vllm.v1.attention.backends.triton_attn
Attention layer with PagedAttention and Triton prefix prefill.
TritonAttentionBackend
¶
Bases: AttentionBackend
Source code in vllm/v1/attention/backends/triton_attn.py
get_builder_cls
staticmethod
¶
get_builder_cls() -> type[TritonAttentionMetadataBuilder]
get_impl_cls
staticmethod
¶
get_impl_cls() -> type[TritonAttentionImpl]
get_kv_cache_shape
staticmethod
¶
get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]
Source code in vllm/v1/attention/backends/triton_attn.py
get_metadata_cls
staticmethod
¶
get_metadata_cls() -> type[AttentionMetadata]
get_supported_head_sizes
staticmethod
¶
TritonAttentionImpl
¶
Bases: AttentionImpl
Source code in vllm/v1/attention/backends/triton_attn.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
force_prefill_decode_attn
instance-attribute
¶
force_prefill_decode_attn = (
VLLM_V1_USE_PREFILL_DECODE_ATTENTION
)
kv_sharing_target_layer_name
instance-attribute
¶
__init__
¶
__init__(
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = DECODER,
kv_sharing_target_layer_name: Optional[int] = None,
use_irope: bool = False,
) -> None
Source code in vllm/v1/attention/backends/triton_attn.py
forward
¶
forward(
layer: Module,
query: Tensor,
key: Tensor,
value: Tensor,
kv_cache: Tensor,
attn_metadata: FlashAttentionMetadata,
output: Optional[Tensor] = None,
output_scale: Optional[Tensor] = None,
) -> Tensor
Forward pass with FlashAttention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
Tensor
|
shape = [num_tokens, num_heads, head_size] |
required |
key
|
Tensor
|
shape = [num_tokens, num_kv_heads, head_size] |
required |
value
|
Tensor
|
shape = [num_tokens, num_kv_heads, head_size] |
required |
attn_metadata
|
FlashAttentionMetadata
|
Metadata for attention. |
required |
Returns: shape = [num_tokens, num_heads * head_size]
Source code in vllm/v1/attention/backends/triton_attn.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
TritonAttentionMetadata
dataclass
¶
Source code in vllm/v1/attention/backends/triton_attn.py
local_attn_metadata
class-attribute
instance-attribute
¶
local_attn_metadata: Optional[LocalAttentionMetadata] = None
prefix_scheduler_metadata
class-attribute
instance-attribute
¶
LocalAttentionMetadata
dataclass
¶
Source code in vllm/v1/attention/backends/triton_attn.py
__init__
¶
__init__(
num_actual_tokens: int,
max_query_len: int,
query_start_loc: Tensor,
max_seq_len: int,
seq_lens: Tensor,
block_table: Tensor,
slot_mapping: Tensor,
use_cascade: bool,
common_prefix_len: int,
cu_prefix_query_lens: Optional[Tensor],
prefix_kv_lens: Optional[Tensor],
suffix_kv_lens: Optional[Tensor],
scheduler_metadata: Optional[Tensor] = None,
prefix_scheduler_metadata: Optional[Tensor] = None,
local_attn_metadata: Optional[
LocalAttentionMetadata
] = None,
) -> None
TritonAttentionMetadataBuilder
¶
Bases: AttentionMetadataBuilder[TritonAttentionMetadata]
Source code in vllm/v1/attention/backends/triton_attn.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
__init__
¶
__init__(
runner: GPUModelRunner,
kv_cache_spec: AttentionSpec,
block_table: BlockTable,
)
Source code in vllm/v1/attention/backends/triton_attn.py
build
¶
build(
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
) -> TritonAttentionMetadata
Source code in vllm/v1/attention/backends/triton_attn.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
build_for_cudagraph_capture
¶
build_for_cudagraph_capture(
common_attn_metadata: CommonAttentionMetadata,
) -> TritonAttentionMetadata
Source code in vllm/v1/attention/backends/triton_attn.py
can_run_in_cudagraph
¶
can_run_in_cudagraph(
common_attn_metadata: CommonAttentionMetadata,
) -> bool