Skip to content

vllm.entrypoints.openai.serving_score

logger module-attribute

logger = init_logger(__name__)

ServingScores

Bases: OpenAIServing

Source code in vllm/entrypoints/openai/serving_score.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
class ServingScores(OpenAIServing):

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
    ) -> None:
        super().__init__(engine_client=engine_client,
                         model_config=model_config,
                         models=models,
                         request_logger=request_logger)

    async def _embedding_score(
        self,
        tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
        texts_1: list[str],
        texts_2: list[str],
        request: Union[RerankRequest, ScoreRequest],
        request_id=str,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[Union[LoRARequest, None]] = None,
        prompt_adapter_request: Optional[Union[PromptAdapterRequest,
                                               None]] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
    ) -> list[PoolingRequestOutput]:

        input_texts = texts_1 + texts_2

        engine_prompts: list[TokensPrompt] = []
        tokenize_async = make_async(tokenizer.__call__,
                                    executor=self._tokenizer_executor)

        tokenization_kwargs = tokenization_kwargs or {}
        tokenized_prompts = await asyncio.gather(
            *(tokenize_async(t, **tokenization_kwargs) for t in input_texts))

        for tok_result, input_text in zip(tokenized_prompts, input_texts):

            text_token_prompt = \
                self._validate_input(
                    request,
                    tok_result["input_ids"],
                    input_text)

            engine_prompts.append(
                TokensPrompt(
                    prompt_token_ids=text_token_prompt["prompt_token_ids"]))

        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []
        pooling_params = request.to_pooling_params()

        for i, engine_prompt in enumerate(engine_prompts):

            request_id_item = f"{request_id}-{i}"

            self._log_inputs(request_id_item,
                             input_texts[i],
                             params=pooling_params,
                             lora_request=lora_request,
                             prompt_adapter_request=prompt_adapter_request)

            generators.append(
                self.engine_client.encode(
                    engine_prompt,
                    pooling_params,
                    request_id_item,
                    lora_request=lora_request,
                    trace_headers=trace_headers,
                    priority=request.priority,
                ))

        result_generator = merge_async_iterators(*generators)

        # Non-streaming response
        final_res_batch: list[PoolingRequestOutput] = []

        embeddings: list[Optional[PoolingRequestOutput]] =\
              [None] * len(engine_prompts)

        async for i, res in result_generator:
            embeddings[i] = res

        emb_texts_1: list[PoolingRequestOutput] = []
        emb_texts_2: list[PoolingRequestOutput] = []

        for i in range(0, len(texts_1)):
            assert (emb := embeddings[i]) is not None
            emb_texts_1.append(emb)

        for i in range(len(texts_1), len(embeddings)):
            assert (emb := embeddings[i]) is not None
            emb_texts_2.append(emb)

        if len(emb_texts_1) == 1:
            emb_texts_1 = emb_texts_1 * len(emb_texts_2)

        final_res_batch = _cosine_similarity(tokenizer=tokenizer,
                                             embed_1=emb_texts_1,
                                             embed_2=emb_texts_2)

        return final_res_batch

    async def _cross_encoding_score(
        self,
        tokenizer: Union[AnyTokenizer],
        texts_1: list[str],
        texts_2: list[str],
        request: Union[RerankRequest, ScoreRequest],
        request_id=str,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[Union[LoRARequest, None]] = None,
        prompt_adapter_request: Optional[Union[PromptAdapterRequest,
                                               None]] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
    ) -> list[PoolingRequestOutput]:

        request_prompts: list[str] = []
        engine_prompts: list[TokensPrompt] = []

        if len(texts_1) == 1:
            texts_1 = texts_1 * len(texts_2)

        input_pairs = [(t1, t2) for t1, t2 in zip(texts_1, texts_2)]

        if isinstance(tokenizer, MistralTokenizer):
            raise ValueError(
                "MistralTokenizer not supported for cross-encoding")

        tokenize_async = make_async(tokenizer.__call__,
                                    executor=self._tokenizer_executor)

        tokenization_kwargs = tokenization_kwargs or {}
        tokenized_prompts = await asyncio.gather(
            *(tokenize_async(text=t1, text_pair=t2, **tokenization_kwargs)
              for t1, t2 in input_pairs))

