Skip to content

vllm.v1.worker.gpu_model_runner

logger module-attribute

logger = init_logger(__name__)

GPUModelRunner

Bases: LoRAModelRunnerMixin

Source code in vllm/v1/worker/gpu_model_runner.py
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
class GPUModelRunner(LoRAModelRunnerMixin):

    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        self.cache_config = vllm_config.cache_config
        self.compilation_config = vllm_config.compilation_config
        self.lora_config = vllm_config.lora_config
        self.load_config = vllm_config.load_config
        self.parallel_config = vllm_config.parallel_config
        self.scheduler_config = vllm_config.scheduler_config
        self.speculative_config = vllm_config.speculative_config
        self.prompt_adapter_config = vllm_config.prompt_adapter_config
        self.observability_config = vllm_config.observability_config

        from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
        set_cpu_offload_max_bytes(
            int(self.cache_config.cpu_offload_gb * 1024**3))

        model_config = self.model_config
        cache_config = self.cache_config
        scheduler_config = self.scheduler_config
        parallel_config = self.parallel_config
        self.device = device
        self.pin_memory = is_pin_memory_available()
        self.dtype = self.model_config.dtype
        if cache_config.cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        else:
            self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
                cache_config.cache_dtype]

        self.is_multimodal_model = model_config.is_multimodal_model
        self.is_pooling_model = model_config.pooler_config is not None
        self.max_model_len = model_config.max_model_len
        self.max_num_tokens = scheduler_config.max_num_batched_tokens
        self.max_num_reqs = scheduler_config.max_num_seqs

        # Model-related.
        self.num_query_heads = model_config.get_num_attention_heads(
            parallel_config)
        self.hidden_size = model_config.get_hidden_size()
        self.attention_chunk_size = model_config.attention_chunk_size

        self.cascade_attn_enabled = not self.model_config.disable_cascade_attn

        # Multi-modal data support
        self.mm_registry = MULTIMODAL_REGISTRY
        self.uses_mrope = model_config.uses_mrope

        encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
            model_config=model_config,
            scheduler_config=scheduler_config,
            mm_registry=self.mm_registry,
        )
        self.max_num_encoder_input_tokens = encoder_compute_budget
        self.encoder_cache_size = encoder_cache_size

        # Sampler
        self.sampler = Sampler()

        self.eplb_state: Optional[EplbState] = None
        """
        State of the expert parallelism load balancer.

        Will be lazily initialized when the model is loaded.
        """

        # Lazy initializations
        # self.model: nn.Module  # Set after load_model
        # Initialize in initialize_kv_cache
        self.kv_caches: list[torch.Tensor] = []
        self.attn_metadata_builders: list[AttentionMetadataBuilder] = []
        self.attn_backends: list[type[AttentionBackend]] = []
        # self.kv_cache_config: KVCacheConfig

        # req_id -> (input_id -> encoder_output)
        self.encoder_cache: dict[str, dict[int, torch.Tensor]] = {}

        self.use_aux_hidden_state_outputs = False
        # Set up speculative decoding.
        # NOTE(Jiayi): currently we put the entire draft model on
        # the last PP rank. This is not ideal if there are many
        # layers in the draft model.
        if self.speculative_config and get_pp_group().is_last_rank:
            if self.speculative_config.method == "ngram":
                self.drafter = NgramProposer(self.vllm_config)
            elif self.speculative_config.use_eagle():
                self.drafter = EagleProposer(self.vllm_config, self.device,
                                             self)  # type: ignore
                if self.speculative_config.method == "eagle3":
                    self.use_aux_hidden_state_outputs = True
            elif self.speculative_config.method == "medusa":
                self.drafter = MedusaProposer(
                    vllm_config=self.vllm_config,
                    device=self.device)  # type: ignore
            else:
                raise ValueError("Unknown speculative decoding method: "
                                 f"{self.speculative_config.method}")
            self.rejection_sampler = RejectionSampler()

        # Request states.
        self.requests: dict[str, CachedRequestState] = {}

        # Input Batch
        # NOTE(Chen): Ideally, we should initialize the input batch inside
        # `initialize_kv_cache` based on the kv cache config. However, as in
        # https://github.com/vllm-project/vllm/pull/18298, due to some unknown
        # reasons, we have to initialize the input batch before `load_model`,
        # quantization + weight offloading will fail otherwise. As a temporary
        # solution, we initialize the input batch here, and re-initialize it
        # in `initialize_kv_cache` if the block_sizes here is different from
        # the block_sizes in the kv cache config.
        self.input_batch = InputBatch(
            max_num_reqs=self.max_num_reqs,
            max_model_len=self.max_model_len,
            max_num_batched_tokens=self.max_num_tokens,
            device=self.device,
            pin_memory=self.pin_memory,
            vocab_size=self.model_config.get_vocab_size(),
            block_sizes=[self.cache_config.block_size],
            is_spec_decode=bool(self.vllm_config.speculative_config),
        )

        self.use_cuda_graph = (
            self.vllm_config.compilation_config.level
            == CompilationLevel.PIECEWISE
            and self.vllm_config.compilation_config.use_cudagraph
            and not self.model_config.enforce_eager)
        # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
        # The convention is different.
        # self.cudagraph_batch_sizes sorts in ascending order.
        # The batch sizes in the config are in descending order.
        self.cudagraph_batch_sizes = list(
            reversed(self.compilation_config.cudagraph_capture_sizes))

        self.full_cuda_graph = self.compilation_config.full_cuda_graph

        # Cache the device properties.
        self._init_device_properties()

        # Persistent buffers for CUDA graphs.
        self.input_ids = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int32,
                                     device=self.device)
        self.positions = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int64,
                                     device=self.device)
        self.query_start_loc = torch.zeros(self.max_num_reqs + 1,
                                           dtype=torch.int32,
                                           device=self.device)
        self.seq_lens = torch.zeros(self.max_num_reqs,
                                    dtype=torch.int32,
                                    device=self.device)
        self.slot_mapping = torch.zeros(self.max_num_tokens,
                                        dtype=torch.int64,
                                        device=self.device)

        # None in the first PP rank. The rest are set after load_model.
        self.intermediate_tensors: Optional[IntermediateTensors] = None

        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            # NOTE: `mrope_positions` is implemented with one additional dummy
            # position on purpose to make it non-contiguous so that it can work
            # with torch compile.
            # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923

            # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
            # the modality of inputs. For text-only inputs, each dimension has
            # identical position IDs, making M-RoPE functionally equivalent to
            # 1D-RoPE.
            # See page 5 of https://arxiv.org/abs/2409.12191
            self.mrope_positions = torch.zeros((3, self.max_num_tokens + 1),
                                               dtype=torch.int64,
                                               device=self.device)
            self.mrope_positions_cpu = torch.zeros(
                (3, self.max_num_tokens + 1),
                dtype=torch.int64,
                device="cpu",
                pin_memory=self.pin_memory)
            self.mrope_positions_np = self.mrope_positions_cpu.numpy()

        # Only relevant for models using ALiBi (e.g, MPT)
        self.use_alibi = check_use_alibi(model_config)

        self.inputs_embeds = torch.zeros(
            (self.max_num_tokens, self.hidden_size),
            dtype=self.dtype,
            device=self.device)

        # OPTIMIZATION: Cache the tensors rather than creating them every step.
        # Keep in int64 to avoid overflow with long context
        self.arange_np = np.arange(max(self.max_num_reqs + 1,
                                       self.max_model_len,
                                       self.max_num_tokens),
                                   dtype=np.int64)
        # NOTE(woosuk): These tensors are "stateless", i.e., they are literally
        # a faster version of creating a new tensor every time. Thus, we should
        # not make any assumptions about the values in these tensors.
        self.input_ids_cpu = torch.zeros(self.max_num_tokens,
                                         dtype=torch.int32,
                                         device="cpu",
                                         pin_memory=self.pin_memory)
        self.positions_cpu = torch.zeros(self.max_num_tokens,
                                         dtype=torch.int64,
                                         device="cpu",
                                         pin_memory=self.pin_memory)
        self.positions_np = self.positions_cpu.numpy()
        self.query_start_loc_cpu = torch.zeros(self.max_num_reqs + 1,
                                               dtype=torch.int32,
                                               device="cpu",
                                               pin_memory=self.pin_memory)
        self.query_start_loc_np = self.query_start_loc_cpu.numpy()
        self.seq_lens_cpu = torch.zeros(self.max_num_reqs,
                                        dtype=torch.int32,
                                        device="cpu",
                                        pin_memory=self.pin_memory)
        self.seq_lens_np = self.seq_lens_cpu.numpy()

        # Layer pairings for cross-layer KV sharing.
        # If an Attention layer `layer_name` is in the keys of this dict, it
        # means this layer will perform attention using the keys and values
        # from the KV cache of `shared_kv_cache_layers[layer_name]`.
        self.shared_kv_cache_layers: dict[str, str] = {}

    def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> None:
        """
        Update the order of requests in the batch based on the attention
        backend's needs. For example, some attention backends (namely MLA) may
        want to separate requests based on if the attention computation will be
        compute-bound or memory-bound.

        Args:
            scheduler_output: The scheduler output.
        """
        self.attn_metadata_builders[0].reorder_batch(self.input_batch,
                                                     scheduler_output)

        # For models with multiple KV cache groups, the groups should agree on
        # the same order of requests. We ensure this by only allowing the first
        # group to reorder the batch and asserting that all other groups do not
        # reorder the batch.
        # TODO(tdoublep): make this more flexible so that any group can
        # re-order the batch (not only the first).
        # TODO(tdoublep): verify this during engine init instead of at runtime
        for i in range(1, len(self.kv_cache_config.kv_cache_groups)):
            batch_reordered = self.attn_metadata_builders[i].reorder_batch(
                self.input_batch, scheduler_output)
            assert not batch_reordered

    # Note: used for model runner override.
    def _init_device_properties(self) -> None:
        """Initialize attributes from torch.cuda.get_device_properties
        """
        self.device_properties = torch.cuda.get_device_properties(self.device)
        self.num_sms = self.device_properties.multi_processor_count

    # Note: used for model runner override.
    def _sync_device(self) -> None:
        torch.cuda.synchronize()

    def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
        """Update the cached states and the persistent batch with the scheduler
        output.

        The updated states are used by the `_prepare_inputs` function to create
        the input GPU tensors for the model.

