vllm.v1.core.kv_cache_utils
KV-Cache Utilities.
NONE_HASH
module-attribute
¶
NONE_HASH = (
from_bytes(urandom(32), byteorder="big")
if getenv("PYTHONHASHSEED") is None
else sha256(getenv("PYTHONHASHSEED"))
)
BlockHash
¶
Bases: NamedTuple
Hash value of a block (int), the token IDs in the block, and extra keys. We keep a tuple of token IDs and extra keys to reduce the likelihood of hash collisions when the hash value is the same. By using SHA256 however, hash collisions are practically impossible.
Source code in vllm/v1/core/kv_cache_utils.py
BlockHashWithGroupId
¶
Bases: NamedTuple
Source code in vllm/v1/core/kv_cache_utils.py
FreeKVCacheBlockQueue
¶
This class organizes a list of KVCacheBlock objects to a doubly linked list of free blocks. We implement this class instead of using Python builtin deque to support removing a block in the middle of the queue in O(1) time. To close the performance gap to the builtin deque which is implemented in C++, this class does not allocate any Python objects when manipulating the linked list. Instead, this class manipulates the prev_free_block and next_free_block attributes of the given blocks.
The queue is ordered by block ID in the beginning. When a block is allocated and then freed, it will be appended back with the eviction order: 1. The least recent used block is at the front (LRU). 2. If two blocks have the same last accessed time (allocated by the same sequence), the one with more hash tokens (the tail of a block chain) is at the front. Note that we maintain this order by reversing the block order when free blocks of a request. This operation is outside of this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
blocks
|
list[KVCacheBlock]
|
A list of KVCacheBlock objects. |
required |
Source code in vllm/v1/core/kv_cache_utils.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
__init__
¶
__init__(blocks: list[KVCacheBlock]) -> None
Source code in vllm/v1/core/kv_cache_utils.py
append
¶
append(block: KVCacheBlock) -> None
Put a block back into the free list and increase num_free_blocks by 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block
|
KVCacheBlock
|
The block to append. |
required |
Source code in vllm/v1/core/kv_cache_utils.py
get_all_free_blocks
¶
get_all_free_blocks() -> list[KVCacheBlock]
Get all free blocks in the free list. Mainly used for testing.
Returns:
Type | Description |
---|---|
list[KVCacheBlock]
|
A list of free blocks. |
Source code in vllm/v1/core/kv_cache_utils.py
popleft
¶
popleft() -> KVCacheBlock
Pop the first free block and reduce num_free_blocks by 1.
Returns:
Type | Description |
---|---|
KVCacheBlock
|
The first free block. |
Source code in vllm/v1/core/kv_cache_utils.py
remove
¶
remove(block: KVCacheBlock) -> None
Remove a block in the free list and reduce num_free_blocks by 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block
|
KVCacheBlock
|
The block to remove. |
required |
Source code in vllm/v1/core/kv_cache_utils.py
KVCacheBlock
dataclass
¶
KV-cache block metadata.
Source code in vllm/v1/core/kv_cache_utils.py
__init__
¶
__init__(
block_id: int,
ref_cnt: int = 0,
_block_hash: Optional[BlockHashWithGroupId] = None,
prev_free_block: Optional[KVCacheBlock] = None,
next_free_block: Optional[KVCacheBlock] = None,
is_null: bool = False,
) -> None
__repr__
¶
__repr__() -> str
Source code in vllm/v1/core/kv_cache_utils.py
decr_ref
¶
incr_ref
¶
PrefixCachingMetrics
¶
Metrics for prefix caching with a hit rate of the max recent N requests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_recent_requests
|
int
|
The number of the max recent requests to aggregate. Defaults to 1000. |
1000
|
Source code in vllm/v1/core/kv_cache_utils.py
__init__
¶
__init__(max_recent_requests: int = 1000)
Source code in vllm/v1/core/kv_cache_utils.py
observe
¶
observe(stats: PrefixCacheStats)
Observe the prefix caching for a set of requests.
This function is called with information gathered when new requests are being scheduled and are looking for computed blocks.