        for prompt_inputs, (t1, t2) in zip(tokenized_prompts, input_pairs):
            sep_token = tokenizer.sep_token if tokenizer.sep_token else ''
            request_prompt = f"{t1}{sep_token}{t2}"

            input_ids = prompt_inputs["input_ids"]
            text_token_prompt = \
                self._validate_input(request, input_ids, request_prompt)
            engine_prompt = TokensPrompt(
                prompt_token_ids=text_token_prompt["prompt_token_ids"],
                token_type_ids=prompt_inputs.get("token_type_ids"))

            request_prompts.append(request_prompt)
            engine_prompts.append(engine_prompt)

        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []

        pooling_params = request.to_pooling_params()

        for i, engine_prompt in enumerate(engine_prompts):
            request_id_item = f"{request_id}-{i}"

            self._log_inputs(request_id_item,
                             request_prompts[i],
                             params=pooling_params,
                             lora_request=lora_request,
                             prompt_adapter_request=prompt_adapter_request)

            generator = self.engine_client.encode(
                engine_prompt,
                pooling_params,
                request_id_item,
                lora_request=lora_request,
                trace_headers=trace_headers,
                priority=request.priority,
            )

            generators.append(generator)

        result_generator = merge_async_iterators(*generators)

        # Non-streaming response
        final_res_batch: list[
            Optional[PoolingRequestOutput]] = [None] * len(engine_prompts)

        async for i, res in result_generator:
            final_res_batch[i] = res

        return [out for out in final_res_batch if out is not None]

    async def _run_scoring(
        self,
        texts_1: Union[str, list[str]],
        texts_2: Union[str, list[str]],
        request: Union[ScoreRequest, RerankRequest],
        request_id: str,
        raw_request: Optional[Request] = None,
        truncate_prompt_tokens: Optional[int] = None,
    ) -> list[PoolingRequestOutput]:

        (
            lora_request,
            prompt_adapter_request,
        ) = self._maybe_get_adapters(request)

        if prompt_adapter_request is not None:
            raise NotImplementedError("Prompt adapter is not supported "
                                      "for scoring models")

        tokenizer = await self.engine_client.get_tokenizer(lora_request)

        tokenization_kwargs: dict[str, Any] = {}
        _validate_truncation_size(self.max_model_len, truncate_prompt_tokens,
                                  tokenization_kwargs)

        trace_headers = (None if raw_request is None else await
                         self._get_trace_headers(raw_request.headers))

        if isinstance(texts_1, str):
            texts_1 = [texts_1]
        if isinstance(texts_2, str):
            texts_2 = [texts_2]

        _validate_score_input_lens(texts_1, texts_2)

        if self.model_config.is_cross_encoder:
            return await self._cross_encoding_score(
                tokenizer=tokenizer,
                texts_1=texts_1,
                texts_2=texts_2,
                request=request,
                request_id=request_id,
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                prompt_adapter_request=prompt_adapter_request,
                trace_headers=trace_headers)

        else:
            return await self._embedding_score(
                tokenizer=tokenizer,
                texts_1=texts_1,
                texts_2=texts_2,
                request=request,
                request_id=request_id,
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                prompt_adapter_request=prompt_adapter_request,
                trace_headers=trace_headers)

    async def create_score(
        self,
        request: ScoreRequest,
        raw_request: Optional[Request] = None,
    ) -> Union[ScoreResponse, ErrorResponse]:
        """
        Score API similar to Sentence Transformers cross encoder

        See https://sbert.net/docs/package_reference/cross_encoder
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

        request_id = f"score-{self._base_request_id(raw_request)}"
        created_time = int(time.time())

        try:
            final_res_batch = await self._run_scoring(
                request.text_1,
                request.text_2,
                request,
                request_id,
                raw_request,
                request.truncate_prompt_tokens,
            )

            return self.request_output_to_score_response(
                final_res_batch,
                request_id,
                created_time,
                self._get_model_name(request.model),
            )
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

    async def do_rerank(
        self,
        request: RerankRequest,
        raw_request: Optional[Request] = None
    ) -> Union[RerankResponse, ErrorResponse]:
        """
        Rerank API based on JinaAI's rerank API; implements the same
        API interface. Designed for compatibility with off-the-shelf
        tooling, since this is a common standard for reranking APIs

