Skip to content

vllm.v1.metrics.loggers

StatLoggerFactory module-attribute

StatLoggerFactory = Callable[
    [VllmConfig, int], "StatLoggerBase"
]

logger module-attribute

logger = init_logger(__name__)

LoggingStatLogger

Bases: StatLoggerBase

Source code in vllm/v1/metrics/loggers.py
class LoggingStatLogger(StatLoggerBase):

    def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
        self.engine_index = engine_index
        self.vllm_config = vllm_config
        self._reset(time.monotonic())
        self.last_scheduler_stats = SchedulerStats()
        # Prefix cache metrics. This cannot be reset.
        # TODO: Make the interval configurable.
        self.prefix_caching_metrics = PrefixCachingMetrics()
        self.spec_decoding_logging = SpecDecodingLogging()
        self.last_prompt_throughput: float = 0.0
        self.last_generation_throughput: float = 0.0

    def _reset(self, now):
        self.last_log_time = now

        # Tracked stats over current local logging interval.
        self.num_prompt_tokens: list[int] = []
        self.num_generation_tokens: list[int] = []

    def _track_iteration_stats(self, iteration_stats: IterationStats):
        # Save tracked stats for token counters.
        self.num_prompt_tokens.append(iteration_stats.num_prompt_tokens)
        self.num_generation_tokens.append(
            iteration_stats.num_generation_tokens)

    def _get_throughput(self, tracked_stats: list[int], now: float) -> float:
        # Compute summary metrics for tracked stats
        return float(np.sum(tracked_stats) / (now - self.last_log_time))

    def record(self, scheduler_stats: Optional[SchedulerStats],
               iteration_stats: Optional[IterationStats]):
        """Log Stats to standard output."""

        if iteration_stats:
            self._track_iteration_stats(iteration_stats)

        if scheduler_stats is not None:
            self.prefix_caching_metrics.observe(
                scheduler_stats.prefix_cache_stats)

            if scheduler_stats.spec_decoding_stats is not None:
                self.spec_decoding_logging.observe(
                    scheduler_stats.spec_decoding_stats)

            self.last_scheduler_stats = scheduler_stats

    def log(self):
        now = time.monotonic()
        prompt_throughput = self._get_throughput(self.num_prompt_tokens, now)
        generation_throughput = self._get_throughput(
            self.num_generation_tokens, now)

        self._reset(now)

        scheduler_stats = self.last_scheduler_stats

        log_fn = logger.info
        if not any(
            (prompt_throughput, generation_throughput,
             self.last_prompt_throughput, self.last_generation_throughput)):
            # Avoid log noise on an idle production system
            log_fn = logger.debug
        self.last_generation_throughput = generation_throughput
        self.last_prompt_throughput = prompt_throughput

        # Format and print output.
        log_fn(
            "Engine %03d: "
            "Avg prompt throughput: %.1f tokens/s, "
            "Avg generation throughput: %.1f tokens/s, "
            "Running: %d reqs, Waiting: %d reqs, "
            "GPU KV cache usage: %.1f%%, "
            "Prefix cache hit rate: %.1f%%",
            self.engine_index,
            prompt_throughput,
            generation_throughput,
            scheduler_stats.num_running_reqs,
            scheduler_stats.num_waiting_reqs,
            scheduler_stats.kv_cache_usage * 100,
            self.prefix_caching_metrics.hit_rate * 100,
        )
        self.spec_decoding_logging.log(log_fn=log_fn)

    def log_engine_initialized(self):
        if self.vllm_config.cache_config.num_gpu_blocks:
            logger.info(
                "Engine %03d: vllm cache_config_info with initialization "
                "after num_gpu_blocks is: %d", self.engine_index,
                self.vllm_config.cache_config.num_gpu_blocks)

engine_index instance-attribute

engine_index = engine_index

last_generation_throughput instance-attribute

last_generation_throughput: float = 0.0

last_prompt_throughput instance-attribute

last_prompt_throughput: float = 0.0

last_scheduler_stats instance-attribute

last_scheduler_stats = SchedulerStats()

prefix_caching_metrics instance-attribute

prefix_caching_metrics = PrefixCachingMetrics()

spec_decoding_logging instance-attribute

spec_decoding_logging = SpecDecodingLogging()

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(vllm_config: VllmConfig, engine_index: int = 0)
Source code in vllm/v1/metrics/loggers.py
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
    self.engine_index = engine_index
    self.vllm_config = vllm_config
    self._reset(time.monotonic())
    self.last_scheduler_stats = SchedulerStats()
    # Prefix cache metrics. This cannot be reset.
    # TODO: Make the interval configurable.
    self.prefix_caching_metrics = PrefixCachingMetrics()
    self.spec_decoding_logging = SpecDecodingLogging()
    self.last_prompt_throughput: float = 0.0
    self.last_generation_throughput: float = 0.0

_get_throughput

_get_throughput(
    tracked_stats: list[int], now: float
) -> float
Source code in vllm/v1/metrics/loggers.py
def _get_throughput(self, tracked_stats: list[int], now: float) -> float:
    # Compute summary metrics for tracked stats
    return float(np.sum(tracked_stats) / (now - self.last_log_time))

_reset

_reset(now)
Source code in vllm/v1/metrics/loggers.py
def _reset(self, now):
    self.last_log_time = now

    # Tracked stats over current local logging interval.
    self.num_prompt_tokens: list[int] = []
    self.num_generation_tokens: list[int] = []