When there are more than interval
requests, the oldest set of
requests are removed from the metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats
|
PrefixCacheStats
|
The prefix cache stats. |
required |
Source code in vllm/v1/core/kv_cache_utils.py
_gen_lora_extra_hash_keys
¶
Generate extra keys related to LoRA for block hash computation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
Request
|
The request object. |
required |
Returns:
Type | Description |
---|---|
list[int]
|
Return LoRA id of the request if it is a LoRA request. Return empty |
list[int]
|
list otherwise. |
Source code in vllm/v1/core/kv_cache_utils.py
_gen_mm_extra_hash_keys
¶
_gen_mm_extra_hash_keys(
request: Request,
start_token_idx: int,
end_token_idx: int,
start_mm_idx: int,
) -> tuple[list[Any], int]
Generate extra keys related to MultiModal request for block hash computation. For multi-modal inputs, the extra keys are (mm_hash, start_offset) that indicate a mm input contained in the block and its starting offset in the block tokens.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
Request
|
The request object. |
required |
start_token_idx
|
int
|
The start token index of the block. |
required |
end_token_idx
|
int
|
The end token index of the block. |
required |
start_mm_idx
|
int
|
The start multi-modal index of the block. |
required |
Returns:
Type | Description |
---|---|
tuple[list[Any], int]
|
A tuple of extra keys and the next multi-modal index. |
Source code in vllm/v1/core/kv_cache_utils.py
_get_kv_cache_config_uniform_page_size
¶
_get_kv_cache_config_uniform_page_size(
vllm_config: VllmConfig,
kv_cache_spec: dict[str, KVCacheSpec],
available_memory: int,
) -> KVCacheConfig
Generates the KV cache configuration for hybrid models with multiple attention types but still with a uniform page size (physical memory per block per layer) for all layers.
Detailed explanation about kv cache management of hybrid models:
The layers in the models are repeated with some patterns, e.g., a model
with 10 full attention layers and 20 sliding window attention layers can be
regarded as repeating the pattern (1 * full, 2 * sw) 10 times.
The KVCacheManager allocates different block tables for each of the 3 layers
in the pattern, and repeats each of them 10 times to generate the
block_table for the 30 layers in the model.
Therefore, we can group the layers in the model into 3 kv_cache_groups, each
of which contains 10 layers in the model.
The KVCacheManager allocates the block_table for each group based on its
kv_cache spec, and the model runner applies the block table to each layer
in the group.
For example:
1. A model only uses full attention. The pattern is
(num_hidden_layers * full), so there is only one group and the block table
is shared by all layers. It is already handled by
_get_kv_cache_config_uniform_type
.
2. A model with 10 full attention layers and 20 sliding window
attention layers. There are 3 layers in the pattern (1 * full, 2 * sw), so
there are 3 kv_cache_groups, each of which represents 10 layers.
To simplify the implementation, we make the following assumptions:
1. Physical memory per block: Must be the same across all KV cache groups.
Breaking this assumption is non-trivial due to memory fragmentation concerns
when allocating blocks of different sizes.
2. Tokens per block (block_size): Currently, we directly use
CacheConfig.block_size
for all layers. It can be extended to vary by KV
cache group, but within each KV cache group, all layers must share the same
block size.
3. Physical memory per token per layer: This property is decided by model
config. Currently we only support models that have the same physical memory
per token per layer for all layers. Can be relaxed with a simple extension,
but still need to keep physical memory per block the same for all groups.
4. Number of layers per group: Currently assumed the same for all layers.
Can be relaxed with a simple extension, but still need to keep physical
memory per block the same for all groups.
5. Attention type within groups: All layers in a group must share the same
attention type. One exception is that, when
--disable-hybrid-kv-cache-manager
is true, the single group for full
attention layers may also include attention layers using sliding window or
LLaMA 4 local attention. See unify_hybrid_kv_cache_specs
for more details.
6. Support for multiple attention types: The design for most components is
general to an arbitrary number of attention types. But
find_longest_cache_hit
only supports one attention type or two
types of full-attention plus exactly one another type. The general
implementation of this function is feasible but we don't know how to
implement it cleanly yet.