        See example client implementations at
        https://github.com/infiniflow/ragflow/blob/main/rag/llm/rerank_model.py
        numerous clients use this standard.
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

        request_id = f"rerank-{self._base_request_id(raw_request)}"
        documents = request.documents
        top_n = request.top_n if request.top_n > 0 else len(documents)

        try:
            final_res_batch = await self._run_scoring(
                request.query,
                documents,
                request,
                request_id,
                raw_request,
                request.truncate_prompt_tokens,
            )
            return self.request_output_to_rerank_response(
                final_res_batch,
                request_id,
                self._get_model_name(request.model),
                documents,
                top_n,
            )
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

    def request_output_to_score_response(
        self,
        final_res_batch: list[PoolingRequestOutput],
        request_id: str,
        created_time: int,
        model_name: str,
    ) -> ScoreResponse:
        items: list[ScoreResponseData] = []
        num_prompt_tokens = 0

        for idx, final_res in enumerate(final_res_batch):
            classify_res = ScoringRequestOutput.from_base(final_res)

            item = ScoreResponseData(
                index=idx,
                score=classify_res.outputs.score,
            )
            prompt_token_ids = final_res.prompt_token_ids

            items.append(item)
            num_prompt_tokens += len(prompt_token_ids)

        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            total_tokens=num_prompt_tokens,
        )

        return ScoreResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            data=items,
            usage=usage,
        )

    def request_output_to_rerank_response(
            self, final_res_batch: list[PoolingRequestOutput], request_id: str,
            model_name: str, documents: list[str],
            top_n: int) -> RerankResponse:
        """
        Convert the output of do_rank to a RerankResponse
        """
        results: list[RerankResult] = []
        num_prompt_tokens = 0
        for idx, final_res in enumerate(final_res_batch):
            classify_res = ScoringRequestOutput.from_base(final_res)

            result = RerankResult(
                index=idx,
                document=RerankDocument(text=documents[idx]),
                relevance_score=classify_res.outputs.score,
            )
            results.append(result)
            prompt_token_ids = final_res.prompt_token_ids
            num_prompt_tokens += len(prompt_token_ids)

        # sort by relevance, then return the top n if set
        results.sort(key=lambda x: x.relevance_score, reverse=True)
        if top_n < len(documents):
            results = results[:top_n]

        return RerankResponse(
            id=request_id,
            model=model_name,
            results=results,
            usage=RerankUsage(total_tokens=num_prompt_tokens))

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
) -> None
Source code in vllm/entrypoints/openai/serving_score.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
) -> None:
    super().__init__(engine_client=engine_client,
                     model_config=model_config,
                     models=models,
                     request_logger=request_logger)

_cross_encoding_score async

_cross_encoding_score(
    tokenizer: Union[AnyTokenizer],
    texts_1: list[str],
    texts_2: list[str],
    request: Union[RerankRequest, ScoreRequest],
    request_id=str,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[Union[LoRARequest, None]] = None,
    prompt_adapter_request: Optional[
        Union[PromptAdapterRequest, None]
    ] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
) -> list[PoolingRequestOutput]
Source code in vllm/entrypoints/openai/serving_score.py
async def _cross_encoding_score(
    self,
    tokenizer: Union[AnyTokenizer],
    texts_1: list[str],
    texts_2: list[str],
    request: Union[RerankRequest, ScoreRequest],
    request_id=str,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[Union[LoRARequest, None]] = None,
    prompt_adapter_request: Optional[Union[PromptAdapterRequest,
                                           None]] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
) -> list[PoolingRequestOutput]:

    request_prompts: list[str] = []
    engine_prompts: list[TokensPrompt] = []

    if len(texts_1) == 1:
        texts_1 = texts_1 * len(texts_2)

    input_pairs = [(t1, t2) for t1, t2 in zip(texts_1, texts_2)]