_track_iteration_stats

_track_iteration_stats(iteration_stats: IterationStats)
Source code in vllm/v1/metrics/loggers.py
def _track_iteration_stats(self, iteration_stats: IterationStats):
    # Save tracked stats for token counters.
    self.num_prompt_tokens.append(iteration_stats.num_prompt_tokens)
    self.num_generation_tokens.append(
        iteration_stats.num_generation_tokens)

log

log()
Source code in vllm/v1/metrics/loggers.py
def log(self):
    now = time.monotonic()
    prompt_throughput = self._get_throughput(self.num_prompt_tokens, now)
    generation_throughput = self._get_throughput(
        self.num_generation_tokens, now)

    self._reset(now)

    scheduler_stats = self.last_scheduler_stats

    log_fn = logger.info
    if not any(
        (prompt_throughput, generation_throughput,
         self.last_prompt_throughput, self.last_generation_throughput)):
        # Avoid log noise on an idle production system
        log_fn = logger.debug
    self.last_generation_throughput = generation_throughput
    self.last_prompt_throughput = prompt_throughput

    # Format and print output.
    log_fn(
        "Engine %03d: "
        "Avg prompt throughput: %.1f tokens/s, "
        "Avg generation throughput: %.1f tokens/s, "
        "Running: %d reqs, Waiting: %d reqs, "
        "GPU KV cache usage: %.1f%%, "
        "Prefix cache hit rate: %.1f%%",
        self.engine_index,
        prompt_throughput,
        generation_throughput,
        scheduler_stats.num_running_reqs,
        scheduler_stats.num_waiting_reqs,
        scheduler_stats.kv_cache_usage * 100,
        self.prefix_caching_metrics.hit_rate * 100,
    )
    self.spec_decoding_logging.log(log_fn=log_fn)

log_engine_initialized

log_engine_initialized()
Source code in vllm/v1/metrics/loggers.py
def log_engine_initialized(self):
    if self.vllm_config.cache_config.num_gpu_blocks:
        logger.info(
            "Engine %03d: vllm cache_config_info with initialization "
            "after num_gpu_blocks is: %d", self.engine_index,
            self.vllm_config.cache_config.num_gpu_blocks)

record

record(
    scheduler_stats: Optional[SchedulerStats],
    iteration_stats: Optional[IterationStats],
)

Log Stats to standard output.

Source code in vllm/v1/metrics/loggers.py
def record(self, scheduler_stats: Optional[SchedulerStats],
           iteration_stats: Optional[IterationStats]):
    """Log Stats to standard output."""

    if iteration_stats:
        self._track_iteration_stats(iteration_stats)

    if scheduler_stats is not None:
        self.prefix_caching_metrics.observe(
            scheduler_stats.prefix_cache_stats)

        if scheduler_stats.spec_decoding_stats is not None:
            self.spec_decoding_logging.observe(
                scheduler_stats.spec_decoding_stats)

        self.last_scheduler_stats = scheduler_stats

PrometheusStatLogger

Bases: StatLoggerBase

Source code in vllm/v1/metrics/loggers.py
class PrometheusStatLogger(StatLoggerBase):
    _gauge_cls = prometheus_client.Gauge
    _counter_cls = prometheus_client.Counter
    _histogram_cls = prometheus_client.Histogram
    _spec_decoding_cls = SpecDecodingProm

    def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):

        unregister_vllm_metrics()
        self.vllm_config = vllm_config
        self.engine_index = engine_index
        # Use this flag to hide metrics that were deprecated in
        # a previous release and which will be removed future
        self.show_hidden_metrics = \
            vllm_config.observability_config.show_hidden_metrics

        labelnames = ["model_name", "engine"]
        labelvalues = [
            vllm_config.model_config.served_model_name,
            str(engine_index)
        ]

        max_model_len = vllm_config.model_config.max_model_len

        self.spec_decoding_prom = self._spec_decoding_cls(
            vllm_config.speculative_config, labelnames, labelvalues)

        #
        # Scheduler state
        #
        self.gauge_scheduler_running = self._gauge_cls(
            name="vllm:num_requests_running",
            documentation="Number of requests in model execution batches.",
            multiprocess_mode="mostrecent",
            labelnames=labelnames).labels(*labelvalues)

        self.gauge_scheduler_waiting = self._gauge_cls(
            name="vllm:num_requests_waiting",
            documentation="Number of requests waiting to be processed.",
            multiprocess_mode="mostrecent",
            labelnames=labelnames).labels(*labelvalues)

        #
        # GPU cache
        #
        # Deprecated in 0.9 - Renamed as vllm:kv_cache_usage_perc
        # TODO: in 0.10, only enable if show_hidden_metrics=True
        self.gauge_gpu_cache_usage = self._gauge_cls(
            name="vllm:gpu_cache_usage_perc",
            documentation=(
                "GPU KV-cache usage. 1 means 100 percent usage."
                "DEPRECATED: Use vllm:kv_cache_usage_perc instead."),
            multiprocess_mode="mostrecent",
            labelnames=labelnames).labels(*labelvalues)

        # Deprecated in 0.9 - Renamed as vllm:prefix_cache_queries
        # TODO: in 0.10, only enable if show_hidden_metrics=True
        self.counter_gpu_prefix_cache_queries = self._counter_cls(
            name="vllm:gpu_prefix_cache_queries",
            documentation=
            ("GPU prefix cache queries, in terms of number of queried tokens."
             "DEPRECATED: Use vllm:prefix_cache_queries instead."),
            labelnames=labelnames).labels(*labelvalues)