        The SamplingMetadata is updated and copied to the GPU if there is a
        new/resumed/paused/finished request in the batch.
        """
        # Remove finished requests from the cached states.
        for req_id in scheduler_output.finished_req_ids:
            self.requests.pop(req_id, None)
            self.encoder_cache.pop(req_id, None)
        # Remove the finished requests from the persistent batch.
        # NOTE(woosuk): There could be an edge case where finished_req_ids and
        # scheduled_req_ids overlap. This happens when a request is aborted and
        # then resubmitted with the same ID. In this case, we treat them as two
        # distinct requests - clearing the cached states for the first request
        # and handling the second as a new request.
        for req_id in scheduler_output.finished_req_ids:
            self.input_batch.remove_request(req_id)

        # Free the cached encoder outputs.
        for req_id, input_id in scheduler_output.free_encoder_input_ids:
            encoder_outputs = self.encoder_cache.get(req_id)
            if encoder_outputs is not None:
                encoder_outputs.pop(input_id, None)
                if not encoder_outputs:
                    self.encoder_cache.pop(req_id, None)

        # Remove the unscheduled requests from the persistent batch.
        # NOTE(woosuk): The unscheduled requests are either preempted requests
        # or running requests that are not scheduled in this step. We remove
        # them from the persistent batch but keep their cached states since
        # they will be scheduled again sometime in the future.
        scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
        cached_req_ids = self.input_batch.req_id_to_index.keys()
        unscheduled_req_ids = cached_req_ids - scheduled_req_ids
        # NOTE(woosuk): The persistent batch optimization assumes that
        # consecutive batches contain mostly the same requests. If batches
        # have low request overlap (e.g., alternating between two distinct
        # sets of requests), this optimization becomes very inefficient.
        for req_id in unscheduled_req_ids:
            self.input_batch.remove_request(req_id)

        req_ids_to_add: list[str] = []
        # Add new requests to the cached states.
        for new_req_data in scheduler_output.scheduled_new_reqs:
            req_id = new_req_data.req_id
            sampling_params = new_req_data.sampling_params
            pooling_params = new_req_data.pooling_params
            if sampling_params and \
                sampling_params.sampling_type == SamplingType.RANDOM_SEED:
                generator = torch.Generator(device=self.device)
                generator.manual_seed(sampling_params.seed)
            else:
                generator = None

            self.requests[req_id] = CachedRequestState(
                req_id=req_id,
                prompt_token_ids=new_req_data.prompt_token_ids,
                mm_inputs=new_req_data.mm_inputs,
                mm_positions=new_req_data.mm_positions,
                sampling_params=sampling_params,
                pooling_params=pooling_params,
                generator=generator,
                block_ids=new_req_data.block_ids,
                num_computed_tokens=new_req_data.num_computed_tokens,
                output_token_ids=[],
                lora_request=new_req_data.lora_request,
            )

            # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
            if self.uses_mrope:
                image_grid_thw = []
                video_grid_thw = []
                second_per_grid_ts = []
                audio_feature_lengths = []
                use_audio_in_video = False
                for mm_input in self.requests[req_id].mm_inputs:
                    if mm_input.get("image_grid_thw") is not None:
                        image_grid_thw.extend(
                            mm_input["image_grid_thw"].tolist())
                    if mm_input.get("video_grid_thw") is not None:
                        video_grid_thw.extend(
                            mm_input["video_grid_thw"].tolist())
                    if mm_input.get("second_per_grid_ts") is not None:
                        second_per_grid_ts.extend(
                            mm_input["second_per_grid_ts"])
                    if mm_input.get("audio_feature_lengths") is not None:
                        audio_feature_lengths.extend(
                            mm_input["audio_feature_lengths"])
                    if mm_input.get("use_audio_in_video") is True:
                        use_audio_in_video = True

                hf_config = self.model_config.hf_config

                self.requests[req_id].mrope_positions, \
                    self.requests[req_id].mrope_position_delta = \
                    MRotaryEmbedding.get_input_positions_tensor(
                        self.requests[req_id].prompt_token_ids,
                        hf_config=hf_config,
                        image_grid_thw=image_grid_thw,
                        video_grid_thw=video_grid_thw,
                        second_per_grid_ts=second_per_grid_ts,
                        audio_feature_lengths=audio_feature_lengths,
                        use_audio_in_video=use_audio_in_video,
                    )

            req_ids_to_add.append(req_id)

        # Update the states of the running/resumed requests.
        is_last_rank = get_pp_group().is_last_rank
        req_data = scheduler_output.scheduled_cached_reqs
        for i, req_id in enumerate(req_data.req_ids):
            req_state = self.requests[req_id]
            num_computed_tokens = req_data.num_computed_tokens[i]
            new_block_ids = req_data.new_block_ids[i]
            resumed_from_preemption = req_data.resumed_from_preemption[i]

            # Update the cached states.
            req_state.num_computed_tokens = num_computed_tokens

            if not is_last_rank:
                # When using PP, the scheduler sends the sampled tokens back,
                # because there's no direct communication between the first-
                # stage worker and the last-stage worker.
                new_token_ids = req_data.new_token_ids[i]
                # Add the sampled token(s) from the previous step (if any).
                # This doesn't include "unverified" tokens like spec tokens.
                num_new_tokens = (num_computed_tokens + len(new_token_ids) -
                                  req_state.num_tokens)
                if num_new_tokens == 1:
                    # Avoid slicing list in most common case.
                    req_state.output_token_ids.append(new_token_ids[-1])
                elif num_new_tokens > 0:
                    req_state.output_token_ids.extend(
                        new_token_ids[-num_new_tokens:])

            # Update the block IDs.
            if not resumed_from_preemption:
                # Append the new blocks to the existing block IDs.
                for block_ids, new_ids in zip(req_state.block_ids,
                                              new_block_ids):
                    block_ids.extend(new_ids)
            else:
                # The request is resumed from preemption.
                # Replace the existing block IDs with the new ones.
                req_state.block_ids = new_block_ids

            req_index = self.input_batch.req_id_to_index.get(req_id)
            if req_index is None:
                # The request is not in the persistent batch.
                # The request was either preempted and resumed later, or was not
                # scheduled in the previous step and needs to be added again.
                req_ids_to_add.append(req_id)
                continue

            # Update the persistent batch.
            self.input_batch.num_computed_tokens_cpu[req_index] = (
                num_computed_tokens)
            self.input_batch.block_table.append_row(new_block_ids, req_index)

            # For the last rank, we don't need to update the token_ids_cpu
            # because the sampled tokens are already cached.
            if not is_last_rank:
                # Add new_token_ids to token_ids_cpu.
                start_token_index = num_computed_tokens
                end_token_index = num_computed_tokens + len(new_token_ids)
                self.input_batch.token_ids_cpu[
                    req_index,
                    start_token_index:end_token_index] = new_token_ids
                self.input_batch.num_tokens_no_spec[
                    req_index] = end_token_index
                # Add spec_token_ids to token_ids_cpu.
                spec_token_ids = (
                    scheduler_output.scheduled_spec_decode_tokens.get(
                        req_id, ()))
                if spec_token_ids:
                    start_index = end_token_index
                    end_token_index += len(spec_token_ids)
                    self.input_batch.token_ids_cpu[
                        req_index,
                        start_index:end_token_index] = spec_token_ids
                # NOTE(woosuk): `num_tokens` here may include spec tokens.
                self.input_batch.num_tokens[req_index] = end_token_index

        # Add the new or resumed requests to the persistent batch.
        # The smaller empty indices are filled first.
        for req_id in req_ids_to_add:
            req_state = self.requests[req_id]
            self.input_batch.add_request(req_state)

        # Condense the batched states if there are gaps left by removed requests
        self.input_batch.condense()
        # Allow attention backend to reorder the batch, potentially
        self._may_reorder_batch(scheduler_output)
        # Refresh batch metadata with any pending updates.
        self.input_batch.refresh_metadata()

    def _get_cumsum_and_arange(
        self,
        num_tokens: np.ndarray,
        cumsum_dtype: Optional[np.dtype] = None,
    ) -> tuple[np.ndarray, np.ndarray]:
        """Get the cumulative sum and batched arange of the given array.
        # E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
        # Equivalent to but faster than:
        # np.concatenate([np.arange(n) for n in num_tokens])
        """
        # Step 1. [2, 5, 3] -> [2, 7, 10]
        cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
        total_num_tokens = cu_num_tokens[-1]
        # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
        cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
        # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        arange = self.arange_np[:total_num_tokens] - cumsums_offsets

        return cu_num_tokens, arange

    def _prepare_inputs(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> tuple[dict[str, Any], bool, torch.Tensor,
               Optional[SpecDecodeMetadata], np.ndarray]:
        """
        :return: tuple[
            attn_metadata: layer-to-attention_metadata mapping,
            attention_cuda_graphs: whether attention can run in cudagraph
            logits_indices, spec_decode_metadata
        ]
        """
        total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        assert total_num_scheduled_tokens > 0
        num_reqs = self.input_batch.num_reqs
        assert num_reqs > 0

        # OPTIMIZATION: Start copying the block table first.
        # This way, we can overlap the copy with the following CPU operations.
        self.input_batch.block_table.commit(num_reqs)

        # Get the number of scheduled tokens for each request.
        req_ids = self.input_batch.req_ids
        tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
        num_scheduled_tokens = np.array(tokens, dtype=np.int32)
        max_num_scheduled_tokens = max(tokens)

        # Get request indices.
        # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
        req_indices = np.repeat(self.arange_np[:num_reqs],
                                num_scheduled_tokens)

        # cu_num_tokens: [2, 5, 3] -> [2, 7, 10]
        # arange: [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        cu_num_tokens, arange = self._get_cumsum_and_arange(
            num_scheduled_tokens)

        # Get positions.
        positions_np = self.positions_np[:total_num_scheduled_tokens]
        np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
               arange,
               out=positions_np)

        # Calculate M-RoPE positions.
        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            self._calc_mrope_positions(scheduler_output)

        # Get token indices.
        # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
        # where M is the max_model_len.
        token_indices = (positions_np +
                         req_indices * self.input_batch.token_ids_cpu.shape[1])

        # NOTE(woosuk): We use torch.index_select instead of np.take here
        # because torch.index_select is much faster than np.take for large
        # tensors.
        torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
                           0,
                           torch.from_numpy(token_indices),
                           out=self.input_ids_cpu[:total_num_scheduled_tokens])

        # Calculate the slot mapping for each KV cache group.
        for kv_cache_group_id, kv_cache_group_spec in enumerate(
                self.kv_cache_config.kv_cache_groups):
            block_size = kv_cache_group_spec.kv_cache_spec.block_size
            block_table: BlockTable = self.input_batch.block_table[
                kv_cache_group_id]
            # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
            # -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1]
            # where K is the max_num_blocks_per_req and the block size is 2.
            # NOTE(woosuk): We can't simply use `token_indices // block_size`
            # here because M (max_model_len) is not necessarily divisible by
            # block_size.
            block_table_indices = (
                req_indices * block_table.max_num_blocks_per_req +
                positions_np // block_size)
            block_table_cpu = block_table.get_cpu_tensor()
            block_numbers = block_table_cpu.flatten(
            )[block_table_indices].numpy()
            block_offsets = positions_np % block_size
            np.add(
                block_numbers * block_size,
                block_offsets,
                out=block_table.slot_mapping_np[:total_num_scheduled_tokens])

        # Prepare the attention metadata.
        self.query_start_loc_np[0] = 0
        self.query_start_loc_np[1:num_reqs + 1] = cu_num_tokens

        self.seq_lens_np[:num_reqs] = (
            self.input_batch.num_computed_tokens_cpu[:num_reqs] +
            num_scheduled_tokens)

        # Copy the tensors to the GPU.
        self.input_ids[:total_num_scheduled_tokens].copy_(
            self.input_ids_cpu[:total_num_scheduled_tokens], non_blocking=True)
        if self.uses_mrope:
            # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
            self.mrope_positions[:, :total_num_scheduled_tokens].copy_(
                self.mrope_positions_cpu[:, :total_num_scheduled_tokens],
                non_blocking=True)
        else:
            # Common case (1D positions)
            self.positions[:total_num_scheduled_tokens].copy_(
                self.positions_cpu[:total_num_scheduled_tokens],
                non_blocking=True)

        self.query_start_loc[:num_reqs + 1].copy_(
            self.query_start_loc_cpu[:num_reqs + 1], non_blocking=True)
        self.seq_lens[:num_reqs].copy_(self.seq_lens_cpu[:num_reqs],
                                       non_blocking=True)