    if isinstance(tokenizer, MistralTokenizer):
        raise ValueError(
            "MistralTokenizer not supported for cross-encoding")

    tokenize_async = make_async(tokenizer.__call__,
                                executor=self._tokenizer_executor)

    tokenization_kwargs = tokenization_kwargs or {}
    tokenized_prompts = await asyncio.gather(
        *(tokenize_async(text=t1, text_pair=t2, **tokenization_kwargs)
          for t1, t2 in input_pairs))

    for prompt_inputs, (t1, t2) in zip(tokenized_prompts, input_pairs):
        sep_token = tokenizer.sep_token if tokenizer.sep_token else ''
        request_prompt = f"{t1}{sep_token}{t2}"

        input_ids = prompt_inputs["input_ids"]
        text_token_prompt = \
            self._validate_input(request, input_ids, request_prompt)
        engine_prompt = TokensPrompt(
            prompt_token_ids=text_token_prompt["prompt_token_ids"],
            token_type_ids=prompt_inputs.get("token_type_ids"))

        request_prompts.append(request_prompt)
        engine_prompts.append(engine_prompt)

    # Schedule the request and get the result generator.
    generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []

    pooling_params = request.to_pooling_params()

    for i, engine_prompt in enumerate(engine_prompts):
        request_id_item = f"{request_id}-{i}"

        self._log_inputs(request_id_item,
                         request_prompts[i],
                         params=pooling_params,
                         lora_request=lora_request,
                         prompt_adapter_request=prompt_adapter_request)

        generator = self.engine_client.encode(
            engine_prompt,
            pooling_params,
            request_id_item,
            lora_request=lora_request,
            trace_headers=trace_headers,
            priority=request.priority,
        )

        generators.append(generator)

    result_generator = merge_async_iterators(*generators)

    # Non-streaming response
    final_res_batch: list[
        Optional[PoolingRequestOutput]] = [None] * len(engine_prompts)

    async for i, res in result_generator:
        final_res_batch[i] = res

    return [out for out in final_res_batch if out is not None]

_embedding_score async

_embedding_score(
    tokenizer: Union[
        PreTrainedTokenizer, PreTrainedTokenizerFast
    ],
    texts_1: list[str],
    texts_2: list[str],
    request: Union[RerankRequest, ScoreRequest],
    request_id=str,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[Union[LoRARequest, None]] = None,
    prompt_adapter_request: Optional[
        Union[PromptAdapterRequest, None]
    ] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
) -> list[PoolingRequestOutput]
Source code in vllm/entrypoints/openai/serving_score.py
async def _embedding_score(
    self,
    tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
    texts_1: list[str],
    texts_2: list[str],
    request: Union[RerankRequest, ScoreRequest],
    request_id=str,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[Union[LoRARequest, None]] = None,
    prompt_adapter_request: Optional[Union[PromptAdapterRequest,
                                           None]] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
) -> list[PoolingRequestOutput]:

    input_texts = texts_1 + texts_2

    engine_prompts: list[TokensPrompt] = []
    tokenize_async = make_async(tokenizer.__call__,
                                executor=self._tokenizer_executor)

    tokenization_kwargs = tokenization_kwargs or {}
    tokenized_prompts = await asyncio.gather(
        *(tokenize_async(t, **tokenization_kwargs) for t in input_texts))

    for tok_result, input_text in zip(tokenized_prompts, input_texts):

        text_token_prompt = \
            self._validate_input(
                request,
                tok_result["input_ids"],
                input_text)

        engine_prompts.append(
            TokensPrompt(
                prompt_token_ids=text_token_prompt["prompt_token_ids"]))

    # Schedule the request and get the result generator.
    generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []
    pooling_params = request.to_pooling_params()

    for i, engine_prompt in enumerate(engine_prompts):

        request_id_item = f"{request_id}-{i}"

        self._log_inputs(request_id_item,
                         input_texts[i],
                         params=pooling_params,
                         lora_request=lora_request,
                         prompt_adapter_request=prompt_adapter_request)

        generators.append(
            self.engine_client.encode(
                engine_prompt,
                pooling_params,
                request_id_item,
                lora_request=lora_request,
                trace_headers=trace_headers,
                priority=request.priority,
            ))

    result_generator = merge_async_iterators(*generators)

