Skip to content

vllm.entrypoints.openai.serving_completion

logger module-attribute

logger = init_logger(__name__)

OpenAIServingCompletion

Bases: OpenAIServing

Source code in vllm/entrypoints/openai/serving_completion.py
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
class OpenAIServingCompletion(OpenAIServing):

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        return_tokens_as_token_ids: bool = False,
        enable_force_include_usage: bool = False,
    ):
        super().__init__(engine_client=engine_client,
                         model_config=model_config,
                         models=models,
                         request_logger=request_logger,
                         return_tokens_as_token_ids=return_tokens_as_token_ids,
                         enable_force_include_usage=enable_force_include_usage)
        self.default_sampling_params = (
            self.model_config.get_diff_sampling_param())
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info("Using default completion sampling params from %s: %s",
                        source, self.default_sampling_params)

    async def create_completion(
        self,
        request: CompletionRequest,
        raw_request: Optional[Request] = None,
    ) -> Union[AsyncGenerator[str, None], CompletionResponse, ErrorResponse]:
        """Completion API similar to OpenAI's API.

        See https://platform.openai.com/docs/api-reference/completions/create
        for the API specification. This API mimics the OpenAI Completion API.

        NOTE: Currently we do not support the following feature:
            - suffix (the language models we currently support do not support
            suffix)
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error

        # Return error for unsupported features.
        if request.suffix is not None:
            return self.create_error_response(
                "suffix is not currently supported")

        if request.echo and request.prompt_embeds is not None:
            return self.create_error_response(
                "Echo is unsupported with prompt embeds.")

        request_id = f"cmpl-{self._base_request_id(raw_request)}"
        created_time = int(time.time())

        request_metadata = RequestResponseMetadata(request_id=request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata

        try:
            (
                lora_request,
                prompt_adapter_request,
            ) = self._maybe_get_adapters(request)

            tokenizer = await self.engine_client.get_tokenizer(lora_request)

            request_prompts, engine_prompts = await self._preprocess_completion(
                request,
                tokenizer,
                request.prompt,
                truncate_prompt_tokens=request.truncate_prompt_tokens,
                add_special_tokens=request.add_special_tokens,
            )
        except ValueError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except TypeError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except RuntimeError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except jinja2.TemplateError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))

        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[RequestOutput, None]] = []
        try:
            for i, engine_prompt in enumerate(engine_prompts):
                sampling_params: Union[SamplingParams, BeamSearchParams]
                # Mypy does not infer that engine_prompt will have only one of
                # "prompt_token_ids" or "prompt_embeds" defined, and both of
                # these as Union[object, the expected type], where it infers
                # object if engine_prompt is a subclass of one of the
                # typeddicts that defines both keys. Worse, because of
                # https://github.com/python/mypy/issues/8586, mypy does not
                # infer the type of engine_prompt correctly because of the
                # enumerate. So we need an unnecessary cast here.
                engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt],
                                     engine_prompt)
                if is_embeds_prompt(engine_prompt):
                    input_length = len(engine_prompt["prompt_embeds"])
                elif is_tokens_prompt(engine_prompt):
                    input_length = len(engine_prompt["prompt_token_ids"])
                else:
                    assert_never(engine_prompt)

                if self.default_sampling_params is None:
                    self.default_sampling_params = {}

                max_tokens = get_max_tokens(
                    max_model_len=self.max_model_len,
                    request=request,
                    input_length=input_length,
                    default_sampling_params=self.default_sampling_params)

                if request.use_beam_search:
                    sampling_params = request.to_beam_search_params(
                        max_tokens, self.default_sampling_params)
                else:
                    sampling_params = request.to_sampling_params(
                        max_tokens, self.model_config.logits_processor_pattern,
                        self.default_sampling_params)

                request_id_item = f"{request_id}-{i}"

                self._log_inputs(request_id_item,
                                 request_prompts[i],
                                 params=sampling_params,
                                 lora_request=lora_request,
                                 prompt_adapter_request=prompt_adapter_request)

                trace_headers = (None if raw_request is None else await
                                 self._get_trace_headers(raw_request.headers))