        # Fill unused with -1. Needed for reshape_and_cache
        self.seq_lens[num_reqs:].fill_(0)
        # Note: pad query_start_loc to be non-decreasing, as kernels
        # like FlashAttention requires that
        self.query_start_loc[num_reqs + 1:].fill_(
            self.query_start_loc_cpu[num_reqs].item())

        query_start_loc = self.query_start_loc[:num_reqs + 1]
        seq_lens = self.seq_lens[:num_reqs]

        common_attn_metadata = CommonAttentionMetadata(
            query_start_loc=query_start_loc,
            seq_lens=seq_lens,
            num_reqs=num_reqs,
            num_actual_tokens=total_num_scheduled_tokens,
            max_query_len=max_num_scheduled_tokens,
        )

        attn_metadata: dict[str, Any] = {}
        # Prepare the attention metadata for each KV cache group and make layers
        # in the same group share the same metadata.
        for kv_cache_group_id, kv_cache_group_spec in enumerate(
                self.kv_cache_config.kv_cache_groups):

            # Prepare for cascade attention if enabled & beneficial.
            common_prefix_len = 0
            builder = self.attn_metadata_builders[kv_cache_group_id]
            if self.cascade_attn_enabled:
                common_prefix_len = self._compute_cascade_attn_prefix_len(
                    num_scheduled_tokens,
                    scheduler_output.
                    num_common_prefix_blocks[kv_cache_group_id],
                    kv_cache_group_spec.kv_cache_spec,
                    builder,
                )

            attn_metadata_i = (builder.build(
                common_prefix_len=common_prefix_len,
                common_attn_metadata=common_attn_metadata,
            ))

            for layer_name in kv_cache_group_spec.layer_names:
                attn_metadata[layer_name] = attn_metadata_i

        attention_cuda_graphs = all(
            b.can_run_in_cudagraph(common_attn_metadata)
            for b in self.attn_metadata_builders)

        use_spec_decode = len(
            scheduler_output.scheduled_spec_decode_tokens) > 0
        if not use_spec_decode:
            # NOTE(woosuk): Due to chunked prefills, the batch may contain
            # partial requests. While we should not sample any token
            # from these partial requests, we do so for simplicity.
            # We will ignore the sampled tokens from the partial requests.
            # TODO: Support prompt logprobs.
            logits_indices = query_start_loc[1:] - 1
            spec_decode_metadata = None
        else:
            # Get the number of draft tokens for each request.
            # Iterate over the dictionary rather than all requests since not all
            # requests have draft tokens.
            num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
            for req_id, draft_token_ids in (
                    scheduler_output.scheduled_spec_decode_tokens.items()):
                req_idx = self.input_batch.req_id_to_index[req_id]
                num_draft_tokens[req_idx] = len(draft_token_ids)

            spec_decode_metadata = self._calc_spec_decode_metadata(
                num_draft_tokens, cu_num_tokens)
            logits_indices = spec_decode_metadata.logits_indices

        # Hot-Swap lora model
        if self.lora_config:
            self.set_active_loras(self.input_batch, num_scheduled_tokens)

        return (attn_metadata, attention_cuda_graphs, logits_indices,
                spec_decode_metadata, num_scheduled_tokens)

    def _compute_cascade_attn_prefix_len(
        self,
        num_scheduled_tokens: np.ndarray,
        num_common_prefix_blocks: int,
        kv_cache_spec: KVCacheSpec,
        attn_metadata_builder: AttentionMetadataBuilder,
    ) -> int:
        """Compute the length of the common prefix for cascade attention.

        NOTE(woosuk): The common prefix length returned by this function
        represents the length used specifically for cascade attention, not the
        actual number of tokens shared between requests. When cascade attention
        is disabled (use_cascade=False), this function returns 0 even if
        requests share common tokens. Additionally, the common prefix length is
        truncated to a multiple of the block size and may be further truncated
        due to implementation details explained below.

        Args:
            num_scheduled_tokens: Number of tokens scheduled per request.
            num_common_prefix_blocks: Number of shared KV cache blocks.

        Returns:
            int: Length of common prefix in tokens.
        """
        common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
        if common_prefix_len == 0:
            # Common case.
            return 0

        # NOTE(woosuk): Cascade attention uses two attention kernels: one
        # for the common prefix and the other for the rest. For the first
        # kernel, we concatenate all the query tokens (possibly from
        # different requests) and treat them as if they are from the same
        # request. Then, we use bi-directional attention to process the
        # common prefix in the KV cache. Importantly, this means that the
        # first kernel does not do any masking.

        # Consider the following example:
        # Request 1's input query: [D, E, X]
        # Request 1's kv cache: [A, B, C, D, E, X]
        # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
        # Request 2's input query: [E, Y]
        # Request 2's kv cache: [A, B, C, D, E, Y]
        # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])

        # If we use [A, B, C, D, E] as the common prefix, then the
        # first kernel will compute the bi-directional attention between
        # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
        # However, this is wrong because D in Request 1 should not attend to
        # E in the common prefix (i.e., we need masking).
        # To avoid this, [A, B, C, D] should be the common prefix.
        # That is, the common prefix should be capped by the minimum
        # num_computed_tokens among the requests, and plus one to include
        # the first token of the query.

        # In practice, we use [A, B, C] as the common prefix, instead of
        # [A, B, C, D] (i.e., the common prefix is capped by the minimum
        # num_computed_tokens, without plus one).
        # This is because of an implementation detail: We want to always
        # use two kernels for cascade attention. Let's imagine:
        # Request 3's input query: [D]
        # Request 3's kv cache: [A, B, C, D]
        # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
        # If we use [A, B, C, D] as the common prefix for Request 1-3,
        # then Request 3 will be processed only by the first kernel,
        # and the second kernel will get an empty input. While this is not
        # a fundamental problem, our current implementation does not support
        # this case.
        num_reqs = len(num_scheduled_tokens)
        common_prefix_len = min(
            common_prefix_len,
            self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
        # common_prefix_len should be a multiple of the block size.
        common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
                             kv_cache_spec.block_size)
        use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
                              (isinstance(kv_cache_spec, FullAttentionSpec)
                               and kv_cache_spec.sliding_window is not None))
        assert isinstance(kv_cache_spec, AttentionSpec)
        use_cascade = attn_metadata_builder.use_cascade_attention(
            common_prefix_len=common_prefix_len,
            query_lens=num_scheduled_tokens,
            num_query_heads=self.num_query_heads,
            num_kv_heads=kv_cache_spec.num_kv_heads,
            use_alibi=self.use_alibi,
            use_sliding_window=use_sliding_window,
            num_sms=self.num_sms,
        )
        return common_prefix_len if use_cascade else 0

    def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
        mrope_pos_ptr = 0
        for index, req_id in enumerate(self.input_batch.req_ids):
            req = self.requests[req_id]
            assert req.mrope_positions is not None

            num_computed_tokens = \
                self.input_batch.num_computed_tokens_cpu[index]
            num_scheduled_tokens = \
                scheduler_output.num_scheduled_tokens[req_id]
            num_prompt_tokens = len(req.prompt_token_ids)

            if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
                prompt_part_len = max(0,
                                      num_prompt_tokens - num_computed_tokens)
                completion_part_len = max(
                    0, num_scheduled_tokens - prompt_part_len)
            else:
                prompt_part_len = num_scheduled_tokens
                completion_part_len = 0

            assert num_scheduled_tokens == prompt_part_len + completion_part_len

            if prompt_part_len > 0:
                # prompt's mrope_positions are pre-computed
                dst_start = mrope_pos_ptr
                dst_end = mrope_pos_ptr + prompt_part_len
                src_start = num_computed_tokens
                src_end = num_computed_tokens + prompt_part_len

                self.mrope_positions_cpu[:, dst_start:dst_end] = \
                    req.mrope_positions[:,src_start:src_end]

                mrope_pos_ptr += prompt_part_len

            if completion_part_len > 0:
                # compute completion's mrope_positions on-the-fly
                dst_start = mrope_pos_ptr
                dst_end = mrope_pos_ptr + completion_part_len

                MRotaryEmbedding.get_next_input_positions_tensor(
                    out=self.mrope_positions_np,
                    out_offset=dst_start,
                    mrope_position_delta=req.mrope_position_delta,
                    context_len=num_computed_tokens + prompt_part_len,
                    num_new_tokens=completion_part_len,
                )

                mrope_pos_ptr += completion_part_len

    def _calc_spec_decode_metadata(
        self,
        num_draft_tokens: np.ndarray,
        cu_num_scheduled_tokens: np.ndarray,
    ) -> SpecDecodeMetadata:
        # Inputs:
        # cu_num_scheduled_tokens:  [  4, 104, 107, 207, 209]
        # num_draft_tokens:         [  3,   0,   2,   0,   1]
        # Outputs:
        # cu_num_draft_tokens:      [  3,   3,   5,   5,   6]
        # logits_indices:           [  0,   1,   2,   3, 103, 104, 105, 106,
        #                            206, 207, 208]
        # target_logits_indices:    [  0,   1,   2,   5,   6,   9]
        # bonus_logits_indices:     [  3,   4,   7,   8,  10]

        # Compute the logits indices.
        # [4, 1, 3, 1, 2]
        num_sampled_tokens = num_draft_tokens + 1

        # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
        # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
        cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
            num_sampled_tokens, cumsum_dtype=np.int32)
        # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
        logits_indices = np.repeat(
            cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
        # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
        logits_indices += arange

        # Compute the bonus logits indices.
        bonus_logits_indices = cu_num_sampled_tokens - 1

        # Compute the draft logits indices.
        # cu_num_draft_tokens: [3, 3, 5, 5, 6]
        # arange: [0, 1, 2, 0, 1, 0]
        cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
            num_draft_tokens, cumsum_dtype=np.int32)
        # [0, 0, 0, 5, 5, 9]
        target_logits_indices = np.repeat(
            cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
        # [0, 1, 2, 5, 6, 9]
        target_logits_indices += arange

        # TODO: Optimize the CPU -> GPU copy.
        cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
            self.device, non_blocking=True)
        logits_indices = torch.from_numpy(logits_indices).to(self.device,
                                                             non_blocking=True)
        target_logits_indices = torch.from_numpy(target_logits_indices).to(
            self.device, non_blocking=True)
        bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
            self.device, non_blocking=True)

        # Compute the draft token ids.
        # draft_token_indices:      [  1,   2,   3, 105, 106, 208]
        draft_token_ids = self.input_ids[logits_indices]
        draft_token_ids = draft_token_ids[target_logits_indices + 1]

        metadata = SpecDecodeMetadata(
            draft_token_ids=draft_token_ids,
            num_draft_tokens=num_draft_tokens.tolist(),
            cu_num_draft_tokens=cu_num_draft_tokens,
            target_logits_indices=target_logits_indices,
            bonus_logits_indices=bonus_logits_indices,
            logits_indices=logits_indices,
        )
        return metadata

    def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
        scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
        if not scheduled_encoder_inputs:
            return

        # Batch the multi-modal inputs.
        mm_inputs = list[MultiModalKwargs]()
        req_ids_pos = list[tuple[str, int, PlaceholderRange]]()
        for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
            req_state = self.requests[req_id]

            for mm_input_id in encoder_input_ids:
                mm_inputs.append(req_state.mm_inputs[mm_input_id])
                req_ids_pos.append(
                    (req_id, mm_input_id, req_state.mm_positions[mm_input_id]))

