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
if isinstance(self.model_tokenizer, MistralTokenizer):
raise ValueError(
"Detected a MistralTokenizer tokenizer when using a Jamba model"
)
self.current_tool_name_sent: bool = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.streamed_args_for_tool: list[str] = [
] # map what has been streamed for each tool so far to a list
self.tool_calls_start_token: str = "<tool_calls>"
self.tool_calls_end_token: str = "</tool_calls>"
self.tool_calls_regex = re.compile(
rf"{self.tool_calls_start_token}(.*?){self.tool_calls_end_token}",
re.DOTALL)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ToolParser "
"constructor during construction.")
self.tool_calls_start_token_id = self.vocab.get(
self.tool_calls_start_token)
self.tool_calls_end_token_id = self.vocab.get(
self.tool_calls_end_token)
if (self.tool_calls_start_token_id is None
or self.tool_calls_end_token_id is None):
raise RuntimeError(
"Jamba Tool parser could not locate tool calls start/end "
"tokens in the tokenizer!")
def adjust_request(
self, request: ChatCompletionRequest) -> ChatCompletionRequest:
if request.tools and request.tool_choice != 'none':
# do not skip special tokens because jamba use the special
# tokens to indicate the start and end of the tool calls
# information.
request.skip_special_tokens = False
return request
def extract_tool_calls(
self, model_output: str,
request: ChatCompletionRequest) -> ExtractedToolCallInformation:
# sanity check; avoid unnecessary processing
if self.tool_calls_start_token not in model_output:
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
else:
try:
# use a regex to find the tool call between the tags
function_calls = self.tool_calls_regex.findall(model_output)[0]
# load the JSON, and then use it to build the Function and
# Tool Call
raw_function_calls = json.loads(function_calls)
tool_calls = [
ToolCall(
type="function",
function=FunctionCall(
name=function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(function_call["arguments"],
ensure_ascii=False),
)) for function_call in raw_function_calls
]
content = model_output[:model_output.
find(self.tool_calls_start_token)]
return ExtractedToolCallInformation(
tools_called=True,
tool_calls=tool_calls,
content=content if
(len(content) > 0 and content != " ") else None)
except Exception:
logger.exception(
"Error in extracting tool call from response.")
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
# if the tool call token is not in the tokens generated so far, append
# output to contents since it's not a tool
if self.tool_calls_start_token not in current_text:
return DeltaMessage(content=delta_text)
# if the tool call token ID IS in the tokens generated so far, that
# means we're parsing as tool calls now
# handle if we detected the start of tool calls token which means
# the start of tool calling
if (self.tool_calls_start_token_id in delta_token_ids
and len(delta_token_ids) == 1):
# if it's the only token, return None, so we don't send a chat
# completion and don't send a control token
return None
# bit mask flags for partial JSON parsing. If the name hasn't been
# sent yet, don't allow sending
# an incomplete string since OpenAI only ever (as far as I have
# seen) allows sending the entire tool/ function name at once.
flags = Allow.ALL if self.current_tool_name_sent \
else Allow.ALL & ~Allow.STR
try:
# Extract the tool calls between the special tool call tokens
parsable_arr = current_text.split(
self.tool_calls_start_token)[-1].split(
self.tool_calls_end_token)[0]
# tool calls are generated in an array, so do partial JSON
# parsing on the entire array
try:
tool_call_arr: list[dict] = partial_json_parser.loads(
parsable_arr, flags)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug('not enough tokens to parse into JSON yet')
return None
# select as the current tool call the one we're on the state at
current_tool_call: dict = tool_call_arr[self.current_tool_id] \
if len(tool_call_arr) > 0 else {}
# case -- if no tokens have been streamed for the tool, e.g.
# only the array brackets, stream nothing
if len(tool_call_arr) == 0:
return None
# case: we are starting a new tool in the array
# -> array has > 0 length AND length has moved past cursor
elif (len(tool_call_arr) > 0
and len(tool_call_arr) > self.current_tool_id + 1):
# if we're moving on to a new call, first make sure we
# haven't missed anything in the previous one that was
# auto-generated due to JSON completions, but wasn't
# streamed to the client yet.
if self.current_tool_id >= 0:
diff: Union[str, None] = current_tool_call.get("arguments")
if diff:
diff = json.dumps(diff, ensure_ascii=False).replace(
self.streamed_args_for_tool[self.current_tool_id],
"")
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=diff).model_dump(
exclude_none=True))
])
self.streamed_args_for_tool[
self.current_tool_id] += diff
else:
delta = None
else:
delta = None
# re-set stuff pertaining to progress in the current tool
self.current_tool_id = len(tool_call_arr) - 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("starting on new tool %d", self.current_tool_id)
return delta
# case: update an existing tool - this is handled below
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
if not self.current_tool_name_sent:
function_name = current_tool_call.get("name")
if function_name:
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
type="function",
id=random_tool_call_id(),
function=DeltaFunctionCall(
name=function_name).model_dump(
exclude_none=True))
])
self.current_tool_name_sent = True
else:
delta = None
# now we know we're on the same tool call and we're streaming
# arguments
else:
prev_arguments = self.prev_tool_call_arr[
self.current_tool_id].get("arguments")
cur_arguments = current_tool_call.get("arguments")
new_text = delta_text.replace("\'", "\"")
if not cur_arguments and not prev_arguments:
delta = None
elif not cur_arguments and prev_arguments:
logger.error(
"INVARIANT - impossible to have arguments reset "
"mid-arguments")
delta = None
elif cur_arguments and not prev_arguments:
cur_arguments_json = json.dumps(cur_arguments,
ensure_ascii=False)
logger.debug("finding %s in %s", new_text,
cur_arguments_json)
arguments_delta = cur_arguments_json[:cur_arguments_json.
index(new_text) +
len(new_text)]
logger.debug("First tokens in arguments received: %s",
arguments_delta)
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=arguments_delta).
model_dump(exclude_none=True))
])
self.streamed_args_for_tool[
self.current_tool_id] += arguments_delta
elif cur_arguments and prev_arguments:
cur_args_json = json.dumps(cur_arguments,
ensure_ascii=False)
prev_args_json = json.dumps(prev_arguments,
ensure_ascii=False)
logger.debug("Searching for diff between \n%s\n%s",
cur_args_json, prev_args_json)
argument_diff = extract_intermediate_diff(
cur_args_json, prev_args_json)
logger.debug("got arguments diff: %s", argument_diff)
delta = DeltaMessage(tool_calls=[
DeltaToolCall(index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff).model_dump(
exclude_none=True))
])
self.streamed_args_for_tool[
self.current_tool_id] += argument_diff
else:
# try parsing it with regular JSON - if it works we're
# at the end, and we need to send the difference between
# tokens streamed so far and the valid JSON
delta = None
# check to see if the name is defined and has been sent. if so,
# stream the name - otherwise keep waiting
# finish by setting old and returning None as base case
self.prev_tool_call_arr = tool_call_arr
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
logger.debug(
"Skipping chunk as a result of tool streaming extraction "
"error")
return None