                # Mypy inconsistently requires this second cast in different
                # environments. It shouldn't be necessary (redundant from above)
                # but pre-commit in CI fails without it.
                engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt],
                                     engine_prompt)
                if isinstance(sampling_params, BeamSearchParams):
                    generator = self.engine_client.beam_search(
                        prompt=engine_prompt,
                        request_id=request_id,
                        params=sampling_params,
                        lora_request=lora_request,
                    )
                else:
                    generator = self.engine_client.generate(
                        engine_prompt,
                        sampling_params,
                        request_id_item,
                        lora_request=lora_request,
                        prompt_adapter_request=prompt_adapter_request,
                        trace_headers=trace_headers,
                        priority=request.priority,
                    )

                generators.append(generator)
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        result_generator = merge_async_iterators(*generators)

        model_name = self._get_model_name(request.model, lora_request)
        num_prompts = len(engine_prompts)

        # Similar to the OpenAI API, when n != best_of, we do not stream the
        # results. Noting that best_of is only supported in V0. In addition,
        # we do not stream the results when use beam search.
        stream = (request.stream
                  and (request.best_of is None or request.n == request.best_of)
                  and not request.use_beam_search)

        # Streaming response
        if stream:
            return self.completion_stream_generator(
                request,
                request_prompts,
                result_generator,
                request_id,
                created_time,
                model_name,
                num_prompts=num_prompts,
                tokenizer=tokenizer,
                request_metadata=request_metadata,
                enable_force_include_usage=self.enable_force_include_usage)

        # Non-streaming response
        final_res_batch: list[Optional[RequestOutput]] = [None] * num_prompts
        try:
            async for i, res in result_generator:
                final_res_batch[i] = res

            for i, final_res in enumerate(final_res_batch):
                assert final_res is not None

                # The output should contain the input text
                # We did not pass it into vLLM engine to avoid being redundant
                # with the inputs token IDs
                if final_res.prompt is None:
                    request_prompt = request_prompts[i]
                    if is_text_tokens_prompt(request_prompt):
                        final_res.prompt = request_prompt["prompt"]
                    else:
                        final_res.prompt = None

            final_res_batch_checked = cast(list[RequestOutput],
                                           final_res_batch)

            response = self.request_output_to_completion_response(
                final_res_batch_checked,
                request,
                request_id,
                created_time,
                model_name,
                tokenizer,
                request_metadata,
            )
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        if request.stream:
            response_json = response.model_dump_json()

            async def fake_stream_generator() -> AsyncGenerator[str, None]:
                yield f"data: {response_json}\n\n"
                yield "data: [DONE]\n\n"

            return fake_stream_generator()

        return response

    async def completion_stream_generator(
        self,
        request: CompletionRequest,
        request_prompts: list[Union[TextTokensPrompt,
                                    ServingEngineEmbedsPrompt]],
        result_generator: AsyncIterator[tuple[int, RequestOutput]],
        request_id: str,
        created_time: int,
        model_name: str,
        num_prompts: int,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
        enable_force_include_usage: bool,
    ) -> AsyncGenerator[str, None]:
        num_choices = 1 if request.n is None else request.n
        previous_text_lens = [0] * num_choices * num_prompts
        previous_num_tokens = [0] * num_choices * num_prompts
        has_echoed = [False] * num_choices * num_prompts
        num_prompt_tokens = [0] * num_prompts

        stream_options = request.stream_options
        if stream_options:
            include_usage = stream_options.include_usage or \
                            enable_force_include_usage
            include_continuous_usage = include_usage and \
                                       stream_options.continuous_usage_stats
        else:
            include_usage, include_continuous_usage = False, False

        try:
            async for prompt_idx, res in result_generator:
                prompt_token_ids = res.prompt_token_ids
                prompt_logprobs = res.prompt_logprobs

                if res.prompt is not None:
                    prompt_text = res.prompt
                else:
                    request_prompt = request_prompts[prompt_idx]
                    if is_text_tokens_prompt(request_prompt):
                        prompt_text = request_prompt["prompt"]
                    else:
                        prompt_text = None

                # Prompt details are excluded from later streamed outputs
                if prompt_token_ids is not None:
                    num_prompt_tokens[prompt_idx] = len(prompt_token_ids)

                delta_token_ids: GenericSequence[int]
                out_logprobs: Optional[GenericSequence[Optional[dict[
                    int, Logprob]]]]

                for output in res.outputs:
                    i = output.index + prompt_idx * num_choices

                    assert request.max_tokens is not None
                    if request.echo and not has_echoed[i]:
                        assert prompt_token_ids is not None
                        assert prompt_text is not None
                        if request.max_tokens == 0:
                            # only return the prompt
                            delta_text = prompt_text
                            delta_token_ids = prompt_token_ids
                            out_logprobs = prompt_logprobs
                        else:
                            # echo the prompt and first token
                            delta_text = prompt_text + output.text
                            delta_token_ids = [
                                *prompt_token_ids, *output.token_ids
                            ]
                            out_logprobs = [
                                *(prompt_logprobs or []),
                                *(output.logprobs or []),
                            ]
                        has_echoed[i] = True
                    else:
                        # return just the delta
                        delta_text = output.text
                        delta_token_ids = output.token_ids
                        out_logprobs = output.logprobs