        # Batch mm inputs as much as we can: if a request in the batch has
        # multiple modalities or a different modality than the previous one,
        # we process it separately to preserve item order.
        # FIXME(ywang96): This is a hacky way to deal with multiple modalities
        # in the same batch while still being able to benefit from batching
        # multimodal inputs. The proper solution should be reordering the
        # encoder outputs.
        grouped_mm_inputs_list = group_mm_inputs_by_modality(mm_inputs)

        encoder_outputs = []
        for grouped_mm_inputs in grouped_mm_inputs_list:
            batched_mm_inputs = MultiModalKwargs.batch(
                grouped_mm_inputs, pin_memory=self.pin_memory)
            batched_mm_inputs = MultiModalKwargs.as_kwargs(
                batched_mm_inputs,
                device=self.device,
            )

            # Run the encoder.
            # `curr_group_outputs` is either of the following:
            # 1. A tensor of shape (num_items, feature_size, hidden_size)
            # in case feature_size is fixed across all multimodal items.
            # 2. A list or tuple (length: num_items) of tensors, each of shape
            # (feature_size, hidden_size) in case the feature size is dynamic
            # depending on the input multimodal items.
            curr_group_outputs = self.model.get_multimodal_embeddings(
                **batched_mm_inputs)

            sanity_check_mm_encoder_outputs(
                curr_group_outputs,
                expected_num_items=len(grouped_mm_inputs),
            )

            for output in curr_group_outputs:
                encoder_outputs.append(output)

        # Cache the encoder outputs.
        for (req_id, input_id, pos_info), output in zip(
                req_ids_pos,
                encoder_outputs,
        ):
            if req_id not in self.encoder_cache:
                self.encoder_cache[req_id] = {}

            self.encoder_cache[req_id][input_id] = scatter_mm_placeholders(
                output,
                is_embed=pos_info.is_embed,
            )

    def _gather_mm_embeddings(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> list[torch.Tensor]:
        mm_embeds: list[torch.Tensor] = []
        for req_id in self.input_batch.req_ids:
            num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
                req_id]
            req_state = self.requests[req_id]
            num_computed_tokens = req_state.num_computed_tokens
            mm_positions = req_state.mm_positions
            for i, pos_info in enumerate(mm_positions):
                start_pos = pos_info.offset
                num_encoder_tokens = pos_info.length

                # The encoder output is needed if the two ranges overlap:
                # [num_computed_tokens,
                #  num_computed_tokens + num_scheduled_tokens) and
                # [start_pos, start_pos + num_encoder_tokens)
                if start_pos >= num_computed_tokens + num_scheduled_tokens:
                    # The encoder output is not needed in this step.
                    break
                if start_pos + num_encoder_tokens <= num_computed_tokens:
                    # The encoder output is already processed and stored
                    # in the decoder's KV cache.
                    continue

                start_idx = max(num_computed_tokens - start_pos, 0)
                end_idx = min(
                    num_computed_tokens - start_pos + num_scheduled_tokens,
                    num_encoder_tokens)
                assert start_idx < end_idx
                assert req_id in self.encoder_cache
                assert i in self.encoder_cache[req_id]
                encoder_output = self.encoder_cache[req_id][i]

                if (is_embed := pos_info.is_embed) is not None:
                    is_embed = is_embed[start_idx:end_idx]

                mm_embeds_item = gather_mm_placeholders(
                    encoder_output[start_idx:end_idx],
                    is_embed=is_embed,
                )
                mm_embeds.append(mm_embeds_item)
        return mm_embeds

    def get_model(self) -> nn.Module:
        return self.model

    def apply_grammar_bitmask(
        self,
        scheduler_output: "SchedulerOutput",
        logits: torch.Tensor,
    ):
        grammar_bitmask = scheduler_output.grammar_bitmask
        if grammar_bitmask is None:
            return

        # We receive the structured output bitmask from the scheduler,
        # compacted to contain bitmasks only for structured output requests.
        # The order of the requests in the bitmask is not guaranteed to be the
        # same as the order of the requests in the gpu runner's batch. We need
        # to sort the bitmask to match the order of the requests used here.

        # Get the batch indices of the structured output requests.
        # Keep track of the number of speculative tokens scheduled for every
        # request in the batch, as the logit indices are offset by this amount.
        struct_out_req_batch_indices: dict[str, int] = {}
        cumulative_offset = 0
        seq = sorted(self.input_batch.req_id_to_index.items(),
                     key=lambda x: x[1])
        for req_id, batch_index in seq:
            logit_index = batch_index + cumulative_offset
            cumulative_offset += len(
                scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
            if req_id in scheduler_output.structured_output_request_ids:
                struct_out_req_batch_indices[req_id] = logit_index

        out_indices = []

        # Reorder the bitmask to match the order of the requests in the batch.
        sorted_bitmask = np.zeros_like(grammar_bitmask,
                                       shape=(logits.shape[0],
                                              grammar_bitmask.shape[1]))
        cumulative_index = 0
        seq = sorted(scheduler_output.structured_output_request_ids.items(),
                     key=lambda x: x[1])
        for req_id, _ in seq:
            logit_index = struct_out_req_batch_indices[req_id]
            num_spec_tokens = len(
                scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
            for i in range(1 + num_spec_tokens):
                sorted_bitmask[logit_index + i] = \
                    grammar_bitmask[cumulative_index + i]
                out_indices.append(logit_index + i)
            cumulative_index += 1 + num_spec_tokens
        grammar_bitmask = sorted_bitmask

        # Serialization of np.ndarray is much more efficient than a tensor,
        # so we receive it in that format.
        grammar_bitmask = torch.from_numpy(grammar_bitmask)

        # Force use of the torch.compile implementation from xgrammar to work
        # around issues with the Triton kernel in concurrent structured output
        # scenarios. See PR #19565 and issues #19493, #18376 for details.
        xgr_torch_compile.apply_token_bitmask_inplace_torch_compile(
            logits,
            grammar_bitmask.to(self.device, non_blocking=True),
            indices=out_indices,
        )

    def sync_and_slice_intermediate_tensors(
            self, num_tokens: int, intermediate_tensors: IntermediateTensors,
            sync_self: bool) -> IntermediateTensors:

        assert self.intermediate_tensors is not None

        tp = self.vllm_config.parallel_config.tensor_parallel_size
        enabled_sp = self.compilation_config.pass_config. \
            enable_sequence_parallelism
        if enabled_sp:
            # When sequence parallelism is enabled, we always pad num_tokens
            # to be a multiple of tensor_parallel_size (tp) earlier
            assert num_tokens % tp == 0
        is_residual_scattered = tp > 1 and enabled_sp \
            and num_tokens % tp == 0

        # When sequence parallelism is enabled, the "residual" tensor is sharded
        # across tensor parallel ranks, so each rank only needs its own slice.
        if sync_self:
            assert intermediate_tensors is not None
            for k, v in intermediate_tensors.items():
                is_scattered = "residual" and is_residual_scattered
                copy_len = num_tokens // tp if is_scattered else \
                    num_tokens
                self.intermediate_tensors[k][:copy_len].copy_(
                    v[:copy_len], non_blocking=True)

        return IntermediateTensors({
            k:
            v[:num_tokens // tp]
            if k == "residual" and is_residual_scattered else v[:num_tokens]
            for k, v in self.intermediate_tensors.items()
        })

    def eplb_step(self,
                  is_dummy: bool = False,
                  is_profile: bool = False) -> None:
        """
        Step for the EPLB (Expert Parallelism Load Balancing) state.
        """
        if not self.parallel_config.enable_eplb:
            return

        assert self.eplb_state is not None
        assert is_mixture_of_experts(self.model)
        self.eplb_state.step(
            self.model,
            is_dummy,
            is_profile,
            log_stats=self.parallel_config.eplb_log_balancedness,
        )

    def get_dp_padding(self,
                       num_tokens: int) -> tuple[int, Optional[torch.Tensor]]:
        dp_size = self.vllm_config.parallel_config.data_parallel_size
        dp_rank = self.vllm_config.parallel_config.data_parallel_rank

        # For DP: Don't pad when setting enforce_eager.
        # This lets us set enforce_eager on the prefiller in a P/D setup and
        # still use CUDA graphs (enabled by this padding) on the decoder.
        #
        # TODO(tms) : There are many cases where padding is enabled for
        # prefills, causing unnecessary and excessive padding of activations.

        if dp_size == 1 or self.vllm_config.model_config.enforce_eager:
            # Early exit.
            return 0, None

        num_tokens_across_dp = DPMetadata.num_tokens_across_dp(
            num_tokens, dp_size, dp_rank)
        max_tokens_across_dp_cpu = torch.max(num_tokens_across_dp).item()
        num_tokens_after_padding = torch.tensor([max_tokens_across_dp_cpu] *
                                                dp_size,
                                                device="cpu",
                                                dtype=torch.int32)
        return max_tokens_across_dp_cpu - num_tokens, num_tokens_after_padding

    def _pool(
        self,
        hidden_states: torch.Tensor,
        num_scheduled_tokens: int,
        num_scheduled_tokens_np: np.ndarray,
        finished_sending: Optional[set[str]],
        finished_recving: Optional[set[str]],
    ) -> ModelRunnerOutput:
        assert self.input_batch.num_reqs ==\
            len(self.input_batch.pooling_params), \
        "Either all or none of the requests in" \
        " a batch must be pooling request"

        extracted_hidden_states = list(
            torch.split(hidden_states[:num_scheduled_tokens],
                        num_scheduled_tokens_np.tolist()))

        pooling_metadata = self.input_batch.pooling_metadata

        raw_pooler_output = self.model.pooler(
            hidden_states=extracted_hidden_states,
            pooling_metadata=pooling_metadata)

        pooler_output: list[Optional[torch.Tensor]] = []
        seq_lens = self.seq_lens[:self.input_batch.num_reqs]
        for raw_output, seq_len, prompt_len in zip(
                raw_pooler_output, seq_lens, pooling_metadata.prompt_lens):

            if seq_len == prompt_len:
                pooler_output.append(raw_output.data.cpu())
            else:
                pooler_output.append(None)

        return ModelRunnerOutput(
            req_ids=self.input_batch.req_ids,
            req_id_to_index=self.input_batch.req_id_to_index,
            sampled_token_ids=[],
            spec_token_ids=None,
            logprobs=None,
            prompt_logprobs_dict={},
            pooler_output=pooler_output,
            finished_sending=finished_sending,
            finished_recving=finished_recving,
        )

    @torch.inference_mode()
    def execute_model(
        self,
        scheduler_output: "SchedulerOutput",
        intermediate_tensors: Optional[IntermediateTensors] = None,
    ) -> Union[ModelRunnerOutput, IntermediateTensors]:
        self._update_states(scheduler_output)
        if not scheduler_output.total_num_scheduled_tokens:
            if not has_kv_transfer_group():
                # Return empty ModelRunnerOutput if there's no work to do.
                return EMPTY_MODEL_RUNNER_OUTPUT

            return self.kv_connector_no_forward(scheduler_output)