        # Deprecated in 0.9 - Renamed as vllm:prefix_cache_hits
        # TODO: in 0.10, only enable if show_hidden_metrics=True
        self.counter_gpu_prefix_cache_hits = self._counter_cls(
            name="vllm:gpu_prefix_cache_hits",
            documentation=(
                "GPU prefix cache hits, in terms of number of cached tokens."
                "DEPRECATED: Use vllm:prefix_cache_hits instead."),
            labelnames=labelnames).labels(*labelvalues)

        self.gauge_kv_cache_usage = self._gauge_cls(
            name="vllm:kv_cache_usage_perc",
            documentation="KV-cache usage. 1 means 100 percent usage.",
            labelnames=labelnames).labels(*labelvalues)

        self.counter_prefix_cache_queries = self._counter_cls(
            name="vllm:prefix_cache_queries",
            documentation=(
                "Prefix cache queries, in terms of number of queried tokens."),
            labelnames=labelnames).labels(*labelvalues)

        self.counter_prefix_cache_hits = self._counter_cls(
            name="vllm:prefix_cache_hits",
            documentation=(
                "Prefix cache hits, in terms of number of cached tokens."),
            labelnames=labelnames).labels(*labelvalues)

        #
        # Counters
        #
        self.counter_num_preempted_reqs = self._counter_cls(
            name="vllm:num_preemptions",
            documentation="Cumulative number of preemption from the engine.",
            labelnames=labelnames).labels(*labelvalues)

        self.counter_prompt_tokens = self._counter_cls(
            name="vllm:prompt_tokens",
            documentation="Number of prefill tokens processed.",
            labelnames=labelnames).labels(*labelvalues)

        self.counter_generation_tokens = self._counter_cls(
            name="vllm:generation_tokens",
            documentation="Number of generation tokens processed.",
            labelnames=labelnames).labels(*labelvalues)

        self.counter_request_success: dict[FinishReason,
                                           prometheus_client.Counter] = {}
        counter_request_success_base = self._counter_cls(
            name="vllm:request_success",
            documentation="Count of successfully processed requests.",
            labelnames=labelnames + ["finished_reason"])
        for reason in FinishReason:
            self.counter_request_success[
                reason] = counter_request_success_base.labels(*(labelvalues +
                                                                [str(reason)]))

        #
        # Histograms of counts
        #
        self.histogram_num_prompt_tokens_request = \
            self._histogram_cls(
                name="vllm:request_prompt_tokens",
                documentation="Number of prefill tokens processed.",
                buckets=build_1_2_5_buckets(max_model_len),
                labelnames=labelnames).labels(*labelvalues)

        self.histogram_num_generation_tokens_request = \
            self._histogram_cls(
                name="vllm:request_generation_tokens",
                documentation="Number of generation tokens processed.",
                buckets=build_1_2_5_buckets(max_model_len),
                labelnames=labelnames).labels(*labelvalues)

        # TODO: This metric might be incorrect in case of using multiple
        # api_server counts which uses prometheus mp.
        # See: https://github.com/vllm-project/vllm/pull/18053
        self.histogram_iteration_tokens = \
            self._histogram_cls(
                name="vllm:iteration_tokens_total",
                documentation="Histogram of number of tokens per engine_step.",
                buckets=[
                    1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
                    16384
                ],
                labelnames=labelnames).labels(*labelvalues)

        self.histogram_max_num_generation_tokens_request = \
            self._histogram_cls(
                name="vllm:request_max_num_generation_tokens",
                documentation=
                "Histogram of maximum number of requested generation tokens.",
                buckets=build_1_2_5_buckets(max_model_len),
                labelnames=labelnames).labels(*labelvalues)

        self.histogram_n_request = \
            self._histogram_cls(
                name="vllm:request_params_n",
                documentation="Histogram of the n request parameter.",
                buckets=[1, 2, 5, 10, 20],
                labelnames=labelnames).labels(*labelvalues)

        self.histogram_max_tokens_request = \
            self._histogram_cls(
                name="vllm:request_params_max_tokens",
                documentation="Histogram of the max_tokens request parameter.",
                buckets=build_1_2_5_buckets(max_model_len),
                labelnames=labelnames).labels(*labelvalues)

        #
        # Histogram of timing intervals
        #
        self.histogram_time_to_first_token = \
            self._histogram_cls(
                name="vllm:time_to_first_token_seconds",
                documentation="Histogram of time to first token in seconds.",
                buckets=[
                    0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
                    0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0, 160.0,
                    640.0, 2560.0
                ],
                labelnames=labelnames).labels(*labelvalues)

        self.histogram_time_per_output_token = \
            self._histogram_cls(
                name="vllm:time_per_output_token_seconds",
                documentation="Histogram of time per output token in seconds.",
                buckets=[
                    0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,
                    0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0
                ],
                labelnames=labelnames).labels(*labelvalues)

        request_latency_buckets = [
            0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0,
            40.0, 50.0, 60.0, 120.0, 240.0, 480.0, 960.0, 1920.0, 7680.0
        ]
        self.histogram_e2e_time_request = \
            self._histogram_cls(
                name="vllm:e2e_request_latency_seconds",
                documentation="Histogram of e2e request latency in seconds.",
                buckets=request_latency_buckets,
                labelnames=labelnames).labels(*labelvalues)
        self.histogram_queue_time_request = \
            self._histogram_cls(
                name="vllm:request_queue_time_seconds",
                documentation=
                "Histogram of time spent in WAITING phase for request.",
                buckets=request_latency_buckets,
                labelnames=labelnames).labels(*labelvalues)
        self.histogram_inference_time_request = \
            self._histogram_cls(
                name="vllm:request_inference_time_seconds",
                documentation=
                "Histogram of time spent in RUNNING phase for request.",
                buckets=request_latency_buckets,
                labelnames=labelnames).labels(*labelvalues)
        self.histogram_prefill_time_request = \
            self._histogram_cls(
                name="vllm:request_prefill_time_seconds",
                documentation=
                "Histogram of time spent in PREFILL phase for request.",
                buckets=request_latency_buckets,
                labelnames=labelnames).labels(*labelvalues)
        self.histogram_decode_time_request = \
            self._histogram_cls(
                name="vllm:request_decode_time_seconds",
                documentation=
                "Histogram of time spent in DECODE phase for request.",
                buckets=request_latency_buckets,
                labelnames=labelnames).labels(*labelvalues)

