Skip to content

vllm.v1.metrics.reader

Counter dataclass

Bases: Metric

A monotonically increasing integer counter.

Source code in vllm/v1/metrics/reader.py
@dataclass
class Counter(Metric):
    """A monotonically increasing integer counter."""
    value: int

value instance-attribute

value: int

__init__

__init__(
    name: str, labels: dict[str, str], value: int
) -> None

Gauge dataclass

Bases: Metric

A numerical value that can go up or down.

Source code in vllm/v1/metrics/reader.py
@dataclass
class Gauge(Metric):
    """A numerical value that can go up or down."""
    value: float

value instance-attribute

value: float

__init__

__init__(
    name: str, labels: dict[str, str], value: float
) -> None

Histogram dataclass

Bases: Metric

Observations recorded in configurable buckets.

Buckets are represented by a dictionary. The key is the upper limit of the bucket, and the value is the observed count in that bucket. A '+Inf' key always exists.

The count property is the total count across all buckets, identical to the count of the '+Inf' bucket.

The sum property is the total sum of all observed values.

Source code in vllm/v1/metrics/reader.py
@dataclass
class Histogram(Metric):
    """Observations recorded in configurable buckets.

    Buckets are represented by a dictionary. The key is
    the upper limit of the bucket, and the value is the
    observed count in that bucket. A '+Inf' key always
    exists.

    The count property is the total count across all
    buckets, identical to the count of the '+Inf' bucket.

    The sum property is the total sum of all observed
    values.
    """
    count: int
    sum: float
    buckets: dict[str, int]

buckets instance-attribute

buckets: dict[str, int]

count instance-attribute

count: int

sum instance-attribute

sum: float

__init__

__init__(
    name: str,
    labels: dict[str, str],
    count: int,
    sum: float,
    buckets: dict[str, int],
) -> None

Metric dataclass

A base class for prometheus metrics.

Each metric may be associated with key=value labels, and in some cases a single vLLM instance may have multiple metrics with the same name but different sets of labels.

Source code in vllm/v1/metrics/reader.py
@dataclass
class Metric:
    """A base class for prometheus metrics.

    Each metric may be associated with key=value labels, and
    in some cases a single vLLM instance may have multiple
    metrics with the same name but different sets of labels.
    """
    name: str
    labels: dict[str, str]

labels instance-attribute

labels: dict[str, str]

name instance-attribute

name: str

__init__

__init__(name: str, labels: dict[str, str]) -> None

Vector dataclass

Bases: Metric

An ordered array of integer counters.

This type - which doesn't exist in Prometheus - models one very specific metric, vllm:spec_decode_num_accepted_tokens_per_pos.

Source code in vllm/v1/metrics/reader.py
@dataclass
class Vector(Metric):
    """An ordered array of integer counters.

    This type - which doesn't exist in Prometheus - models one very
    specific metric, vllm:spec_decode_num_accepted_tokens_per_pos.
    """
    values: list[int]

values instance-attribute

values: list[int]

__init__

__init__(
    name: str, labels: dict[str, str], values: list[int]
) -> None

_digest_histogram

_digest_histogram(
    bucket_samples: list[Sample],
    count_samples: list[Sample],
    sum_samples: list[Sample],
) -> list[
    tuple[dict[str, str], dict[str, int], int, float]
]
Source code in vllm/v1/metrics/reader.py
def _digest_histogram(
    bucket_samples: list[Sample], count_samples: list[Sample],
    sum_samples: list[Sample]
) -> list[tuple[dict[str, str], dict[str, int], int, float]]:
    #
    # In the case of DP, we have an indigestable
    # per-bucket-per-engine count as a list of labelled
    # samples, along with total and sum samples
    #
    # bucket_samples (in):
    #   labels = {bucket: 100, idx: 0}, value = 2
    #   labels = {bucket: 200, idx: 0}, value = 4
    #   labels = {bucket: Inf, idx: 0}, value = 10
    #   labels = {bucket: 100, idx: 1}, value = 1
    #   labels = {bucket: 200, idx: 2}, value = 5
    #   labels = {bucket: Inf, idx: 3}, value = 7
    # count_samples (in):
    #   labels = {idx: 0}, value = 10
    #   labels = {idx: 1}, value = 7
    # sum_samples (in):
    #   labels = {idx: 0}, value = 2000
    #   labels = {idx: 1}, value = 1200
    #
    # output: [
    #   {idx: 0}, {"100": 2, "200": 4, "Inf": 10}, 10, 2000
    #   {idx: 1}, {"100": 1, "200": 5, "Inf": 7},   7, 1200
    # ]
    buckets_by_labels: dict[frozenset[tuple[str, str]], dict[str, int]] = {}
    for s in bucket_samples:
        bucket = s.labels["le"]
        labels_key = frozenset(_strip_label(s.labels, "le").items())
        if labels_key not in buckets_by_labels:
            buckets_by_labels[labels_key] = {}
        buckets_by_labels[labels_key][bucket] = int(s.value)

    counts_by_labels: dict[frozenset[tuple[str, str]], int] = {}
    for s in count_samples:
        labels_key = frozenset(s.labels.items())
        counts_by_labels[labels_key] = int(s.value)

    sums_by_labels: dict[frozenset[tuple[str, str]], float] = {}
    for s in sum_samples:
        labels_key = frozenset(s.labels.items())
        sums_by_labels[labels_key] = s.value

    assert set(buckets_by_labels.keys()) == set(
        counts_by_labels.keys()) == set(sums_by_labels.keys())

    output = []
    label_keys = list(buckets_by_labels.keys())
    for k in label_keys:
        labels = dict(k)
        output.append((labels, buckets_by_labels[k], counts_by_labels[k],
                       sums_by_labels[k]))
    return output