    # Non-streaming response
    final_res_batch: list[PoolingRequestOutput] = []

    embeddings: list[Optional[PoolingRequestOutput]] =\
          [None] * len(engine_prompts)

    async for i, res in result_generator:
        embeddings[i] = res

    emb_texts_1: list[PoolingRequestOutput] = []
    emb_texts_2: list[PoolingRequestOutput] = []

    for i in range(0, len(texts_1)):
        assert (emb := embeddings[i]) is not None
        emb_texts_1.append(emb)

    for i in range(len(texts_1), len(embeddings)):
        assert (emb := embeddings[i]) is not None
        emb_texts_2.append(emb)

    if len(emb_texts_1) == 1:
        emb_texts_1 = emb_texts_1 * len(emb_texts_2)

    final_res_batch = _cosine_similarity(tokenizer=tokenizer,
                                         embed_1=emb_texts_1,
                                         embed_2=emb_texts_2)

    return final_res_batch

_run_scoring async

_run_scoring(
    texts_1: Union[str, list[str]],
    texts_2: Union[str, list[str]],
    request: Union[ScoreRequest, RerankRequest],
    request_id: str,
    raw_request: Optional[Request] = None,
    truncate_prompt_tokens: Optional[int] = None,
) -> list[PoolingRequestOutput]
Source code in vllm/entrypoints/openai/serving_score.py
async def _run_scoring(
    self,
    texts_1: Union[str, list[str]],
    texts_2: Union[str, list[str]],
    request: Union[ScoreRequest, RerankRequest],
    request_id: str,
    raw_request: Optional[Request] = None,
    truncate_prompt_tokens: Optional[int] = None,
) -> list[PoolingRequestOutput]:

    (
        lora_request,
        prompt_adapter_request,
    ) = self._maybe_get_adapters(request)

    if prompt_adapter_request is not None:
        raise NotImplementedError("Prompt adapter is not supported "
                                  "for scoring models")

    tokenizer = await self.engine_client.get_tokenizer(lora_request)

    tokenization_kwargs: dict[str, Any] = {}
    _validate_truncation_size(self.max_model_len, truncate_prompt_tokens,
                              tokenization_kwargs)

    trace_headers = (None if raw_request is None else await
                     self._get_trace_headers(raw_request.headers))

    if isinstance(texts_1, str):
        texts_1 = [texts_1]
    if isinstance(texts_2, str):
        texts_2 = [texts_2]

    _validate_score_input_lens(texts_1, texts_2)

    if self.model_config.is_cross_encoder:
        return await self._cross_encoding_score(
            tokenizer=tokenizer,
            texts_1=texts_1,
            texts_2=texts_2,
            request=request,
            request_id=request_id,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
            trace_headers=trace_headers)

    else:
        return await self._embedding_score(
            tokenizer=tokenizer,
            texts_1=texts_1,
            texts_2=texts_2,
            request=request,
            request_id=request_id,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
            trace_headers=trace_headers)

create_score async

create_score(
    request: ScoreRequest,
    raw_request: Optional[Request] = None,
) -> Union[ScoreResponse, ErrorResponse]

Score API similar to Sentence Transformers cross encoder

See https://sbert.net/docs/package_reference/cross_encoder

Source code in vllm/entrypoints/openai/serving_score.py
async def create_score(
    self,
    request: ScoreRequest,
    raw_request: Optional[Request] = None,
) -> Union[ScoreResponse, ErrorResponse]:
    """
    Score API similar to Sentence Transformers cross encoder

    See https://sbert.net/docs/package_reference/cross_encoder
    """
    error_check_ret = await self._check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    request_id = f"score-{self._base_request_id(raw_request)}"
    created_time = int(time.time())

    try:
        final_res_batch = await self._run_scoring(
            request.text_1,
            request.text_2,
            request,
            request_id,
            raw_request,
            request.truncate_prompt_tokens,
        )

        return self.request_output_to_score_response(
            final_res_batch,
            request_id,
            created_time,
            self._get_model_name(request.model),
        )
    except asyncio.CancelledError:
        return self.create_error_response("Client disconnected")
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

do_rerank async

do_rerank(
    request: RerankRequest,
    raw_request: Optional[Request] = None,
) -> Union[RerankResponse, ErrorResponse]

Rerank API based on JinaAI's rerank API; implements the same API interface. Designed for compatibility with off-the-shelf tooling, since this is a common standard for reranking APIs

See example client implementations at https://github.com/infiniflow/ragflow/blob/main/rag/llm/rerank_model.py numerous clients use this standard.