        # Prepare the decoder inputs.
        (attn_metadata, attention_cuda_graphs, logits_indices,
         spec_decode_metadata,
         num_scheduled_tokens_np) = (self._prepare_inputs(scheduler_output))
        num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        if (self.use_cuda_graph
                and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
            # Use piecewise CUDA graphs.
            # Add padding to the batch size.
            num_input_tokens = self.vllm_config.pad_for_cudagraph(
                num_scheduled_tokens)
        else:
            # Eager mode.
            # Pad tokens to multiple of tensor_parallel_size when
            # enabled collective fusion for SP
            tp_size = self.vllm_config.parallel_config.tensor_parallel_size
            if self.compilation_config.pass_config. \
                enable_sequence_parallelism and tp_size > 1:
                num_input_tokens = round_up(num_scheduled_tokens, tp_size)
            else:
                num_input_tokens = num_scheduled_tokens

        # Padding for DP
        num_pad, num_tokens_across_dp = self.get_dp_padding(num_input_tokens)
        num_input_tokens += num_pad

        # _prepare_inputs may reorder the batch, so we must gather multi
        # modal outputs after that to ensure the correct order
        if self.is_multimodal_model:
            # Run the multimodal encoder if any.
            self._execute_mm_encoder(scheduler_output)
            mm_embeds = self._gather_mm_embeddings(scheduler_output)
        else:
            mm_embeds = []

        if self.is_multimodal_model and get_pp_group().is_first_rank:
            # NOTE(woosuk): To unify token ids and soft tokens (vision
            # embeddings), we always use embeddings (rather than token ids)
            # as input to the multimodal model, even when the input is text.
            input_ids = self.input_ids[:num_scheduled_tokens]
            if mm_embeds:
                inputs_embeds = self.model.get_input_embeddings(
                    input_ids, mm_embeds)
            else:
                inputs_embeds = self.model.get_input_embeddings(input_ids)
            # TODO(woosuk): Avoid the copy. Optimize.
            self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds)
            inputs_embeds = self.inputs_embeds[:num_input_tokens]
            input_ids = None
        else:
            # For text-only models, we use token ids as input.
            # While it is possible to use embeddings as input just like the
            # multimodal models, it is not desirable for performance since
            # then the embedding layer is not included in the CUDA graph.
            input_ids = self.input_ids[:num_input_tokens]
            inputs_embeds = None
        if self.uses_mrope:
            positions = self.mrope_positions[:, :num_input_tokens]
        else:
            positions = self.positions[:num_input_tokens]

        if get_pp_group().is_first_rank:
            intermediate_tensors = None
        else:
            intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                num_input_tokens, intermediate_tensors, True)

        # Some attention backends only support CUDA Graphs in pure decode.
        # If attention doesn't support CUDA Graphs for this batch, but we
        # compiled with full CUDA graphs, we have to skip them entirely.
        skip_cuda_graphs = self.full_cuda_graph and not attention_cuda_graphs

        # Run the model.
        # Use persistent buffers for CUDA graphs.
        with set_forward_context(
                attn_metadata,
                self.vllm_config,
                num_tokens=num_input_tokens,
                num_tokens_across_dp=num_tokens_across_dp,
                skip_cuda_graphs=skip_cuda_graphs,
        ):
            self.maybe_setup_kv_connector(scheduler_output)

            model_output = self.model(
                input_ids=input_ids,
                positions=positions,
                intermediate_tensors=intermediate_tensors,
                inputs_embeds=inputs_embeds,
            )

            self.maybe_wait_for_kv_save()
            finished_sending, finished_recving = (
                self.get_finished_kv_transfers(scheduler_output))

        if self.use_aux_hidden_state_outputs:
            hidden_states, aux_hidden_states = model_output
        else:
            hidden_states = model_output
            aux_hidden_states = None

        # Broadcast PP output for external_launcher (torchrun)
        # to make sure we are synced across pp ranks
        # TODO: Support overlapping mirco-batches
        # https://github.com/vllm-project/vllm/issues/18019
        broadcast_pp_output = \
            self.parallel_config.distributed_executor_backend \
            == "external_launcher" and len(get_pp_group().ranks) > 0
        if not get_pp_group().is_last_rank:
            # For mid-pipeline stages, return the hidden states.
            if not broadcast_pp_output:
                return hidden_states
            assert isinstance(hidden_states, IntermediateTensors)
            get_pp_group().send_tensor_dict(hidden_states.tensors,
                                            all_gather_group=get_tp_group())
            logits = None
        else:
            if self.input_batch.pooling_params:
                return self._pool(hidden_states, num_scheduled_tokens,
                                  num_scheduled_tokens_np, finished_sending,
                                  finished_recving)

            sample_hidden_states = hidden_states[logits_indices]
            logits = self.model.compute_logits(sample_hidden_states, None)
        if broadcast_pp_output:
            model_output_broadcast_data = {
                "logits": logits.contiguous(),
            } if logits is not None else {}
            model_output_broadcast_data = get_pp_group().broadcast_tensor_dict(
                model_output_broadcast_data, src=len(get_pp_group().ranks) - 1)
            assert model_output_broadcast_data is not None
            logits = model_output_broadcast_data["logits"]

        # Apply structured output bitmasks if present
        if scheduler_output.grammar_bitmask is not None:
            self.apply_grammar_bitmask(scheduler_output, logits)

        # Sample the next token and get logprobs if needed.
        sampling_metadata = self.input_batch.sampling_metadata
        if spec_decode_metadata is None:
            sampler_output = self.sampler(
                logits=logits,
                sampling_metadata=sampling_metadata,
            )
        else:
            # When indexing with a tensor (bonus_logits_indices), PyTorch
            # creates a new tensor with separate storage from the original
            # logits tensor. This means any in-place operations on bonus_logits
            # won't affect the original logits tensor.
            assert logits is not None
            bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
            sampler_output = self.sampler(
                logits=bonus_logits,
                sampling_metadata=sampling_metadata,
            )
            bonus_token_ids = sampler_output.sampled_token_ids

            # Just like `bonus_logits`, `target_logits` is a new tensor with
            # separate storage from the original `logits` tensor. Therefore,
            # it is safe to update `target_logits` in place.
            target_logits = logits[spec_decode_metadata.target_logits_indices]
            output_token_ids = self.rejection_sampler(
                spec_decode_metadata,
                None,  # draft_probs
                target_logits,
                bonus_token_ids,
                sampling_metadata,
            )
            sampler_output.sampled_token_ids = output_token_ids

        num_nans_in_logits = {}
        if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
            num_nans_in_logits = self._get_nans_in_logits(logits)

        # TODO(woosuk): The following loop can be slow since it iterates over
        # the requests one by one. Optimize.
        discard_sampled_tokens_req_indices = []
        for i, req_id in enumerate(self.input_batch.req_ids):
            req_state = self.requests[req_id]
            seq_len = (req_state.num_computed_tokens +
                       scheduler_output.num_scheduled_tokens[req_id])
            if seq_len < req_state.num_tokens:
                # Ignore the sampled token for partial prefills.
                # Rewind the generator state as if the token was not sampled.
                # This relies on cuda-specific torch-internal impl details
                generator = self.input_batch.generators.get(i)
                if generator is not None:
                    generator.set_offset(generator.get_offset() - 4)
                # Record the index of the request that should not be sampled,
                # so that we could clear the sampled tokens before returning.
                discard_sampled_tokens_req_indices.append(i)

        # NOTE: GPU -> CPU Sync happens here.
        # Move as many CPU operations as possible before this sync point.
        logprobs_tensors = sampler_output.logprobs_tensors
        logprobs_lists = logprobs_tensors.tolists() \
            if logprobs_tensors is not None else None

        # Compute prompt logprobs if needed.
        prompt_logprobs_dict = self._get_prompt_logprobs_dict(
            hidden_states[:num_scheduled_tokens],
            scheduler_output,
        )

        # Get the valid generated tokens.
        sampled_token_ids = sampler_output.sampled_token_ids
        max_gen_len = sampled_token_ids.shape[-1]
        if max_gen_len == 1:
            # No spec decode tokens.
            valid_sampled_token_ids = sampled_token_ids.tolist()
        else:
            # Includes spec decode tokens.
            valid_sampled_token_ids = self.rejection_sampler.parse_output(
                sampled_token_ids,
                self.input_batch.vocab_size,
            )
        # Mask out the sampled tokens that should not be sampled.
        for i in discard_sampled_tokens_req_indices:
            valid_sampled_token_ids[i].clear()

        # Cache the sampled tokens in the model runner, so that the scheduler
        # doesn't need to send them back.
        # NOTE(woosuk): As an exception, when using PP, the scheduler sends
        # the sampled tokens back, because there's no direct communication
        # between the first-stage worker and the last-stage worker.
        for req_idx, sampled_ids in enumerate(valid_sampled_token_ids):
            if not sampled_ids:
                continue

            start_idx = self.input_batch.num_tokens_no_spec[req_idx]
            end_idx = start_idx + len(sampled_ids)
            assert end_idx <= self.max_model_len, (
                "Sampled token IDs exceed the max model length. "
                f"Total number of tokens: {end_idx} > max_model_len: "
                f"{self.max_model_len}")

            self.input_batch.token_ids_cpu[req_idx,
                                           start_idx:end_idx] = sampled_ids
            self.input_batch.num_tokens_no_spec[req_idx] = end_idx
            self.input_batch.num_tokens[req_idx] = end_idx
            req_id = self.input_batch.req_ids[req_idx]
            req_state = self.requests[req_id]
            req_state.output_token_ids.extend(sampled_ids)

        if not self.speculative_config:
            # Speculative decoding is not enabled.
            spec_token_ids = None
        else:
            spec_token_ids = self.propose_draft_token_ids(
                scheduler_output,
                valid_sampled_token_ids,
                sampling_metadata,
                hidden_states,
                sample_hidden_states,
                aux_hidden_states,
                spec_decode_metadata,
                attn_metadata,
            )

        # Clear KVConnector state after all KVs are generated.
        if has_kv_transfer_group():
            get_kv_transfer_group().clear_connector_metadata()

        self.eplb_step()

        return ModelRunnerOutput(
            req_ids=self.input_batch.req_ids,
            req_id_to_index=self.input_batch.req_id_to_index,
            sampled_token_ids=valid_sampled_token_ids,
            spec_token_ids=spec_token_ids,
            logprobs=logprobs_lists,
            prompt_logprobs_dict=prompt_logprobs_dict,
            pooler_output=[],
            finished_sending=finished_sending,
            finished_recving=finished_recving,
            num_nans_in_logits=num_nans_in_logits,
        )

    def propose_draft_token_ids(
        self,
        scheduler_output: "SchedulerOutput",
        sampled_token_ids: list[list[int]],
        sampling_metadata: SamplingMetadata,
        hidden_states: torch.Tensor,
        sample_hidden_states: torch.Tensor,
        aux_hidden_states: Optional[torch.Tensor],
        spec_decode_metadata: Optional[SpecDecodeMetadata],
        attn_metadata: dict[str, Any],
    ) -> list[list[int]]:
        num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        if self.speculative_config.method == "ngram":
            assert isinstance(self.drafter, NgramProposer)
            spec_token_ids = self.propose_ngram_draft_token_ids(
                sampled_token_ids)
        elif self.speculative_config.method == "medusa":
            assert isinstance(self.drafter, MedusaProposer)
            if sample_hidden_states.shape[0] == len(sampled_token_ids):
                # The input to the target model does not include draft tokens.
                hidden_states = sample_hidden_states
            else:
                indices = []
                offset = 0
                for num_draft, tokens in zip(
                        spec_decode_metadata.num_draft_tokens,
                        sampled_token_ids):
                    indices.append(offset + len(tokens) - 1)
                    offset += num_draft + 1
                indices = torch.tensor(indices, device=self.device)
                hidden_states = sample_hidden_states[indices]

            spec_token_ids = self.drafter.propose(
                target_hidden_states=hidden_states,
                sampling_metadata=sampling_metadata,
            )
        elif self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)
            # TODO(woosuk): Refactor the loop.
            next_token_ids: list[int] = []
            for i, token_ids in enumerate(sampled_token_ids):
                if token_ids:
                    # Common case.
                    next_token_id = token_ids[-1]
                else:
                    # Partial prefill (rare case).
                    # Get the next token id from the request state.
                    req_id = self.input_batch.req_ids[i]
                    req_state = self.requests[req_id]
                    seq_len = (req_state.num_computed_tokens +
                               scheduler_output.num_scheduled_tokens[req_id])
                    next_token_id = req_state.get_token_id(seq_len)
                next_token_ids.append(next_token_id)
            next_token_ids = torch.tensor(next_token_ids,
                                          dtype=torch.int32,
                                          device=self.device)
            # At this moment, we assume all eagle layers belong to the same KV
            # cache group, thus using the same attention metadata.
            eagle_attn_metadata = attn_metadata[
                self.drafter.attn_layer_names[0]]

