class RequestLogger:
def __init__(self, *, max_log_len: Optional[int]) -> None:
super().__init__()
self.max_log_len = max_log_len
def log_inputs(
self,
request_id: str,
prompt: Optional[str],
prompt_token_ids: Optional[list[int]],
prompt_embeds: Optional[torch.Tensor],
params: Optional[Union[SamplingParams, PoolingParams,
BeamSearchParams]],
lora_request: Optional[LoRARequest],
prompt_adapter_request: Optional[PromptAdapterRequest],
) -> None:
max_log_len = self.max_log_len
if max_log_len is not None:
if prompt is not None:
prompt = prompt[:max_log_len]
if prompt_token_ids is not None:
prompt_token_ids = prompt_token_ids[:max_log_len]
logger.info(
"Received request %s: prompt: %r, "
"params: %s, prompt_token_ids: %s, "
"prompt_embeds shape: %s, "
"lora_request: %s, prompt_adapter_request: %s.", request_id,
prompt, params, prompt_token_ids,
prompt_embeds.shape if prompt_embeds is not None else None,
lora_request, prompt_adapter_request)