                        if not delta_text and not delta_token_ids \
                            and not previous_num_tokens[i]:
                            # Chunked prefill case, don't return empty chunks
                            continue

                    if request.logprobs is not None:
                        assert out_logprobs is not None, (
                            "Did not output logprobs")
                        logprobs = self._create_completion_logprobs(
                            token_ids=delta_token_ids,
                            top_logprobs=out_logprobs,
                            num_output_top_logprobs=request.logprobs,
                            tokenizer=tokenizer,
                            initial_text_offset=previous_text_lens[i],
                            return_as_token_id=request.
                            return_tokens_as_token_ids,
                        )
                    else:
                        logprobs = None

                    previous_text_lens[i] += len(output.text)
                    previous_num_tokens[i] += len(output.token_ids)
                    finish_reason = output.finish_reason
                    stop_reason = output.stop_reason

                    chunk = CompletionStreamResponse(
                        id=request_id,
                        created=created_time,
                        model=model_name,
                        choices=[
                            CompletionResponseStreamChoice(
                                index=i,
                                text=delta_text,
                                logprobs=logprobs,
                                finish_reason=finish_reason,
                                stop_reason=stop_reason,
                            )
                        ])
                    if include_continuous_usage:
                        prompt_tokens = num_prompt_tokens[prompt_idx]
                        completion_tokens = previous_num_tokens[i]
                        chunk.usage = UsageInfo(
                            prompt_tokens=prompt_tokens,
                            completion_tokens=completion_tokens,
                            total_tokens=prompt_tokens + completion_tokens,
                        )

                    response_json = chunk.model_dump_json(exclude_unset=False)
                    yield f"data: {response_json}\n\n"

            total_prompt_tokens = sum(num_prompt_tokens)
            total_completion_tokens = sum(previous_num_tokens)
            final_usage_info = UsageInfo(
                prompt_tokens=total_prompt_tokens,
                completion_tokens=total_completion_tokens,
                total_tokens=total_prompt_tokens + total_completion_tokens)

            if include_usage:
                final_usage_chunk = CompletionStreamResponse(
                    id=request_id,
                    created=created_time,
                    model=model_name,
                    choices=[],
                    usage=final_usage_info,
                )
                final_usage_data = (final_usage_chunk.model_dump_json(
                    exclude_unset=False, exclude_none=True))
                yield f"data: {final_usage_data}\n\n"

            # report to FastAPI middleware aggregate usage across all choices
            request_metadata.final_usage_info = final_usage_info

        except Exception as e:
            # TODO: Use a vllm-specific Validation Error
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
        yield "data: [DONE]\n\n"

    def request_output_to_completion_response(
        self,
        final_res_batch: list[RequestOutput],
        request: CompletionRequest,
        request_id: str,
        created_time: int,
        model_name: str,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
    ) -> CompletionResponse:
        choices: list[CompletionResponseChoice] = []
        num_prompt_tokens = 0
        num_generated_tokens = 0

        for final_res in final_res_batch:
            prompt_token_ids = final_res.prompt_token_ids
            assert prompt_token_ids is not None
            prompt_logprobs = clamp_prompt_logprobs(final_res.prompt_logprobs)
            prompt_text = final_res.prompt

            token_ids: GenericSequence[int]
            out_logprobs: Optional[GenericSequence[Optional[dict[int,
                                                                 Logprob]]]]

            for output in final_res.outputs:
                assert request.max_tokens is not None
                if request.echo:
                    assert prompt_text is not None
                    if request.max_tokens == 0:
                        token_ids = prompt_token_ids
                        out_logprobs = prompt_logprobs
                        output_text = prompt_text
                    else:
                        token_ids = [*prompt_token_ids, *output.token_ids]

                        if request.logprobs is None:
                            out_logprobs = None
                        else:
                            assert prompt_logprobs is not None
                            assert output.logprobs is not None
                            out_logprobs = [
                                *prompt_logprobs,
                                *output.logprobs,
                            ]