            # NOTE: deepseek_mtp uses MLA which does not have `block_table`
            if hasattr(eagle_attn_metadata, "block_table"):
                block_table = eagle_attn_metadata.block_table
            else:
                block_table = None

            if spec_decode_metadata is None:
                # input_ids can be None for multimodal models.
                target_token_ids = self.input_ids[:num_scheduled_tokens]
                # TODO(woosuk): Support M-RoPE.
                target_positions = self.positions[:num_scheduled_tokens]
                if self.use_aux_hidden_state_outputs:
                    target_hidden_states = torch.cat(
                        [h[:num_scheduled_tokens] for h in aux_hidden_states],
                        dim=-1)
                else:
                    target_hidden_states = hidden_states[:num_scheduled_tokens]
                target_slot_mapping = eagle_attn_metadata.slot_mapping
                cu_num_tokens = eagle_attn_metadata.query_start_loc
            else:
                # TODO(woosuk): Refactor this.
                num_draft_tokens = spec_decode_metadata.num_draft_tokens
                num_rejected_tokens = [
                    n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
                    for i, n in enumerate(num_draft_tokens)
                ]
                num_rejected_tokens_tensor = async_tensor_h2d(
                    num_rejected_tokens,
                    dtype=torch.int32,
                    target_device=self.device,
                    pin_memory=True)
                num_tokens = num_scheduled_tokens - sum(num_rejected_tokens)
                cu_num_tokens, token_indices = self.drafter.prepare_inputs(
                    eagle_attn_metadata.query_start_loc,
                    num_rejected_tokens_tensor,
                    num_tokens,
                )
                target_token_ids = self.input_ids[token_indices]
                # TODO(woosuk): Support M-RoPE.
                target_positions = self.positions[token_indices]
                if self.use_aux_hidden_state_outputs:
                    target_hidden_states = torch.cat(
                        [h[token_indices] for h in aux_hidden_states], dim=-1)
                else:
                    target_hidden_states = hidden_states[token_indices]
                target_slot_mapping = eagle_attn_metadata.slot_mapping[
                    token_indices]
            draft_token_ids = self.drafter.propose(
                target_token_ids=target_token_ids,
                target_positions=target_positions,
                target_hidden_states=target_hidden_states,
                target_slot_mapping=target_slot_mapping,
                next_token_ids=next_token_ids,
                cu_num_tokens=cu_num_tokens,
                block_table=block_table,
                sampling_metadata=sampling_metadata,
            )
            spec_token_ids = draft_token_ids.tolist()
        return spec_token_ids

    def kv_connector_no_forward(
            self, scheduler_output: "SchedulerOutput") -> ModelRunnerOutput:
        # KV send/recv even if no work to do.
        with set_forward_context(None, self.vllm_config):
            self.maybe_setup_kv_connector(scheduler_output)
            finished_sending, finished_recving = (
                self.get_finished_kv_transfers(scheduler_output))

        if not finished_sending and not finished_recving:
            return EMPTY_MODEL_RUNNER_OUTPUT

        output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
        output.finished_sending = finished_sending
        output.finished_recving = finished_recving
        return output

    @staticmethod
    def maybe_setup_kv_connector(scheduler_output: "SchedulerOutput"):
        # Update KVConnector with the KVConnector metadata forward().
        if has_kv_transfer_group():
            kv_connector = get_kv_transfer_group()
            assert isinstance(kv_connector, KVConnectorBase_V1)
            assert scheduler_output.kv_connector_metadata is not None
            kv_connector.bind_connector_metadata(
                scheduler_output.kv_connector_metadata)

            # Background KV cache transfers happen here.
            # These transfers are designed to be async and the requests
            # involved may be disjoint from the running requests.
            # Do this here to save a collective_rpc.
            kv_connector.start_load_kv(get_forward_context())

    @staticmethod
    def maybe_wait_for_kv_save() -> None:
        if has_kv_transfer_group():
            get_kv_transfer_group().wait_for_save()

    @staticmethod
    def get_finished_kv_transfers(
        scheduler_output: "SchedulerOutput",
    ) -> tuple[Optional[set[str]], Optional[set[str]]]:
        if has_kv_transfer_group():
            return get_kv_transfer_group().get_finished(
                scheduler_output.finished_req_ids)
        return None, None

    def propose_ngram_draft_token_ids(
        self,
        sampled_token_ids: list[list[int]],
    ) -> list[list[int]]:
        # TODO(woosuk): Optimize.
        draft_token_ids: list[list[int]] = []
        for i, sampled_ids in enumerate(sampled_token_ids):
            num_sampled_ids = len(sampled_ids)
            if not num_sampled_ids:
                # Skip speculative decoding.
                draft_token_ids.append([])
                continue

            # Skip requests that require sampling parameters that are not
            # supported with speculative decoding.
            req_id = self.input_batch.req_ids[i]
            if req_id in self.input_batch.spec_decode_unsupported_reqs:
                draft_token_ids.append([])
                continue

            num_tokens = self.input_batch.num_tokens_no_spec[i]
            if num_tokens >= self.max_model_len:
                # Skip requests that have already reached the max model length.
                draft_token_ids.append([])
                continue

            drafter_output = self.drafter.propose(
                self.input_batch.token_ids_cpu[i, :num_tokens])
            if drafter_output is None or len(drafter_output) == 0:
                draft_token_ids.append([])
            else:
                draft_token_ids.append(drafter_output.tolist())
        return draft_token_ids

    def load_model(self) -> None:
        logger.info("Starting to load model %s...", self.model_config.model)
        with DeviceMemoryProfiler() as m:  # noqa: SIM117
            time_before_load = time.perf_counter()
            model_loader = get_model_loader(self.load_config)
            if not hasattr(self, "model"):
                logger.info("Loading model from scratch...")
                self.model = model_loader.load_model(
                    vllm_config=self.vllm_config,
                    model_config=self.model_config)
            else:
                logger.info(
                    "Model was already initialized. Loading weights inplace..."
                )
                model_loader.load_weights(self.model,
                                          model_config=self.model_config)
            if has_step_pooler(self.model):
                self.input_batch.logits_processing_needs_token_ids = True
            if self.lora_config:
                self.model = self.load_lora_model(self.model,
                                                  self.model_config,
                                                  self.scheduler_config,
                                                  self.lora_config,
                                                  self.device)
            if hasattr(self, "drafter"):
                logger.info("Loading drafter model...")
                self.drafter.load_model(self.model)
            if self.use_aux_hidden_state_outputs:
                self.model.set_aux_hidden_state_layers(
                    self.model.get_eagle3_aux_hidden_state_layers())
            time_after_load = time.perf_counter()
        self.model_memory_usage = m.consumed_memory
        logger.info("Model loading took %.4f GiB and %.6f seconds",
                    self.model_memory_usage / GiB_bytes,
                    time_after_load - time_before_load)
        prepare_communication_buffer_for_model(self.model)

        if is_mixture_of_experts(
                self.model) and self.parallel_config.enable_eplb:
            logger.info("EPLB is enabled for model %s.",
                        self.model_config.model)
            self.eplb_state = EplbState.build(
                self.model,
                self.device,
                self.parallel_config,
            )

    def save_tensorized_model(
        self,
        tensorizer_config: "TensorizerConfig",
    ) -> None:
        TensorizerLoader.save_model(
            self.model,
            tensorizer_config=tensorizer_config,
        )

    def _get_prompt_logprobs_dict(
        self,
        hidden_states: torch.Tensor,
        scheduler_output: "SchedulerOutput",
    ) -> dict[str, Optional[LogprobsTensors]]:
        num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
        if not num_prompt_logprobs_dict:
            return {}

        in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
        prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}

        # Since prompt logprobs are a rare feature, prioritize simple,
        # maintainable loop over optimal performance.
        completed_prefill_reqs = []
        for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():

            num_tokens = scheduler_output.num_scheduled_tokens[req_id]

            # Get metadata for this request.
            request = self.requests[req_id]
            num_prompt_tokens = len(request.prompt_token_ids)
            prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
                self.device, non_blocking=True)

            # Set up target LogprobsTensors object.
            logprobs_tensors = in_progress_dict.get(req_id)
            if not logprobs_tensors:
                # Create empty logprobs CPU tensors for the entire prompt.
                # If chunked, we'll copy in slice by slice.
                logprobs_tensors = LogprobsTensors.empty_cpu(
                    num_prompt_tokens - 1, num_prompt_logprobs + 1)
                in_progress_dict[req_id] = logprobs_tensors

            # Determine number of logits to retrieve.
            start_idx = request.num_computed_tokens
            start_tok = start_idx + 1
            num_remaining_tokens = num_prompt_tokens - start_tok
            if num_tokens <= num_remaining_tokens:
                # This is a chunk, more tokens remain.
                # In the == case, there are no more prompt logprobs to produce
                # but we want to defer returning them to the next step where we
                # have new generated tokens to return.
                num_logits = num_tokens
            else:
                # This is the last chunk of prompt tokens to return.
                num_logits = num_remaining_tokens
                completed_prefill_reqs.append(req_id)
                prompt_logprobs_dict[req_id] = logprobs_tensors

            if num_logits <= 0:
                # This can happen for the final chunk if we prefilled exactly
                # (num_prompt_tokens - 1) tokens for this request in the prior
                # step. There are no more prompt logprobs to produce.
                continue

            # Get the logits corresponding to this req's prompt tokens.
            # If this is a partial request (i.e. chunked prefill),
            # then there is prompt logprob generated for each index.
            req_idx = self.input_batch.req_id_to_index[req_id]
            offset = self.query_start_loc_np[req_idx].item()
            prompt_hidden_states = hidden_states[offset:offset + num_logits]
            logits = self.model.compute_logits(prompt_hidden_states, None)

            # Get the "target" tokens for each index. For prompt at index i,
            # the token at prompt index i+1 is the "sampled" token we want
            # to gather the logprob for.
            tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]

            # Compute prompt logprobs.
            logprobs = self.sampler.compute_logprobs(logits)
            token_ids, logprobs, ranks = self.sampler.gather_logprobs(
                logprobs, num_prompt_logprobs, tgt_token_ids)