As we assume tokens per block, physical memory per token per layer, and number of layers per group are the same now, we can ensure that physical memory per block is the same for all groups.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The KVCacheSpec of each attention layer in the model |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
Returns: The generated KVCacheConfig
Source code in vllm/v1/core/kv_cache_utils.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
|
_get_kv_cache_config_uniform_type
¶
_get_kv_cache_config_uniform_type(
vllm_config: VllmConfig,
kv_cache_spec: dict[str, KVCacheSpec],
available_memory: int,
) -> KVCacheConfig
Generates the KV cache configuration for a model with one type of KV cache. Divide the available memory equally among all layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
Returns:
Type | Description |
---|---|
KVCacheConfig
|
The generated KVCacheConfig |
Source code in vllm/v1/core/kv_cache_utils.py
check_enough_kv_cache_memory
¶
check_enough_kv_cache_memory(
vllm_config: VllmConfig,
kv_cache_spec: dict[str, KVCacheSpec],
available_memory: int,
)
Checks whether available_memory
is enough for the KV cache to hold at
least one request with the model's max_model_len.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If there is not enough memory available for the KV cache. |
Source code in vllm/v1/core/kv_cache_utils.py
create_kv_cache_group_specs
¶
create_kv_cache_group_specs(
kv_cache_spec: dict[str, KVCacheSpec],
grouped_layer_names: list[list[str]],
) -> list[KVCacheGroupSpec]
Create KVCacheGroupSpec object for each kv cache group layer. The layers in the same group should share the same KVCacheSpec.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kv_cache_spec
|
dict[str, KVCacheSpec]
|
A mapping from each layer name to its corresponding KVCacheSpec. |
required |
grouped_layer_names
|
list[list[str]]
|
A list of kv cache groups, where each element is a list of layer names that belong to the same group and should share the same KVCacheSpec. |
required |
Returns: A list of KVCacheGroupSpec objects, one for each group.
Source code in vllm/v1/core/kv_cache_utils.py
estimate_max_model_len
¶
estimate_max_model_len(
vllm_config: VllmConfig,
kv_cache_spec: dict[str, KVCacheSpec],
available_memory: int,
) -> int
Estimates the maximum model length that can fit in the available memory using binary search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
Returns:
Type | Description |
---|---|
int
|
The estimated maximum model length that can fit in the available memory. |
Source code in vllm/v1/core/kv_cache_utils.py
generate_block_hash_extra_keys
¶
generate_block_hash_extra_keys(
request: Request,
start_token_idx: int,
end_token_idx: int,
start_mm_idx: int,
) -> tuple[Optional[tuple[Any, ...]], int]
Generate extra keys for the block hash. The extra keys can come from the multi-modal inputs and request specific metadata (e.g., LoRA ID).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
Request
|
The request object. |
required |
start_token_idx
|
int
|
The start token index of the block. |
required |
end_token_idx
|
int
|
The end token index of the block. |
required |
start_mm_idx
|
int
|
The start multi-modal index of the block. |
required |
Returns:
Type | Description |
---|---|
tuple[Optional[tuple[Any, ...]], int]
|
A tuple of extra keys and the next multi-modal index. |
Source code in vllm/v1/core/kv_cache_utils.py
get_kv_cache_config
¶
get_kv_cache_config(
vllm_config: VllmConfig,
kv_cache_spec: dict[str, KVCacheSpec],
available_memory: int,
) -> KVCacheConfig
Generates the KV cache configuration for a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
Returns:
Type | Description |
---|---|
KVCacheConfig
|
The generated KVCacheConfigs |
Source code in vllm/v1/core/kv_cache_utils.py
get_max_concurrency_for_kv_cache_config
¶
get_max_concurrency_for_kv_cache_config(
vllm_config: VllmConfig, kv_cache_config: KVCacheConfig
) -> float
Get the maximum concurrency for the given KV cache configuration.
Source code in vllm/v1/core/kv_cache_utils.py
get_num_blocks
¶
get_num_blocks(
vllm_config: VllmConfig,
num_layers: int,
available_memory: int,
page_size: int,
) -> int
Get the number of kv cache blocks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config
|
VllmConfig
|
The global VllmConfig |
required |
num_layers
|
int
|
The number of layers |
required |
available_memory
|
int
|
Memory available for KV cache in bytes. |
required |
page_size
|
int
|
The page size of the KV cache. |
required |
Source code in vllm/v1/core/kv_cache_utils.py
get_uniform_page_size
¶
get_uniform_page_size(
kv_cache_spec: dict[str, KVCacheSpec],
) -> int
Get the page size of the KV cache.