                        output_text = prompt_text + output.text
                else:
                    token_ids = output.token_ids
                    out_logprobs = output.logprobs
                    output_text = output.text

                if request.logprobs is not None:
                    assert out_logprobs is not None, "Did not output logprobs"
                    logprobs = self._create_completion_logprobs(
                        token_ids=token_ids,
                        top_logprobs=out_logprobs,
                        tokenizer=tokenizer,
                        num_output_top_logprobs=request.logprobs,
                        return_as_token_id=request.return_tokens_as_token_ids,
                    )
                else:
                    logprobs = None

                choice_data = CompletionResponseChoice(
                    index=len(choices),
                    text=output_text,
                    logprobs=logprobs,
                    finish_reason=output.finish_reason,
                    stop_reason=output.stop_reason,
                    prompt_logprobs=final_res.prompt_logprobs,
                )
                choices.append(choice_data)

                num_generated_tokens += len(output.token_ids)

            num_prompt_tokens += len(prompt_token_ids)

        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )

        request_metadata.final_usage_info = usage

        return CompletionResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=choices,
            usage=usage,
            kv_transfer_params=final_res_batch[0].kv_transfer_params)

    def _create_completion_logprobs(
        self,
        token_ids: GenericSequence[int],
        top_logprobs: GenericSequence[Optional[dict[int, Logprob]]],
        num_output_top_logprobs: int,
        tokenizer: AnyTokenizer,
        initial_text_offset: int = 0,
        return_as_token_id: Optional[bool] = None,
    ) -> CompletionLogProbs:
        """Create logprobs for OpenAI Completion API."""
        out_text_offset: list[int] = []
        out_token_logprobs: list[Optional[float]] = []
        out_tokens: list[str] = []
        out_top_logprobs: list[Optional[dict[str, float]]] = []

        last_token_len = 0

        should_return_as_token_id = return_as_token_id if \
            return_as_token_id is not None else self.return_tokens_as_token_ids
        for i, token_id in enumerate(token_ids):
            step_top_logprobs = top_logprobs[i]
            if step_top_logprobs is None:
                token = tokenizer.decode(token_id)
                if should_return_as_token_id:
                    token = f"token_id:{token_id}"

                out_tokens.append(token)
                out_token_logprobs.append(None)
                out_top_logprobs.append(None)
            else:
                step_token = step_top_logprobs[token_id]

                token = self._get_decoded_token(
                    step_token,
                    token_id,
                    tokenizer,
                    return_as_token_id=should_return_as_token_id,
                )
                token_logprob = max(step_token.logprob, -9999.0)

                out_tokens.append(token)
                out_token_logprobs.append(token_logprob)

                # makes sure to add the top num_output_top_logprobs + 1
                # logprobs, as defined in the openai API
                # (cf. https://github.com/openai/openai-openapi/blob/
                # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
                out_top_logprobs.append({
                    # Convert float("-inf") to the
                    # JSON-serializable float that OpenAI uses
                    self._get_decoded_token(top_lp[1],
                                            top_lp[0],
                                            tokenizer,
                                            return_as_token_id=should_return_as_token_id):
                    max(top_lp[1].logprob, -9999.0)
                    for i, top_lp in enumerate(step_top_logprobs.items())
                    if num_output_top_logprobs >= i
                })

            if len(out_text_offset) == 0:
                out_text_offset.append(initial_text_offset)
            else:
                out_text_offset.append(out_text_offset[-1] + last_token_len)
            last_token_len = len(token)

        return CompletionLogProbs(
            text_offset=out_text_offset,
            token_logprobs=out_token_logprobs,
            tokens=out_tokens,
            top_logprobs=out_top_logprobs,
        )

default_sampling_params instance-attribute

default_sampling_params = get_diff_sampling_param()

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
)
Source code in vllm/entrypoints/openai/serving_completion.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
):
    super().__init__(engine_client=engine_client,
                     model_config=model_config,
                     models=models,
                     request_logger=request_logger,
                     return_tokens_as_token_ids=return_tokens_as_token_ids,
                     enable_force_include_usage=enable_force_include_usage)
    self.default_sampling_params = (
        self.model_config.get_diff_sampling_param())
    if self.default_sampling_params:
        source = self.model_config.generation_config
        source = "model" if source == "auto" else source
        logger.info("Using default completion sampling params from %s: %s",
                    source, self.default_sampling_params)

_create_completion_logprobs

_create_completion_logprobs(
    token_ids: Sequence[int],
    top_logprobs: Sequence[Optional[dict[int, Logprob]]],
    num_output_top_logprobs: int,
    tokenizer: AnyTokenizer,
    initial_text_offset: int = 0,
    return_as_token_id: Optional[bool] = None,
) -> CompletionLogProbs

Create logprobs for OpenAI Completion API.