_digest_num_accepted_by_pos_samples

_digest_num_accepted_by_pos_samples(
    samples: list[Sample],
) -> list[tuple[dict[str, str], list[int]]]
Source code in vllm/v1/metrics/reader.py
def _digest_num_accepted_by_pos_samples(
        samples: list[Sample]) -> list[tuple[dict[str, str], list[int]]]:
    #
    # In the case of DP, we have an indigestable
    # per-position-per-engine count as a list of
    # labelled samples
    #
    # samples (in):
    #   labels = {pos: 0, idx: 0}, value = 10
    #   labels = {pos: 1, idx: 0}, value = 7
    #   labels = {pos: 2, idx: 0}, value = 2
    #   labels = {pos: 0, idx: 1}, value = 5
    #   labels = {pos: 1, idx: 1}, value = 3
    #   labels = {pos: 2, idx: 1}, value = 1
    #
    # output: [
    #   {idx: 0}, [10, 7, 2]
    #   {idx: 1}, [5, 3, 1]
    # ]
    #
    max_pos = 0
    values_by_labels: dict[frozenset[tuple[str, str]], dict[int, int]] = {}

    for s in samples:
        position = int(s.labels["position"])
        max_pos = max(max_pos, position)

        labels_key = frozenset(_strip_label(s.labels, "position").items())
        if labels_key not in values_by_labels:
            values_by_labels[labels_key] = {}
        values_by_labels[labels_key][position] = int(s.value)

    output = []
    for labels_key, values_by_position in values_by_labels.items():
        labels = dict(labels_key)
        values = [0] * (max_pos + 1)
        for pos, val in values_by_position.items():
            values[pos] = val
        output.append((labels, values))
    return output

_get_samples

_get_samples(
    metric: Metric, suffix: Optional[str] = None
) -> list[Sample]
Source code in vllm/v1/metrics/reader.py
def _get_samples(metric: PromMetric,
                 suffix: Optional[str] = None) -> list[Sample]:
    name = (metric.name + suffix) if suffix is not None else metric.name
    return [s for s in metric.samples if s.name == name]

_strip_label

_strip_label(
    labels: dict[str, str], key_to_remove: str
) -> dict[str, str]
Source code in vllm/v1/metrics/reader.py
def _strip_label(labels: dict[str, str], key_to_remove: str) -> dict[str, str]:
    labels_copy = labels.copy()
    labels_copy.pop(key_to_remove)
    return labels_copy

get_metrics_snapshot

get_metrics_snapshot() -> list[Metric]

An API for accessing in-memory Prometheus metrics.

Example

for metric in llm.get_metrics(): ... if isinstance(metric, Counter): ... print(f"{metric} = {metric.value}") ... elif isinstance(metric, Gauge): ... print(f"{metric} = {metric.value}") ... elif isinstance(metric, Histogram): ... print(f"{metric}") ... print(f" sum = {metric.sum}") ... print(f" count = {metric.count}") ... for bucket_le, value in metrics.buckets.items(): ... print(f" {bucket_le} = {value}")

Source code in vllm/v1/metrics/reader.py
def get_metrics_snapshot() -> list[Metric]:
    """An API for accessing in-memory Prometheus metrics.

    Example:
        >>> for metric in llm.get_metrics():
        ...     if isinstance(metric, Counter):
        ...         print(f"{metric} = {metric.value}")
        ...     elif isinstance(metric, Gauge):
        ...         print(f"{metric} = {metric.value}")
        ...     elif isinstance(metric, Histogram):
        ...         print(f"{metric}")
        ...         print(f"    sum = {metric.sum}")
        ...         print(f"    count = {metric.count}")
        ...         for bucket_le, value in metrics.buckets.items():
        ...             print(f"    {bucket_le} = {value}")
    """
    collected: list[Metric] = []
    for metric in REGISTRY.collect():
        if not metric.name.startswith("vllm:"):
            continue
        if metric.type == "gauge":
            samples = _get_samples(metric)
            for s in samples:
                collected.append(
                    Gauge(name=metric.name, labels=s.labels, value=s.value))
        elif metric.type == "counter":
            samples = _get_samples(metric, "_total")
            if metric.name == "vllm:spec_decode_num_accepted_tokens_per_pos":
                #
                # Ugly vllm:num_accepted_tokens_per_pos special case.
                #
                # This metric is a vector of counters - for each spec
                # decoding token position, we observe the number of
                # accepted tokens using a Counter labeled with 'position'.
                # We convert these into a vector of integer values.
                #
                for labels, values in _digest_num_accepted_by_pos_samples(
                        samples):
                    collected.append(
                        Vector(name=metric.name, labels=labels, values=values))
            else:
                for s in samples:
                    collected.append(
                        Counter(name=metric.name,
                                labels=s.labels,
                                value=int(s.value)))

        elif metric.type == "histogram":
            #
            # A histogram has a number of '_bucket' samples where
            # the 'le' label represents the upper limit of the bucket.
            # We convert these bucketized values into a dict of values
            # indexed by the value of the 'le' label. The 'le=+Inf'
            # label is a special case, catching all values observed.
            #
            bucket_samples = _get_samples(metric, "_bucket")
            count_samples = _get_samples(metric, "_count")
            sum_samples = _get_samples(metric, "_sum")
            for labels, buckets, count_value, sum_value in _digest_histogram(
                    bucket_samples, count_samples, sum_samples):
                collected.append(
                    Histogram(name=metric.name,
                              labels=labels,
                              buckets=buckets,
                              count=count_value,
                              sum=sum_value))
        else:
            raise AssertionError(f"Unknown metric type {metric.type}")

    return collected