        #
        # LoRA metrics
        #

        # TODO: This metric might be incorrect in case of using multiple
        # api_server counts which uses prometheus mp.
        self.gauge_lora_info: Optional[prometheus_client.Gauge] = None
        if vllm_config.lora_config is not None:
            self.labelname_max_lora = "max_lora"
            self.labelname_waiting_lora_adapters = "waiting_lora_adapters"
            self.labelname_running_lora_adapters = "running_lora_adapters"
            self.max_lora = vllm_config.lora_config.max_loras
            self.gauge_lora_info = \
                self._gauge_cls(
                    name="vllm:lora_requests_info",
                    documentation="Running stats on lora requests.",
                    multiprocess_mode="sum",
                    labelnames=[
                        self.labelname_max_lora,
                        self.labelname_waiting_lora_adapters,
                        self.labelname_running_lora_adapters,
                    ],
                )

    def log_metrics_info(self, type: str, config_obj: SupportsMetricsInfo):

        metrics_info = config_obj.metrics_info()
        metrics_info["engine"] = self.engine_index

        name, documentation = None, None
        if type == "cache_config":
            name = "vllm:cache_config_info"
            documentation = "Information of the LLMEngine CacheConfig"
        assert name is not None, f"Unknown metrics info type {type}"

        # Info type metrics are syntactic sugar for a gauge permanently set to 1
        # Since prometheus multiprocessing mode does not support Info, emulate
        # info here with a gauge.
        info_gauge = self._gauge_cls(
            name=name,
            documentation=documentation,
            multiprocess_mode="mostrecent",
            labelnames=metrics_info.keys(),
        ).labels(**metrics_info)
        info_gauge.set(1)

    def record(self, scheduler_stats: Optional[SchedulerStats],
               iteration_stats: Optional[IterationStats]):
        """Log to prometheus."""
        if scheduler_stats is not None:
            self.gauge_scheduler_running.set(scheduler_stats.num_running_reqs)
            self.gauge_scheduler_waiting.set(scheduler_stats.num_waiting_reqs)

            self.gauge_gpu_cache_usage.set(scheduler_stats.kv_cache_usage)
            self.gauge_kv_cache_usage.set(scheduler_stats.kv_cache_usage)

            self.counter_gpu_prefix_cache_queries.inc(
                scheduler_stats.prefix_cache_stats.queries)
            self.counter_gpu_prefix_cache_hits.inc(
                scheduler_stats.prefix_cache_stats.hits)

            self.counter_prefix_cache_queries.inc(
                scheduler_stats.prefix_cache_stats.queries)
            self.counter_prefix_cache_hits.inc(
                scheduler_stats.prefix_cache_stats.hits)

            if scheduler_stats.spec_decoding_stats is not None:
                self.spec_decoding_prom.observe(
                    scheduler_stats.spec_decoding_stats)

        if iteration_stats is None:
            return

        self.counter_num_preempted_reqs.inc(iteration_stats.num_preempted_reqs)
        self.counter_prompt_tokens.inc(iteration_stats.num_prompt_tokens)
        self.counter_generation_tokens.inc(
            iteration_stats.num_generation_tokens)
        self.histogram_iteration_tokens.observe(
            iteration_stats.num_prompt_tokens + \
            iteration_stats.num_generation_tokens)

        for max_gen_tokens in iteration_stats.max_num_generation_tokens_iter:
            self.histogram_max_num_generation_tokens_request.observe(
                max_gen_tokens)
        for n_param in iteration_stats.n_params_iter:
            self.histogram_n_request.observe(n_param)
        for ttft in iteration_stats.time_to_first_tokens_iter:
            self.histogram_time_to_first_token.observe(ttft)
        for tpot in iteration_stats.time_per_output_tokens_iter:
            self.histogram_time_per_output_token.observe(tpot)

        for finished_request in iteration_stats.finished_requests:
            self.counter_request_success[finished_request.finish_reason].inc()
            self.histogram_e2e_time_request.observe(
                finished_request.e2e_latency)
            self.histogram_queue_time_request.observe(
                finished_request.queued_time)
            self.histogram_prefill_time_request.observe(
                finished_request.prefill_time)
            self.histogram_inference_time_request.observe(
                finished_request.inference_time)
            self.histogram_decode_time_request.observe(
                finished_request.decode_time)
            self.histogram_num_prompt_tokens_request.observe(
                finished_request.num_prompt_tokens)
            self.histogram_num_generation_tokens_request.observe(
                finished_request.num_generation_tokens)
            if finished_request.max_tokens_param:
                self.histogram_max_tokens_request.observe(
                    finished_request.max_tokens_param)

        if self.gauge_lora_info is not None:
            running_lora_adapters = \
                ",".join(iteration_stats.running_lora_adapters.keys())
            waiting_lora_adapters = \
                ",".join(iteration_stats.waiting_lora_adapters.keys())
            lora_info_labels = {
                self.labelname_running_lora_adapters: running_lora_adapters,
                self.labelname_waiting_lora_adapters: waiting_lora_adapters,
                self.labelname_max_lora: self.max_lora,
            }
            self.gauge_lora_info.labels(**lora_info_labels)\
                                .set_to_current_time()

    def log_engine_initialized(self):
        self.log_metrics_info("cache_config", self.vllm_config.cache_config)