Source code in vllm/entrypoints/openai/serving_completion.py
def _create_completion_logprobs(
    self,
    token_ids: GenericSequence[int],
    top_logprobs: GenericSequence[Optional[dict[int, Logprob]]],
    num_output_top_logprobs: int,
    tokenizer: AnyTokenizer,
    initial_text_offset: int = 0,
    return_as_token_id: Optional[bool] = None,
) -> CompletionLogProbs:
    """Create logprobs for OpenAI Completion API."""
    out_text_offset: list[int] = []
    out_token_logprobs: list[Optional[float]] = []
    out_tokens: list[str] = []
    out_top_logprobs: list[Optional[dict[str, float]]] = []

    last_token_len = 0

    should_return_as_token_id = return_as_token_id if \
        return_as_token_id is not None else self.return_tokens_as_token_ids
    for i, token_id in enumerate(token_ids):
        step_top_logprobs = top_logprobs[i]
        if step_top_logprobs is None:
            token = tokenizer.decode(token_id)
            if should_return_as_token_id:
                token = f"token_id:{token_id}"

            out_tokens.append(token)
            out_token_logprobs.append(None)
            out_top_logprobs.append(None)
        else:
            step_token = step_top_logprobs[token_id]

            token = self._get_decoded_token(
                step_token,
                token_id,
                tokenizer,
                return_as_token_id=should_return_as_token_id,
            )
            token_logprob = max(step_token.logprob, -9999.0)

            out_tokens.append(token)
            out_token_logprobs.append(token_logprob)

            # makes sure to add the top num_output_top_logprobs + 1
            # logprobs, as defined in the openai API
            # (cf. https://github.com/openai/openai-openapi/blob/
            # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
            out_top_logprobs.append({
                # Convert float("-inf") to the
                # JSON-serializable float that OpenAI uses
                self._get_decoded_token(top_lp[1],
                                        top_lp[0],
                                        tokenizer,
                                        return_as_token_id=should_return_as_token_id):
                max(top_lp[1].logprob, -9999.0)
                for i, top_lp in enumerate(step_top_logprobs.items())
                if num_output_top_logprobs >= i
            })

        if len(out_text_offset) == 0:
            out_text_offset.append(initial_text_offset)
        else:
            out_text_offset.append(out_text_offset[-1] + last_token_len)
        last_token_len = len(token)

    return CompletionLogProbs(
        text_offset=out_text_offset,
        token_logprobs=out_token_logprobs,
        tokens=out_tokens,
        top_logprobs=out_top_logprobs,
    )

completion_stream_generator async

completion_stream_generator(
    request: CompletionRequest,
    request_prompts: list[
        Union[TextTokensPrompt, EmbedsPrompt]
    ],
    result_generator: AsyncIterator[
        tuple[int, RequestOutput]
    ],
    request_id: str,
    created_time: int,
    model_name: str,
    num_prompts: int,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    enable_force_include_usage: bool,
) -> AsyncGenerator[str, None]
Source code in vllm/entrypoints/openai/serving_completion.py
async def completion_stream_generator(
    self,
    request: CompletionRequest,
    request_prompts: list[Union[TextTokensPrompt,
                                ServingEngineEmbedsPrompt]],
    result_generator: AsyncIterator[tuple[int, RequestOutput]],
    request_id: str,
    created_time: int,
    model_name: str,
    num_prompts: int,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    enable_force_include_usage: bool,
) -> AsyncGenerator[str, None]:
    num_choices = 1 if request.n is None else request.n
    previous_text_lens = [0] * num_choices * num_prompts
    previous_num_tokens = [0] * num_choices * num_prompts
    has_echoed = [False] * num_choices * num_prompts
    num_prompt_tokens = [0] * num_prompts

    stream_options = request.stream_options
    if stream_options:
        include_usage = stream_options.include_usage or \
                        enable_force_include_usage
        include_continuous_usage = include_usage and \
                                   stream_options.continuous_usage_stats
    else:
        include_usage, include_continuous_usage = False, False

    try:
        async for prompt_idx, res in result_generator:
            prompt_token_ids = res.prompt_token_ids
            prompt_logprobs = res.prompt_logprobs

            if res.prompt is not None:
                prompt_text = res.prompt
            else:
                request_prompt = request_prompts[prompt_idx]
                if is_text_tokens_prompt(request_prompt):
                    prompt_text = request_prompt["prompt"]
                else:
                    prompt_text = None