            # Transfer GPU->CPU async.
            chunk_slice = slice(start_idx, start_idx + num_logits)
            logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
                token_ids, non_blocking=True)
            logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
                                                         non_blocking=True)
            logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
                ranks, non_blocking=True)

        # Remove requests that have completed prefill from the batch
        # num_prompt_logprobs_dict.
        for req_id in completed_prefill_reqs:
            del num_prompt_logprobs_dict[req_id]
            del in_progress_dict[req_id]

        # Must synchronize the non-blocking GPU->CPU transfers.
        if prompt_logprobs_dict:
            self._sync_device()

        return prompt_logprobs_dict

    def _get_nans_in_logits(
        self,
        logits: Optional[torch.Tensor],
    ) -> dict[str, int]:
        try:
            if logits is None:
                return {req_id: 0 for req_id in self.input_batch.req_ids}

            num_nans_in_logits = {}
            num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
            for req_id in self.input_batch.req_ids:
                req_index = self.input_batch.req_id_to_index[req_id]
                num_nans_in_logits[req_id] = (
                    int(num_nans_for_index[req_index])
                    if num_nans_for_index is not None
                    and req_index < logits.shape[0] else 0)
            return num_nans_in_logits
        except IndexError:
            return {}

    @contextmanager
    def maybe_randomize_inputs(self, input_ids: torch.Tensor):
        """
        Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set.
        This is to help balance expert-selection
         - during profile_run
         - during DP rank dummy run 
        """
        dp_size = self.vllm_config.parallel_config.data_parallel_size
        randomize_inputs = envs.VLLM_RANDOMIZE_DP_DUMMY_INPUTS and dp_size > 1
        if not randomize_inputs:
            yield
        else:
            import functools

            @functools.cache
            def rand_input_ids() -> torch.Tensor:
                return torch.randint_like(
                    self.input_ids,
                    low=0,
                    high=self.model_config.get_vocab_size(),
                    dtype=input_ids.dtype)

            logger.debug("Randomizing dummy data for DP Rank")
            input_ids.copy_(rand_input_ids()[:input_ids.size(0)],
                            non_blocking=True)
            yield
            input_ids.fill_(0)

    @torch.inference_mode()
    def _dummy_run(
        self,
        num_tokens: int,
        capture_attn_cudagraph: bool = False,
        skip_eplb: bool = False,
        is_profile: bool = False,
    ) -> tuple[torch.Tensor, torch.Tensor]:

        # Padding for DP
        num_pad, num_tokens_across_dp = self.get_dp_padding(num_tokens)
        num_tokens += num_pad

        # Set num_scheduled_tokens based on num_tokens and max_num_seqs
        # for dummy run with LoRA so that the num_reqs collectively
        # has num_tokens in total.
        assert num_tokens <= self.scheduler_config.max_num_batched_tokens
        max_num_reqs = self.scheduler_config.max_num_seqs
        num_reqs = min(num_tokens, max_num_reqs)
        min_tokens_per_req = num_tokens // num_reqs
        num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
        num_scheduled_tokens_list[-1] += num_tokens % num_reqs
        assert sum(num_scheduled_tokens_list) == num_tokens
        assert len(num_scheduled_tokens_list) == num_reqs
        num_scheduled_tokens = np.array(num_scheduled_tokens_list,
                                        dtype=np.int32)

        attn_metadata: Optional[dict[str, Any]] = None
        if capture_attn_cudagraph:
            attn_metadata = {}

            query_start_loc = self.query_start_loc[:num_reqs + 1]
            # Make sure max_model_len is used at the graph capture time.
            self.seq_lens_np[:num_reqs] = self.max_model_len
            self.seq_lens_np[num_reqs:] = 0
            self.seq_lens[:num_reqs].copy_(self.seq_lens_cpu[:num_reqs],
                                           non_blocking=True)
            seq_lens = self.seq_lens[:num_reqs]

            common_attn_metadata = CommonAttentionMetadata(
                query_start_loc=query_start_loc,
                seq_lens=seq_lens,
                num_reqs=num_reqs,
                num_actual_tokens=num_tokens,
                max_query_len=num_tokens,
            )

            for kv_cache_group_id, kv_cache_group_spec in enumerate(
                    self.kv_cache_config.kv_cache_groups):

                attn_metadata_i = self.attn_metadata_builders[
                    kv_cache_group_id].build_for_cudagraph_capture(
                        common_attn_metadata)
                for layer_name in kv_cache_group_spec.layer_names:
                    attn_metadata[layer_name] = attn_metadata_i

        with self.maybe_dummy_run_with_lora(self.lora_config,
                                            num_scheduled_tokens):
            model = self.model
            if self.is_multimodal_model:
                input_ids = None
                inputs_embeds = self.inputs_embeds[:num_tokens]
            else:
                input_ids = self.input_ids[:num_tokens]
                inputs_embeds = None
            if self.uses_mrope:
                positions = self.mrope_positions[:, :num_tokens]
            else:
                positions = self.positions[:num_tokens]

            if get_pp_group().is_first_rank:
                intermediate_tensors = None
            else:
                if self.intermediate_tensors is None:
                    self.intermediate_tensors = (
                        self.model.make_empty_intermediate_tensors(
                            batch_size=self.max_num_tokens,
                            dtype=self.model_config.dtype,
                            device=self.device))

                intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                    num_tokens, None, False)

            with self.maybe_randomize_inputs(input_ids), set_forward_context(
                    attn_metadata,
                    self.vllm_config,
                    num_tokens=num_tokens,
                    num_tokens_across_dp=num_tokens_across_dp):
                outputs = model(
                    input_ids=input_ids,
                    positions=positions,
                    intermediate_tensors=intermediate_tensors,
                    inputs_embeds=inputs_embeds,
                )
            if self.use_aux_hidden_state_outputs:
                hidden_states, _ = outputs
            else:
                hidden_states = outputs

            if self.speculative_config and self.speculative_config.use_eagle():
                assert isinstance(self.drafter, EagleProposer)
                self.drafter.dummy_run(num_tokens)

        # This is necessary to avoid blocking DP.
        # For dummy runs, we typically skip EPLB since we don't have any real
        # requests to process.
        # However, in DP settings, there may be cases when some DP ranks do
        # not have any requests to process, so they're executing dummy batches.
        # In such cases, we still have to trigger EPLB to make sure
        # ranks execute the rearrangement in synchronization.
        if not skip_eplb:
            self.eplb_step(is_dummy=True, is_profile=is_profile)

        logit_indices = np.cumsum(num_scheduled_tokens) - 1
        return hidden_states, hidden_states[logit_indices]

    @torch.inference_mode()
    def _dummy_sampler_run(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        # The dummy hidden states may contain special values,
        # like `inf` or `nan`.
        # To avoid breaking the sampler, we use a random tensor here instead.
        hidden_states = torch.rand_like(hidden_states)

        logits = self.model.compute_logits(hidden_states, None)
        num_reqs = logits.size(0)

        dummy_tensors = lambda v: torch.full(
            (num_reqs, ), v, device=self.device)

        dummy_metadata = SamplingMetadata(
            temperature=dummy_tensors(0.5),
            all_greedy=False,
            all_random=False,
            top_p=dummy_tensors(0.9),
            top_k=dummy_tensors(logits.size(1) - 1),
            generators={},
            max_num_logprobs=None,
            no_penalties=True,
            prompt_token_ids=None,
            frequency_penalties=dummy_tensors(0.1),
            presence_penalties=dummy_tensors(0.1),
            repetition_penalties=dummy_tensors(0.1),
            output_token_ids=[[] for _ in range(num_reqs)],
            allowed_token_ids_mask=None,
            bad_words_token_ids={},
            logitsprocs=LogitsProcessorManager(),
        )
        try:
            sampler_output = self.sampler(logits=logits,
                                          sampling_metadata=dummy_metadata)
        except RuntimeError as e:
            if 'out of memory' in str(e):
                raise RuntimeError(
                    "CUDA out of memory occurred when warming up sampler with "
                    f"{num_reqs} dummy requests. Please try lowering "
                    "`max_num_seqs` or `gpu_memory_utilization` when "
                    "initializing the engine.") from e
            else:
                raise e
        if self.speculative_config:
            draft_token_ids = [[0] for _ in range(num_reqs)]
            dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
                draft_token_ids, self.device)

            num_tokens = sum(len(ids) for ids in draft_token_ids)
            # draft_probs = torch.randn(
            #     num_tokens, logits.shape[-1], device=self.device,
            #     dtype=logits.dtype)
            draft_probs = None
            target_logits = torch.randn(num_tokens,
                                        logits.shape[-1],
                                        device=self.device,
                                        dtype=logits.dtype)
            # NOTE(woosuk): Here, we should use int32 because the sampler uses
            # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
            # will occur at runtime.
            bonus_token_ids = torch.zeros(num_reqs,
                                          device=self.device,
                                          dtype=torch.int32)
            self.rejection_sampler(
                dummy_spec_decode_metadata,
                draft_probs,
                target_logits,
                bonus_token_ids,
                dummy_metadata,
            )
        return sampler_output

    @torch.inference_mode()
    def _dummy_pooler_run(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:

        num_tokens = hidden_states.shape[0]
        max_num_reqs = self.scheduler_config.max_num_seqs
        num_reqs = min(num_tokens, max_num_reqs)
        min_tokens_per_req = num_tokens // num_reqs
        num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
        num_scheduled_tokens_list[-1] += num_tokens % num_reqs
        assert sum(num_scheduled_tokens_list) == num_tokens
        assert len(num_scheduled_tokens_list) == num_reqs

        hidden_states_list = list(
            torch.split(hidden_states, num_scheduled_tokens_list))

        req_num_tokens = num_tokens // num_reqs

        dummy_metadata = PoolingMetadata(
            prompt_lens=torch.tensor([h.shape[0] for h in hidden_states_list],
                                     device=self.device),
            prompt_token_ids=torch.zeros((num_reqs, req_num_tokens),
                                         dtype=torch.int32,
                                         device=self.device),
            pooling_params=[PoolingParams()] * num_reqs)

        try:
            pooler_output = self.model.pooler(hidden_states=hidden_states_list,
                                              pooling_metadata=dummy_metadata)
        except RuntimeError as e:
            if 'out of memory' in str(e):
                raise RuntimeError(
                    "CUDA out of memory occurred when warming up pooler with "
                    f"{num_reqs} dummy requests. Please try lowering "
                    "`max_num_seqs` or `gpu_memory_utilization` when "
                    "initializing the engine.") from e
            else:
                raise e
        return pooler_output

    def profile_run(self) -> None:
        # Profile with multimodal encoder & encoder cache.
        # TODO: handle encoder-decoder models once we support them.
        if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
                and self.encoder_cache_size > 0):

            # NOTE: Currently model is profiled with a single non-text
            # modality with the max possible input tokens even when
            # it supports multiple.
            max_tokens_by_modality_dict = self.mm_registry \
                .get_max_tokens_per_item_by_nonzero_modality(self.model_config)
            dummy_data_modality, max_tokens_per_mm_item = max(
                max_tokens_by_modality_dict.items(), key=lambda item: item[1])

            # Check how many items of this modality can be supported by
            # the encoder budget.
            encoder_budget = min(self.max_num_encoder_input_tokens,
                                 self.encoder_cache_size)

            max_num_mm_items_encoder_budget = cdiv(encoder_budget,
                                                   max_tokens_per_mm_item)

            # Check how many items of this modality can be supported by
            # the decoder budget.
            max_mm_items_per_req = self.mm_registry.get_mm_limits_per_prompt(
                self.model_config)[dummy_data_modality]