_counter_cls class-attribute instance-attribute

_counter_cls = Counter

_gauge_cls class-attribute instance-attribute

_gauge_cls = Gauge

_histogram_cls class-attribute instance-attribute

_histogram_cls = Histogram

_spec_decoding_cls class-attribute instance-attribute

_spec_decoding_cls = SpecDecodingProm

counter_generation_tokens instance-attribute

counter_generation_tokens = labels(*labelvalues)

counter_gpu_prefix_cache_hits instance-attribute

counter_gpu_prefix_cache_hits = labels(*labelvalues)

counter_gpu_prefix_cache_queries instance-attribute

counter_gpu_prefix_cache_queries = labels(*labelvalues)

counter_num_preempted_reqs instance-attribute

counter_num_preempted_reqs = labels(*labelvalues)

counter_prefix_cache_hits instance-attribute

counter_prefix_cache_hits = labels(*labelvalues)

counter_prefix_cache_queries instance-attribute

counter_prefix_cache_queries = labels(*labelvalues)

counter_prompt_tokens instance-attribute

counter_prompt_tokens = labels(*labelvalues)

counter_request_success instance-attribute

counter_request_success: dict[FinishReason, Counter] = {}

engine_index instance-attribute

engine_index = engine_index

gauge_gpu_cache_usage instance-attribute

gauge_gpu_cache_usage = labels(*labelvalues)

gauge_kv_cache_usage instance-attribute

gauge_kv_cache_usage = labels(*labelvalues)

gauge_lora_info instance-attribute

gauge_lora_info: Optional[Gauge] = None

gauge_scheduler_running instance-attribute

gauge_scheduler_running = labels(*labelvalues)

gauge_scheduler_waiting instance-attribute

gauge_scheduler_waiting = labels(*labelvalues)

histogram_decode_time_request instance-attribute

histogram_decode_time_request = labels(*labelvalues)

histogram_e2e_time_request instance-attribute

histogram_e2e_time_request = labels(*labelvalues)

histogram_inference_time_request instance-attribute

histogram_inference_time_request = labels(*labelvalues)

histogram_iteration_tokens instance-attribute

histogram_iteration_tokens = labels(*labelvalues)

histogram_max_num_generation_tokens_request instance-attribute

histogram_max_num_generation_tokens_request = labels(
    *labelvalues
)

histogram_max_tokens_request instance-attribute

histogram_max_tokens_request = labels(*labelvalues)

histogram_n_request instance-attribute

histogram_n_request = labels(*labelvalues)

histogram_num_generation_tokens_request instance-attribute

histogram_num_generation_tokens_request = labels(
    *labelvalues
)

histogram_num_prompt_tokens_request instance-attribute

histogram_num_prompt_tokens_request = labels(*labelvalues)

histogram_prefill_time_request instance-attribute

histogram_prefill_time_request = labels(*labelvalues)

histogram_queue_time_request instance-attribute

histogram_queue_time_request = labels(*labelvalues)

histogram_time_per_output_token instance-attribute

histogram_time_per_output_token = labels(*labelvalues)

histogram_time_to_first_token instance-attribute

histogram_time_to_first_token = labels(*labelvalues)

labelname_max_lora instance-attribute

labelname_max_lora = 'max_lora'

labelname_running_lora_adapters instance-attribute

labelname_running_lora_adapters = 'running_lora_adapters'

labelname_waiting_lora_adapters instance-attribute

labelname_waiting_lora_adapters = 'waiting_lora_adapters'

max_lora instance-attribute

max_lora = max_loras

show_hidden_metrics instance-attribute

show_hidden_metrics = show_hidden_metrics

spec_decoding_prom instance-attribute

spec_decoding_prom = _spec_decoding_cls(
    speculative_config, labelnames, labelvalues
)

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(vllm_config: VllmConfig, engine_index: int = 0)
Source code in vllm/v1/metrics/loggers.py
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):

    unregister_vllm_metrics()
    self.vllm_config = vllm_config
    self.engine_index = engine_index
    # Use this flag to hide metrics that were deprecated in
    # a previous release and which will be removed future
    self.show_hidden_metrics = \
        vllm_config.observability_config.show_hidden_metrics

    labelnames = ["model_name", "engine"]
    labelvalues = [
        vllm_config.model_config.served_model_name,
        str(engine_index)
    ]

    max_model_len = vllm_config.model_config.max_model_len

    self.spec_decoding_prom = self._spec_decoding_cls(
        vllm_config.speculative_config, labelnames, labelvalues)

    #
    # Scheduler state
    #
    self.gauge_scheduler_running = self._gauge_cls(
        name="vllm:num_requests_running",
        documentation="Number of requests in model execution batches.",
        multiprocess_mode="mostrecent",
        labelnames=labelnames).labels(*labelvalues)

    self.gauge_scheduler_waiting = self._gauge_cls(
        name="vllm:num_requests_waiting",
        documentation="Number of requests waiting to be processed.",
        multiprocess_mode="mostrecent",
        labelnames=labelnames).labels(*labelvalues)

    #
    # GPU cache
    #
    # Deprecated in 0.9 - Renamed as vllm:kv_cache_usage_perc
    # TODO: in 0.10, only enable if show_hidden_metrics=True
    self.gauge_gpu_cache_usage = self._gauge_cls(
        name="vllm:gpu_cache_usage_perc",
        documentation=(
            "GPU KV-cache usage. 1 means 100 percent usage."
            "DEPRECATED: Use vllm:kv_cache_usage_perc instead."),
        multiprocess_mode="mostrecent",
        labelnames=labelnames).labels(*labelvalues)