Source code in vllm/entrypoints/openai/serving_score.py
async def do_rerank(
    self,
    request: RerankRequest,
    raw_request: Optional[Request] = None
) -> Union[RerankResponse, ErrorResponse]:
    """
    Rerank API based on JinaAI's rerank API; implements the same
    API interface. Designed for compatibility with off-the-shelf
    tooling, since this is a common standard for reranking APIs

    See example client implementations at
    https://github.com/infiniflow/ragflow/blob/main/rag/llm/rerank_model.py
    numerous clients use this standard.
    """
    error_check_ret = await self._check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    request_id = f"rerank-{self._base_request_id(raw_request)}"
    documents = request.documents
    top_n = request.top_n if request.top_n > 0 else len(documents)

    try:
        final_res_batch = await self._run_scoring(
            request.query,
            documents,
            request,
            request_id,
            raw_request,
            request.truncate_prompt_tokens,
        )
        return self.request_output_to_rerank_response(
            final_res_batch,
            request_id,
            self._get_model_name(request.model),
            documents,
            top_n,
        )
    except asyncio.CancelledError:
        return self.create_error_response("Client disconnected")
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

request_output_to_rerank_response

request_output_to_rerank_response(
    final_res_batch: list[PoolingRequestOutput],
    request_id: str,
    model_name: str,
    documents: list[str],
    top_n: int,
) -> RerankResponse

Convert the output of do_rank to a RerankResponse

Source code in vllm/entrypoints/openai/serving_score.py
def request_output_to_rerank_response(
        self, final_res_batch: list[PoolingRequestOutput], request_id: str,
        model_name: str, documents: list[str],
        top_n: int) -> RerankResponse:
    """
    Convert the output of do_rank to a RerankResponse
    """
    results: list[RerankResult] = []
    num_prompt_tokens = 0
    for idx, final_res in enumerate(final_res_batch):
        classify_res = ScoringRequestOutput.from_base(final_res)

        result = RerankResult(
            index=idx,
            document=RerankDocument(text=documents[idx]),
            relevance_score=classify_res.outputs.score,
        )
        results.append(result)
        prompt_token_ids = final_res.prompt_token_ids
        num_prompt_tokens += len(prompt_token_ids)

    # sort by relevance, then return the top n if set
    results.sort(key=lambda x: x.relevance_score, reverse=True)
    if top_n < len(documents):
        results = results[:top_n]

    return RerankResponse(
        id=request_id,
        model=model_name,
        results=results,
        usage=RerankUsage(total_tokens=num_prompt_tokens))

request_output_to_score_response

request_output_to_score_response(
    final_res_batch: list[PoolingRequestOutput],
    request_id: str,
    created_time: int,
    model_name: str,
) -> ScoreResponse
Source code in vllm/entrypoints/openai/serving_score.py
def request_output_to_score_response(
    self,
    final_res_batch: list[PoolingRequestOutput],
    request_id: str,
    created_time: int,
    model_name: str,
) -> ScoreResponse:
    items: list[ScoreResponseData] = []
    num_prompt_tokens = 0

    for idx, final_res in enumerate(final_res_batch):
        classify_res = ScoringRequestOutput.from_base(final_res)

        item = ScoreResponseData(
            index=idx,
            score=classify_res.outputs.score,
        )
        prompt_token_ids = final_res.prompt_token_ids

        items.append(item)
        num_prompt_tokens += len(prompt_token_ids)

    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        total_tokens=num_prompt_tokens,
    )

    return ScoreResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        data=items,
        usage=usage,
    )