Source code in vllm/v1/core/kv_cache_utils.py
hash_block_tokens
¶
hash_block_tokens(
hash_function: Callable,
parent_block_hash: Optional[int],
curr_block_token_ids: Sequence[int],
extra_keys: Optional[tuple[Any, ...]] = None,
) -> BlockHash
Computes a hash value corresponding to the contents of a block and the contents of the preceding block(s). The hash value is used for prefix caching. We use LRU cache for this function to avoid recomputing hash values for the same block contents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parent_block_hash
|
Optional[int]
|
The hash of the parent block. None if this is the first block. |
required |
curr_block_token_ids
|
Sequence[int]
|
A list of token ids in the current block. The current block is assumed to be full. |
required |
extra_keys
|
Optional[tuple[Any, ...]]
|
Extra keys for the block. |
None
|
Returns:
Type | Description |
---|---|
BlockHash
|
The hash value of the block and the token ids in the block. |
BlockHash
|
The entire tuple is used as the hash key of the block. |
Source code in vllm/v1/core/kv_cache_utils.py
hash_request_tokens
¶
Computes hash values of a chain of blocks given a sequence of token IDs. The hash value is used for prefix caching.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_size
|
int
|
The size of each block. |
required |
request
|
Request
|
The request object. |
required |
Returns:
Type | Description |
---|---|
list[BlockHash]
|
The list of computed hash values. |
Source code in vllm/v1/core/kv_cache_utils.py
is_kv_cache_page_size_uniform
¶
is_kv_cache_page_size_uniform(
kv_cache_spec: dict[str, KVCacheSpec],
) -> bool
Whether all layers in the given KVCacheSpec have the same page size. Args: kv_cache_spec: The KVCacheSpec of each attention layer in the model
Returns:
Type | Description |
---|---|
bool
|
True if all layers have the same page size, False otherwise. |
Source code in vllm/v1/core/kv_cache_utils.py
is_kv_cache_type_uniform
¶
is_kv_cache_type_uniform(
kv_cache_spec: dict[str, KVCacheSpec],
) -> bool
Whether all layers in the given KVCacheSpec have the same type of KV cache.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
Returns:
Type | Description |
---|---|
bool
|
True if all layers have the same type, False otherwise. |
Source code in vllm/v1/core/kv_cache_utils.py
max_memory_usage_bytes
¶
max_memory_usage_bytes(
vllm_config: VllmConfig,
kv_cache_specs: Iterable[KVCacheSpec],
) -> int
Get the maximum memory usage in bytes for the given KV cache specs.
Source code in vllm/v1/core/kv_cache_utils.py
need_extra_keys
¶
Check whether the blocks allocated to this request need extra hash keys.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
Request
|
The request. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
Whether blocks allocated to this request need extra hash keys. |
Source code in vllm/v1/core/kv_cache_utils.py
unify_hybrid_kv_cache_specs
¶
unify_hybrid_kv_cache_specs(
kv_cache_spec: dict[str, KVCacheSpec],
)
This function tries to convert the KV cache specs to one type if the model is a hybrid model with multiple type of KV cache. It will convert all SlidingWindowSpec to FullAttentionSpec if both types are present.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kv_cache_spec
|
dict[str, KVCacheSpec]
|
The kv cache spec of each attention layer in the model |
required |
Source code in vllm/v1/core/kv_cache_utils.py
unify_kv_cache_configs
¶
unify_kv_cache_configs(
kv_cache_configs: list[KVCacheConfig],
)
Make the KV cache configurations for each worker consistent, so that all workers can be controlled by the same KVCacheManager. This function verifies that the layer group of each worker are the same, and changes the num_blocks of each worker to the smallest among all workers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kv_cache_configs
|
list[KVCacheConfig]
|
The KV cache configurations for each worker. Will be in-place modified to make them consistent. |
required |