    # Deprecated in 0.9 - Renamed as vllm:prefix_cache_queries
    # TODO: in 0.10, only enable if show_hidden_metrics=True
    self.counter_gpu_prefix_cache_queries = self._counter_cls(
        name="vllm:gpu_prefix_cache_queries",
        documentation=
        ("GPU prefix cache queries, in terms of number of queried tokens."
         "DEPRECATED: Use vllm:prefix_cache_queries instead."),
        labelnames=labelnames).labels(*labelvalues)

    # Deprecated in 0.9 - Renamed as vllm:prefix_cache_hits
    # TODO: in 0.10, only enable if show_hidden_metrics=True
    self.counter_gpu_prefix_cache_hits = self._counter_cls(
        name="vllm:gpu_prefix_cache_hits",
        documentation=(
            "GPU prefix cache hits, in terms of number of cached tokens."
            "DEPRECATED: Use vllm:prefix_cache_hits instead."),
        labelnames=labelnames).labels(*labelvalues)

    self.gauge_kv_cache_usage = self._gauge_cls(
        name="vllm:kv_cache_usage_perc",
        documentation="KV-cache usage. 1 means 100 percent usage.",
        labelnames=labelnames).labels(*labelvalues)

    self.counter_prefix_cache_queries = self._counter_cls(
        name="vllm:prefix_cache_queries",
        documentation=(
            "Prefix cache queries, in terms of number of queried tokens."),
        labelnames=labelnames).labels(*labelvalues)

    self.counter_prefix_cache_hits = self._counter_cls(
        name="vllm:prefix_cache_hits",
        documentation=(
            "Prefix cache hits, in terms of number of cached tokens."),
        labelnames=labelnames).labels(*labelvalues)

    #
    # Counters
    #
    self.counter_num_preempted_reqs = self._counter_cls(
        name="vllm:num_preemptions",
        documentation="Cumulative number of preemption from the engine.",
        labelnames=labelnames).labels(*labelvalues)

    self.counter_prompt_tokens = self._counter_cls(
        name="vllm:prompt_tokens",
        documentation="Number of prefill tokens processed.",
        labelnames=labelnames).labels(*labelvalues)

    self.counter_generation_tokens = self._counter_cls(
        name="vllm:generation_tokens",
        documentation="Number of generation tokens processed.",
        labelnames=labelnames).labels(*labelvalues)

    self.counter_request_success: dict[FinishReason,
                                       prometheus_client.Counter] = {}
    counter_request_success_base = self._counter_cls(
        name="vllm:request_success",
        documentation="Count of successfully processed requests.",
        labelnames=labelnames + ["finished_reason"])
    for reason in FinishReason:
        self.counter_request_success[
            reason] = counter_request_success_base.labels(*(labelvalues +
                                                            [str(reason)]))

    #
    # Histograms of counts
    #
    self.histogram_num_prompt_tokens_request = \
        self._histogram_cls(
            name="vllm:request_prompt_tokens",
            documentation="Number of prefill tokens processed.",
            buckets=build_1_2_5_buckets(max_model_len),
            labelnames=labelnames).labels(*labelvalues)

    self.histogram_num_generation_tokens_request = \
        self._histogram_cls(
            name="vllm:request_generation_tokens",
            documentation="Number of generation tokens processed.",
            buckets=build_1_2_5_buckets(max_model_len),
            labelnames=labelnames).labels(*labelvalues)

    # TODO: This metric might be incorrect in case of using multiple
    # api_server counts which uses prometheus mp.
    # See: https://github.com/vllm-project/vllm/pull/18053
    self.histogram_iteration_tokens = \
        self._histogram_cls(
            name="vllm:iteration_tokens_total",
            documentation="Histogram of number of tokens per engine_step.",
            buckets=[
                1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
                16384
            ],
            labelnames=labelnames).labels(*labelvalues)

    self.histogram_max_num_generation_tokens_request = \
        self._histogram_cls(
            name="vllm:request_max_num_generation_tokens",
            documentation=
            "Histogram of maximum number of requested generation tokens.",
            buckets=build_1_2_5_buckets(max_model_len),
            labelnames=labelnames).labels(*labelvalues)

    self.histogram_n_request = \
        self._histogram_cls(
            name="vllm:request_params_n",
            documentation="Histogram of the n request parameter.",
            buckets=[1, 2, 5, 10, 20],
            labelnames=labelnames).labels(*labelvalues)

    self.histogram_max_tokens_request = \
        self._histogram_cls(
            name="vllm:request_params_max_tokens",
            documentation="Histogram of the max_tokens request parameter.",
            buckets=build_1_2_5_buckets(max_model_len),
            labelnames=labelnames).labels(*labelvalues)