            # Prompt details are excluded from later streamed outputs
            if prompt_token_ids is not None:
                num_prompt_tokens[prompt_idx] = len(prompt_token_ids)

            delta_token_ids: GenericSequence[int]
            out_logprobs: Optional[GenericSequence[Optional[dict[
                int, Logprob]]]]

            for output in res.outputs:
                i = output.index + prompt_idx * num_choices

                assert request.max_tokens is not None
                if request.echo and not has_echoed[i]:
                    assert prompt_token_ids is not None
                    assert prompt_text is not None
                    if request.max_tokens == 0:
                        # only return the prompt
                        delta_text = prompt_text
                        delta_token_ids = prompt_token_ids
                        out_logprobs = prompt_logprobs
                    else:
                        # echo the prompt and first token
                        delta_text = prompt_text + output.text
                        delta_token_ids = [
                            *prompt_token_ids, *output.token_ids
                        ]
                        out_logprobs = [
                            *(prompt_logprobs or []),
                            *(output.logprobs or []),
                        ]
                    has_echoed[i] = True
                else:
                    # return just the delta
                    delta_text = output.text
                    delta_token_ids = output.token_ids
                    out_logprobs = output.logprobs

                    if not delta_text and not delta_token_ids \
                        and not previous_num_tokens[i]:
                        # Chunked prefill case, don't return empty chunks
                        continue

                if request.logprobs is not None:
                    assert out_logprobs is not None, (
                        "Did not output logprobs")
                    logprobs = self._create_completion_logprobs(
                        token_ids=delta_token_ids,
                        top_logprobs=out_logprobs,
                        num_output_top_logprobs=request.logprobs,
                        tokenizer=tokenizer,
                        initial_text_offset=previous_text_lens[i],
                        return_as_token_id=request.
                        return_tokens_as_token_ids,
                    )
                else:
                    logprobs = None

                previous_text_lens[i] += len(output.text)
                previous_num_tokens[i] += len(output.token_ids)
                finish_reason = output.finish_reason
                stop_reason = output.stop_reason

                chunk = CompletionStreamResponse(
                    id=request_id,
                    created=created_time,
                    model=model_name,
                    choices=[
                        CompletionResponseStreamChoice(
                            index=i,
                            text=delta_text,
                            logprobs=logprobs,
                            finish_reason=finish_reason,
                            stop_reason=stop_reason,
                        )
                    ])
                if include_continuous_usage:
                    prompt_tokens = num_prompt_tokens[prompt_idx]
                    completion_tokens = previous_num_tokens[i]
                    chunk.usage = UsageInfo(
                        prompt_tokens=prompt_tokens,
                        completion_tokens=completion_tokens,
                        total_tokens=prompt_tokens + completion_tokens,
                    )

                response_json = chunk.model_dump_json(exclude_unset=False)
                yield f"data: {response_json}\n\n"

        total_prompt_tokens = sum(num_prompt_tokens)
        total_completion_tokens = sum(previous_num_tokens)
        final_usage_info = UsageInfo(
            prompt_tokens=total_prompt_tokens,
            completion_tokens=total_completion_tokens,
            total_tokens=total_prompt_tokens + total_completion_tokens)

        if include_usage:
            final_usage_chunk = CompletionStreamResponse(
                id=request_id,
                created=created_time,
                model=model_name,
                choices=[],
                usage=final_usage_info,
            )
            final_usage_data = (final_usage_chunk.model_dump_json(
                exclude_unset=False, exclude_none=True))
            yield f"data: {final_usage_data}\n\n"

        # report to FastAPI middleware aggregate usage across all choices
        request_metadata.final_usage_info = final_usage_info

    except Exception as e:
        # TODO: Use a vllm-specific Validation Error
        data = self.create_streaming_error_response(str(e))
        yield f"data: {data}\n\n"
    yield "data: [DONE]\n\n"

create_completion async

create_completion(
    request: CompletionRequest,
    raw_request: Optional[Request] = None,
) -> Union[
    AsyncGenerator[str, None],
    CompletionResponse,
    ErrorResponse,
]

Completion API similar to OpenAI's API.

See https://platform.openai.com/docs/api-reference/completions/create for the API specification. This API mimics the OpenAI Completion API.

Currently we do not support the following feature:
  • suffix (the language models we currently support do not support suffix)
Source code in vllm/entrypoints/openai/serving_completion.py
async def create_completion(
    self,
    request: CompletionRequest,
    raw_request: Optional[Request] = None,
) -> Union[AsyncGenerator[str, None], CompletionResponse, ErrorResponse]:
    """Completion API similar to OpenAI's API.