    #
    # Histogram of timing intervals
    #
    self.histogram_time_to_first_token = \
        self._histogram_cls(
            name="vllm:time_to_first_token_seconds",
            documentation="Histogram of time to first token in seconds.",
            buckets=[
                0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
                0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0, 160.0,
                640.0, 2560.0
            ],
            labelnames=labelnames).labels(*labelvalues)

    self.histogram_time_per_output_token = \
        self._histogram_cls(
            name="vllm:time_per_output_token_seconds",
            documentation="Histogram of time per output token in seconds.",
            buckets=[
                0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,
                0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0
            ],
            labelnames=labelnames).labels(*labelvalues)

    request_latency_buckets = [
        0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0,
        40.0, 50.0, 60.0, 120.0, 240.0, 480.0, 960.0, 1920.0, 7680.0
    ]
    self.histogram_e2e_time_request = \
        self._histogram_cls(
            name="vllm:e2e_request_latency_seconds",
            documentation="Histogram of e2e request latency in seconds.",
            buckets=request_latency_buckets,
            labelnames=labelnames).labels(*labelvalues)
    self.histogram_queue_time_request = \
        self._histogram_cls(
            name="vllm:request_queue_time_seconds",
            documentation=
            "Histogram of time spent in WAITING phase for request.",
            buckets=request_latency_buckets,
            labelnames=labelnames).labels(*labelvalues)
    self.histogram_inference_time_request = \
        self._histogram_cls(
            name="vllm:request_inference_time_seconds",
            documentation=
            "Histogram of time spent in RUNNING phase for request.",
            buckets=request_latency_buckets,
            labelnames=labelnames).labels(*labelvalues)
    self.histogram_prefill_time_request = \
        self._histogram_cls(
            name="vllm:request_prefill_time_seconds",
            documentation=
            "Histogram of time spent in PREFILL phase for request.",
            buckets=request_latency_buckets,
            labelnames=labelnames).labels(*labelvalues)
    self.histogram_decode_time_request = \
        self._histogram_cls(
            name="vllm:request_decode_time_seconds",
            documentation=
            "Histogram of time spent in DECODE phase for request.",
            buckets=request_latency_buckets,
            labelnames=labelnames).labels(*labelvalues)

    #
    # LoRA metrics
    #

    # TODO: This metric might be incorrect in case of using multiple
    # api_server counts which uses prometheus mp.
    self.gauge_lora_info: Optional[prometheus_client.Gauge] = None
    if vllm_config.lora_config is not None:
        self.labelname_max_lora = "max_lora"
        self.labelname_waiting_lora_adapters = "waiting_lora_adapters"
        self.labelname_running_lora_adapters = "running_lora_adapters"
        self.max_lora = vllm_config.lora_config.max_loras
        self.gauge_lora_info = \
            self._gauge_cls(
                name="vllm:lora_requests_info",
                documentation="Running stats on lora requests.",
                multiprocess_mode="sum",
                labelnames=[
                    self.labelname_max_lora,
                    self.labelname_waiting_lora_adapters,
                    self.labelname_running_lora_adapters,
                ],
            )

log_engine_initialized

log_engine_initialized()
Source code in vllm/v1/metrics/loggers.py
def log_engine_initialized(self):
    self.log_metrics_info("cache_config", self.vllm_config.cache_config)

log_metrics_info

log_metrics_info(
    type: str, config_obj: SupportsMetricsInfo
)
Source code in vllm/v1/metrics/loggers.py
def log_metrics_info(self, type: str, config_obj: SupportsMetricsInfo):

    metrics_info = config_obj.metrics_info()
    metrics_info["engine"] = self.engine_index

    name, documentation = None, None
    if type == "cache_config":
        name = "vllm:cache_config_info"
        documentation = "Information of the LLMEngine CacheConfig"
    assert name is not None, f"Unknown metrics info type {type}"

    # Info type metrics are syntactic sugar for a gauge permanently set to 1
    # Since prometheus multiprocessing mode does not support Info, emulate
    # info here with a gauge.
    info_gauge = self._gauge_cls(
        name=name,
        documentation=documentation,
        multiprocess_mode="mostrecent",
        labelnames=metrics_info.keys(),
    ).labels(**metrics_info)
    info_gauge.set(1)

record

record(
    scheduler_stats: Optional[SchedulerStats],
    iteration_stats: Optional[IterationStats],
)

Log to prometheus.

Source code in vllm/v1/metrics/loggers.py
def record(self, scheduler_stats: Optional[SchedulerStats],
           iteration_stats: Optional[IterationStats]):
    """Log to prometheus."""
    if scheduler_stats is not None:
        self.gauge_scheduler_running.set(scheduler_stats.num_running_reqs)
        self.gauge_scheduler_waiting.set(scheduler_stats.num_waiting_reqs)

        self.gauge_gpu_cache_usage.set(scheduler_stats.kv_cache_usage)
        self.gauge_kv_cache_usage.set(scheduler_stats.kv_cache_usage)

        self.counter_gpu_prefix_cache_queries.inc(
            scheduler_stats.prefix_cache_stats.queries)
        self.counter_gpu_prefix_cache_hits.inc(
            scheduler_stats.prefix_cache_stats.hits)

        self.counter_prefix_cache_queries.inc(
            scheduler_stats.prefix_cache_stats.queries)
        self.counter_prefix_cache_hits.inc(
            scheduler_stats.prefix_cache_stats.hits)

        if scheduler_stats.spec_decoding_stats is not None:
            self.spec_decoding_prom.observe(
                scheduler_stats.spec_decoding_stats)

    if iteration_stats is None:
        return

    self.counter_num_preempted_reqs.inc(iteration_stats.num_preempted_reqs)
    self.counter_prompt_tokens.inc(iteration_stats.num_prompt_tokens)
    self.counter_generation_tokens.inc(
        iteration_stats.num_generation_tokens)
    self.histogram_iteration_tokens.observe(
        iteration_stats.num_prompt_tokens + \
        iteration_stats.num_generation_tokens)

    for max_gen_tokens in iteration_stats.max_num_generation_tokens_iter:
        self.histogram_max_num_generation_tokens_request.observe(
            max_gen_tokens)
    for n_param in iteration_stats.n_params_iter:
        self.histogram_n_request.observe(n_param)
    for ttft in iteration_stats.time_to_first_tokens_iter:
        self.histogram_time_to_first_token.observe(ttft)
    for tpot in iteration_stats.time_per_output_tokens_iter:
        self.histogram_time_per_output_token.observe(tpot)