    See https://platform.openai.com/docs/api-reference/completions/create
    for the API specification. This API mimics the OpenAI Completion API.

    NOTE: Currently we do not support the following feature:
        - suffix (the language models we currently support do not support
        suffix)
    """
    error_check_ret = await self._check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    # If the engine is dead, raise the engine's DEAD_ERROR.
    # This is required for the streaming case, where we return a
    # success status before we actually start generating text :).
    if self.engine_client.errored:
        raise self.engine_client.dead_error

    # Return error for unsupported features.
    if request.suffix is not None:
        return self.create_error_response(
            "suffix is not currently supported")

    if request.echo and request.prompt_embeds is not None:
        return self.create_error_response(
            "Echo is unsupported with prompt embeds.")

    request_id = f"cmpl-{self._base_request_id(raw_request)}"
    created_time = int(time.time())

    request_metadata = RequestResponseMetadata(request_id=request_id)
    if raw_request:
        raw_request.state.request_metadata = request_metadata

    try:
        (
            lora_request,
            prompt_adapter_request,
        ) = self._maybe_get_adapters(request)

        tokenizer = await self.engine_client.get_tokenizer(lora_request)

        request_prompts, engine_prompts = await self._preprocess_completion(
            request,
            tokenizer,
            request.prompt,
            truncate_prompt_tokens=request.truncate_prompt_tokens,
            add_special_tokens=request.add_special_tokens,
        )
    except ValueError as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(str(e))
    except TypeError as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(str(e))
    except RuntimeError as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(str(e))
    except jinja2.TemplateError as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(str(e))

    # Schedule the request and get the result generator.
    generators: list[AsyncGenerator[RequestOutput, None]] = []
    try:
        for i, engine_prompt in enumerate(engine_prompts):
            sampling_params: Union[SamplingParams, BeamSearchParams]
            # Mypy does not infer that engine_prompt will have only one of
            # "prompt_token_ids" or "prompt_embeds" defined, and both of
            # these as Union[object, the expected type], where it infers
            # object if engine_prompt is a subclass of one of the
            # typeddicts that defines both keys. Worse, because of
            # https://github.com/python/mypy/issues/8586, mypy does not
            # infer the type of engine_prompt correctly because of the
            # enumerate. So we need an unnecessary cast here.
            engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt],
                                 engine_prompt)
            if is_embeds_prompt(engine_prompt):
                input_length = len(engine_prompt["prompt_embeds"])
            elif is_tokens_prompt(engine_prompt):
                input_length = len(engine_prompt["prompt_token_ids"])
            else:
                assert_never(engine_prompt)

            if self.default_sampling_params is None:
                self.default_sampling_params = {}

            max_tokens = get_max_tokens(
                max_model_len=self.max_model_len,
                request=request,
                input_length=input_length,
                default_sampling_params=self.default_sampling_params)

            if request.use_beam_search:
                sampling_params = request.to_beam_search_params(
                    max_tokens, self.default_sampling_params)
            else:
                sampling_params = request.to_sampling_params(
                    max_tokens, self.model_config.logits_processor_pattern,
                    self.default_sampling_params)

            request_id_item = f"{request_id}-{i}"

            self._log_inputs(request_id_item,
                             request_prompts[i],
                             params=sampling_params,
                             lora_request=lora_request,
                             prompt_adapter_request=prompt_adapter_request)

            trace_headers = (None if raw_request is None else await
                             self._get_trace_headers(raw_request.headers))

            # Mypy inconsistently requires this second cast in different
            # environments. It shouldn't be necessary (redundant from above)
            # but pre-commit in CI fails without it.
            engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt],
                                 engine_prompt)
            if isinstance(sampling_params, BeamSearchParams):
                generator = self.engine_client.beam_search(
                    prompt=engine_prompt,
                    request_id=request_id,
                    params=sampling_params,
                    lora_request=lora_request,
                )
            else:
                generator = self.engine_client.generate(
                    engine_prompt,
                    sampling_params,
                    request_id_item,
                    lora_request=lora_request,
                    prompt_adapter_request=prompt_adapter_request,
                    trace_headers=trace_headers,
                    priority=request.priority,
                )

            generators.append(generator)
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

    result_generator = merge_async_iterators(*generators)

    model_name = self._get_model_name(request.model, lora_request)
    num_prompts = len(engine_prompts)