    for finished_request in iteration_stats.finished_requests:
        self.counter_request_success[finished_request.finish_reason].inc()
        self.histogram_e2e_time_request.observe(
            finished_request.e2e_latency)
        self.histogram_queue_time_request.observe(
            finished_request.queued_time)
        self.histogram_prefill_time_request.observe(
            finished_request.prefill_time)
        self.histogram_inference_time_request.observe(
            finished_request.inference_time)
        self.histogram_decode_time_request.observe(
            finished_request.decode_time)
        self.histogram_num_prompt_tokens_request.observe(
            finished_request.num_prompt_tokens)
        self.histogram_num_generation_tokens_request.observe(
            finished_request.num_generation_tokens)
        if finished_request.max_tokens_param:
            self.histogram_max_tokens_request.observe(
                finished_request.max_tokens_param)

    if self.gauge_lora_info is not None:
        running_lora_adapters = \
            ",".join(iteration_stats.running_lora_adapters.keys())
        waiting_lora_adapters = \
            ",".join(iteration_stats.waiting_lora_adapters.keys())
        lora_info_labels = {
            self.labelname_running_lora_adapters: running_lora_adapters,
            self.labelname_waiting_lora_adapters: waiting_lora_adapters,
            self.labelname_max_lora: self.max_lora,
        }
        self.gauge_lora_info.labels(**lora_info_labels)\
                            .set_to_current_time()

StatLoggerBase

Bases: ABC

Interface for logging metrics.

API users may define custom loggers that implement this interface. However, note that the SchedulerStats and IterationStats classes are not considered stable interfaces and may change in future versions.

Source code in vllm/v1/metrics/loggers.py
class StatLoggerBase(ABC):
    """Interface for logging metrics.

    API users may define custom loggers that implement this interface.
    However, note that the `SchedulerStats` and `IterationStats` classes
    are not considered stable interfaces and may change in future versions.
    """

    @abstractmethod
    def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
        ...

    @abstractmethod
    def record(self, scheduler_stats: Optional[SchedulerStats],
               iteration_stats: Optional[IterationStats]):
        ...

    @abstractmethod
    def log_engine_initialized(self):
        ...

    def log(self):  # noqa
        pass

__init__ abstractmethod

__init__(vllm_config: VllmConfig, engine_index: int = 0)
Source code in vllm/v1/metrics/loggers.py
@abstractmethod
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
    ...

log

log()
Source code in vllm/v1/metrics/loggers.py
def log(self):  # noqa
    pass

log_engine_initialized abstractmethod

log_engine_initialized()
Source code in vllm/v1/metrics/loggers.py
@abstractmethod
def log_engine_initialized(self):
    ...

record abstractmethod

record(
    scheduler_stats: Optional[SchedulerStats],
    iteration_stats: Optional[IterationStats],
)
Source code in vllm/v1/metrics/loggers.py
@abstractmethod
def record(self, scheduler_stats: Optional[SchedulerStats],
           iteration_stats: Optional[IterationStats]):
    ...

build_1_2_5_buckets

build_1_2_5_buckets(max_value: int) -> list[int]

Example:

build_1_2_5_buckets(100) [1, 2, 5, 10, 20, 50, 100]

Source code in vllm/v1/metrics/loggers.py
def build_1_2_5_buckets(max_value: int) -> list[int]:
    """
    Example:
    >>> build_1_2_5_buckets(100)
    [1, 2, 5, 10, 20, 50, 100]
    """
    return build_buckets([1, 2, 5], max_value)

build_buckets

build_buckets(
    mantissa_lst: list[int], max_value: int
) -> list[int]

Builds a list of buckets with increasing powers of 10 multiplied by mantissa values until the value exceeds the specified maximum.

Source code in vllm/v1/metrics/loggers.py
def build_buckets(mantissa_lst: list[int], max_value: int) -> list[int]:
    """
    Builds a list of buckets with increasing powers of 10 multiplied by
    mantissa values until the value exceeds the specified maximum.

    """
    exponent = 0
    buckets: list[int] = []
    while True:
        for m in mantissa_lst:
            value = m * 10**exponent
            if value <= max_value:
                buckets.append(value)
            else:
                return buckets
        exponent += 1

setup_default_loggers

setup_default_loggers(
    vllm_config: VllmConfig,
    log_stats: bool,
    engine_num: int,
    custom_stat_loggers: Optional[
        list[StatLoggerFactory]
    ] = None,
) -> list[list[StatLoggerBase]]

Setup logging and prometheus metrics.

Source code in vllm/v1/metrics/loggers.py
def setup_default_loggers(
    vllm_config: VllmConfig,
    log_stats: bool,
    engine_num: int,
    custom_stat_loggers: Optional[list[StatLoggerFactory]] = None,
) -> list[list[StatLoggerBase]]:
    """Setup logging and prometheus metrics."""
    if not log_stats:
        return []

    factories: list[StatLoggerFactory]
    if custom_stat_loggers is not None:
        factories = custom_stat_loggers
    else:
        factories = [PrometheusStatLogger]
        if logger.isEnabledFor(logging.INFO):
            factories.append(LoggingStatLogger)

    stat_loggers: list[list[StatLoggerBase]] = []
    for i in range(engine_num):
        per_engine_stat_loggers: list[StatLoggerBase] = []
        for logger_factory in factories:
            per_engine_stat_loggers.append(logger_factory(vllm_config, i))
        stat_loggers.append(per_engine_stat_loggers)

    return stat_loggers