    # Similar to the OpenAI API, when n != best_of, we do not stream the
    # results. Noting that best_of is only supported in V0. In addition,
    # we do not stream the results when use beam search.
    stream = (request.stream
              and (request.best_of is None or request.n == request.best_of)
              and not request.use_beam_search)

    # Streaming response
    if stream:
        return self.completion_stream_generator(
            request,
            request_prompts,
            result_generator,
            request_id,
            created_time,
            model_name,
            num_prompts=num_prompts,
            tokenizer=tokenizer,
            request_metadata=request_metadata,
            enable_force_include_usage=self.enable_force_include_usage)

    # Non-streaming response
    final_res_batch: list[Optional[RequestOutput]] = [None] * num_prompts
    try:
        async for i, res in result_generator:
            final_res_batch[i] = res

        for i, final_res in enumerate(final_res_batch):
            assert final_res is not None

            # The output should contain the input text
            # We did not pass it into vLLM engine to avoid being redundant
            # with the inputs token IDs
            if final_res.prompt is None:
                request_prompt = request_prompts[i]
                if is_text_tokens_prompt(request_prompt):
                    final_res.prompt = request_prompt["prompt"]
                else:
                    final_res.prompt = None

        final_res_batch_checked = cast(list[RequestOutput],
                                       final_res_batch)

        response = self.request_output_to_completion_response(
            final_res_batch_checked,
            request,
            request_id,
            created_time,
            model_name,
            tokenizer,
            request_metadata,
        )
    except asyncio.CancelledError:
        return self.create_error_response("Client disconnected")
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

    # When user requests streaming but we don't stream, we still need to
    # return a streaming response with a single event.
    if request.stream:
        response_json = response.model_dump_json()

        async def fake_stream_generator() -> AsyncGenerator[str, None]:
            yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"

        return fake_stream_generator()

    return response

request_output_to_completion_response

request_output_to_completion_response(
    final_res_batch: list[RequestOutput],
    request: CompletionRequest,
    request_id: str,
    created_time: int,
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
) -> CompletionResponse
Source code in vllm/entrypoints/openai/serving_completion.py
def request_output_to_completion_response(
    self,
    final_res_batch: list[RequestOutput],
    request: CompletionRequest,
    request_id: str,
    created_time: int,
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
) -> CompletionResponse:
    choices: list[CompletionResponseChoice] = []
    num_prompt_tokens = 0
    num_generated_tokens = 0

    for final_res in final_res_batch:
        prompt_token_ids = final_res.prompt_token_ids
        assert prompt_token_ids is not None
        prompt_logprobs = clamp_prompt_logprobs(final_res.prompt_logprobs)
        prompt_text = final_res.prompt

        token_ids: GenericSequence[int]
        out_logprobs: Optional[GenericSequence[Optional[dict[int,
                                                             Logprob]]]]

        for output in final_res.outputs:
            assert request.max_tokens is not None
            if request.echo:
                assert prompt_text is not None
                if request.max_tokens == 0:
                    token_ids = prompt_token_ids
                    out_logprobs = prompt_logprobs
                    output_text = prompt_text
                else:
                    token_ids = [*prompt_token_ids, *output.token_ids]

                    if request.logprobs is None:
                        out_logprobs = None
                    else:
                        assert prompt_logprobs is not None
                        assert output.logprobs is not None
                        out_logprobs = [
                            *prompt_logprobs,
                            *output.logprobs,
                        ]

                    output_text = prompt_text + output.text
            else:
                token_ids = output.token_ids
                out_logprobs = output.logprobs
                output_text = output.text

            if request.logprobs is not None:
                assert out_logprobs is not None, "Did not output logprobs"
                logprobs = self._create_completion_logprobs(
                    token_ids=token_ids,
                    top_logprobs=out_logprobs,
                    tokenizer=tokenizer,
                    num_output_top_logprobs=request.logprobs,
                    return_as_token_id=request.return_tokens_as_token_ids,
                )
            else:
                logprobs = None

            choice_data = CompletionResponseChoice(
                index=len(choices),
                text=output_text,
                logprobs=logprobs,
                finish_reason=output.finish_reason,
                stop_reason=output.stop_reason,
                prompt_logprobs=final_res.prompt_logprobs,
            )
            choices.append(choice_data)

            num_generated_tokens += len(output.token_ids)

        num_prompt_tokens += len(prompt_token_ids)

    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )

    request_metadata.final_usage_info = usage

    return CompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
        kv_transfer_params=final_res_batch[0].kv_transfer_params)