            # NOTE: We do not consider max_num_batched_tokens on purpose
            # because the multimodal embeddings can be generated in advance
            # and chunked prefilled.
            max_num_mm_items_decoder_budget = self.max_num_reqs * \
                max_mm_items_per_req

            max_num_mm_items = min(max_num_mm_items_encoder_budget,
                                   max_num_mm_items_decoder_budget)

            logger.info(
                "Encoder cache will be initialized with a budget of %s tokens,"
                " and profiled with %s %s items of the maximum feature size.",
                encoder_budget, max_num_mm_items, dummy_data_modality)

            # Create dummy batch of multimodal inputs.
            dummy_mm_kwargs = self.mm_registry.get_decoder_dummy_data(
                model_config=self.model_config,
                seq_len=self.max_num_tokens,
                mm_counts={
                    dummy_data_modality: 1
                },
            ).multi_modal_data

            batched_dummy_mm_inputs = MultiModalKwargs.batch(
                [dummy_mm_kwargs] * max_num_mm_items,
                pin_memory=self.pin_memory)
            batched_dummy_mm_inputs = MultiModalKwargs.as_kwargs(
                batched_dummy_mm_inputs,
                device=self.device,
            )

            # Run multimodal encoder.
            dummy_encoder_outputs = self.model.get_multimodal_embeddings(
                **batched_dummy_mm_inputs)

            sanity_check_mm_encoder_outputs(
                dummy_encoder_outputs,
                expected_num_items=max_num_mm_items,
            )

            # Cache the dummy encoder outputs.
            self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))

        # Add `is_profile` here to pre-allocate communication buffers
        hidden_states, last_hidden_states \
            = self._dummy_run(self.max_num_tokens, is_profile=True)
        if get_pp_group().is_last_rank:
            if self.is_pooling_model:
                output = self._dummy_pooler_run(hidden_states)
            else:
                output = self._dummy_sampler_run(last_hidden_states)
        else:
            output = None
        self._sync_device()
        del hidden_states, output
        self.encoder_cache.clear()
        gc.collect()

    def capture_model(self) -> None:
        if not self.use_cuda_graph:
            logger.warning(
                "Skipping CUDA graph capture. To turn on CUDA graph capture, "
                "set -O %s and ensure `use_cudagraph` was not manually set to "
                "False", CompilationLevel.PIECEWISE)
            return

        compilation_counter.num_gpu_runner_capture_triggers += 1

        start_time = time.perf_counter()
        start_free_gpu_memory = torch.cuda.mem_get_info()[0]

        # Trigger CUDA graph capture for specific shapes.
        # Capture the large shapes first so that the smaller shapes
        # can reuse the memory pool allocated for the large shapes.
        with graph_capture(device=self.device):
            full_cg = self.full_cuda_graph
            # Only rank 0 should print progress bar during capture
            compilation_cases = reversed(self.cudagraph_batch_sizes)
            if is_global_first_rank():
                compilation_cases = tqdm(list(compilation_cases),
                                         desc="Capturing CUDA graph shapes")
            for num_tokens in compilation_cases:
                # We skip EPLB here since we don't want to record dummy metrics
                for _ in range(
                        self.compilation_config.cudagraph_num_of_warmups):
                    self._dummy_run(num_tokens,
                                    capture_attn_cudagraph=full_cg,
                                    skip_eplb=True)
                self._dummy_run(num_tokens,
                                capture_attn_cudagraph=full_cg,
                                skip_eplb=True)

        end_time = time.perf_counter()
        end_free_gpu_memory = torch.cuda.mem_get_info()[0]
        elapsed_time = end_time - start_time
        cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
        # This usually takes 5~20 seconds.
        logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
                    elapsed_time, cuda_graph_size / (1 << 30))

    def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
        """
        Initialize the attention backends and attention metadata builders.
        """
        assert len(self.attn_backends) == 0 and len(
            self.attn_metadata_builders
        ) == 0, "Attention backends are already initialized"
        for i, kv_cache_group_spec in enumerate(
                kv_cache_config.kv_cache_groups):
            kv_cache_spec = kv_cache_group_spec.kv_cache_spec
            if isinstance(kv_cache_spec, AttentionSpec):
                attn_backend_i = get_attn_backend(
                    kv_cache_spec.head_size,
                    self.dtype,
                    kv_cache_spec.dtype,
                    kv_cache_spec.block_size,
                    self.model_config.is_attention_free,
                    use_mla=kv_cache_spec.use_mla,
                )
                if attn_backend_i is None:
                    error_msg = (f"Error with get_attn_backend: "
                                 f"{kv_cache_spec.head_size=}, "
                                 f"{self.dtype=}, {kv_cache_spec.dtype=}, "
                                 f"{kv_cache_spec.block_size=}, "
                                 f"{self.model_config.is_attention_free=}, "
                                 f"{kv_cache_spec.use_mla=}")
                    logger.error(error_msg)
                    raise NotImplementedError(
                        "Non-Attention backend is not supported by V1 "
                        "GPUModelRunner.")
            elif isinstance(kv_cache_spec, MambaSpec):
                attn_backend_i = Mamba2AttentionBackend
            else:
                raise ValueError(
                    f"Unknown KV cache spec type: {type(kv_cache_spec)}")

            block_table_i = self.input_batch.block_table[i]
            attn_metadata_builder_i = attn_backend_i.get_builder_cls()(
                weakref.proxy(self),
                kv_cache_spec,
                block_table_i,
            )

            if (self.full_cuda_graph
                    and not attn_metadata_builder_i.full_cudagraph_supported):
                raise ValueError(
                    f"Full CUDAGraph not supported for "
                    f"{attn_backend_i.__name__}. Turn off CompilationConfig."
                    f"full_cuda_graph or use a different attention backend.")

            self.attn_backends.append(attn_backend_i)
            self.attn_metadata_builders.append(attn_metadata_builder_i)

    def may_reinitialize_input_batch(self,
                                     kv_cache_config: KVCacheConfig) -> None:
        """
        Re-initialize the input batch if the block sizes are different from
        `[self.cache_config.block_size]`. This usually happens when there
        are multiple KV cache groups.

        Args:
            kv_cache_config: The KV cache configuration.
        """
        block_sizes = [
            kv_cache_group.kv_cache_spec.block_size
            for kv_cache_group in kv_cache_config.kv_cache_groups
        ]
        if block_sizes != [self.cache_config.block_size]:
            assert self.cache_config.cpu_offload_gb == 0, (
                "Cannot re-initialize the input batch when CPU weight "
                "offloading is enabled. See https://github.com/vllm-project/vllm/pull/18298 "  # noqa: E501
                "for more details.")
            self.input_batch = InputBatch(
                max_num_reqs=self.max_num_reqs,
                max_model_len=self.max_model_len,
                max_num_batched_tokens=self.max_num_tokens,
                device=self.device,
                pin_memory=self.pin_memory,
                vocab_size=self.model_config.get_vocab_size(),
                block_sizes=block_sizes,
                is_spec_decode=bool(self.vllm_config.speculative_config),
            )

    def _allocate_kv_cache_tensors(
            self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
        """
        Initializes the KV cache buffer with the correct size. The buffer needs
        to be reshaped to the desired shape before being used by the models.

        Args:
            kv_cache_config: The KV cache config
        Returns:
            dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
         """
        kv_cache_raw_tensors: dict[str, torch.Tensor] = {}
        for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
            tensor = torch.zeros(kv_cache_tensor.size,
                                 dtype=torch.int8,
                                 device=self.device)
            for layer_name in kv_cache_tensor.shared_by:
                kv_cache_raw_tensors[layer_name] = tensor

        layer_names = set()
        for group in kv_cache_config.kv_cache_groups:
            layer_names.update(group.layer_names)
        assert layer_names == set(kv_cache_raw_tensors.keys(
        )), "Some layers are not correctly initialized"
        return kv_cache_raw_tensors

    def _reshape_kv_cache_tensors(
        self,
        kv_cache_config: KVCacheConfig,
        kv_cache_raw_tensors: dict[str, torch.Tensor],
    ) -> dict[str, torch.Tensor]:
        """
        Reshape the KV cache tensors to the desired shape and dtype.

        Args:
            kv_cache_config: The KV cache config
            kv_cache_raw_tensors: The KV cache buffer of each layer, with
            correct size but uninitialized shape.
        Returns:
            Dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
        """
        kv_caches: dict[str, torch.Tensor] = {}
        has_attn, has_mamba = False, False
        for i, kv_cache_group_spec in enumerate(
                kv_cache_config.kv_cache_groups):
            kv_cache_spec = kv_cache_group_spec.kv_cache_spec
            for layer_name in kv_cache_group_spec.layer_names:
                raw_tensor = kv_cache_raw_tensors[layer_name]
                assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
                num_blocks = (raw_tensor.numel() //
                              kv_cache_spec.page_size_bytes)
                if isinstance(kv_cache_spec, AttentionSpec):
                    has_attn = True
                    kv_cache_shape = self.attn_backends[i].get_kv_cache_shape(
                        num_blocks, kv_cache_spec.block_size,
                        kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
                    dtype = kv_cache_spec.dtype
                    try:
                        kv_cache_stride_order = self.attn_backends[
                            i].get_kv_cache_stride_order()
                        assert len(kv_cache_stride_order) == len(
                            kv_cache_shape)
                    except (AttributeError, NotImplementedError):
                        kv_cache_stride_order = tuple(
                            range(len(kv_cache_shape)))
                    # The allocation respects the backend-defined stride order
                    # to ensure the semantic remains consistent for each
                    # backend. We first obtain the generic kv cache shape and
                    # then permute it according to the stride order which could
                    # result in a non-contiguous tensor.
                    kv_cache_shape = tuple(kv_cache_shape[i]
                                           for i in kv_cache_stride_order)
                    # Maintain original KV shape view.
                    inv_order = [
                        kv_cache_stride_order.index(i)
                        for i in range(len(kv_cache_stride_order))
                    ]
                    kv_caches[layer_name] = kv_cache_raw_tensors[
                        layer_name].view(dtype).view(kv_cache_shape).permute(
                            *inv_order)
                elif isinstance(kv_cache_spec, MambaSpec):
                    has_mamba = True
                    raw_tensor = kv_cache_raw_tensors[layer_name]
                    dtype = kv_cache_spec.dtype
                    num_element_per_page = (kv_cache_spec.page_size_bytes //
                                            get_dtype_size(dtype))
                    state_tensors = []
                    storage_offset = 0
                    for shape in kv_cache_spec.shapes:
                        target_shape = (num_blocks, *shape)
                        stride = torch.empty(target_shape).stride()
                        target_stride = (num_element_per_page, *stride[1:])
                        tensor = torch.as_strided(
                            raw_tensor.view(dtype),
                            size=target_shape,
                            stride=target_stride,
                            storage_offset=storage_offset,
                        )
                        state_tensors.append(tensor)
                        storage_offset += stride[0]

                    kv_caches[layer_name] = state_tensors
                else:
                    raise NotImplementedError

        if has_attn and has_mamba:
            self._verify_hybrid_attention_mamba_layout(kv_cache_config,
                                                       kv_cache_raw_tensors)

        return kv_caches

    def _verify_hybrid_attention_mamba_layout(
            self, kv_cache_config: KVCacheConfig,
            kv_cache_raw_tensors: dict[str, torch.Tensor]) -> None:
        """
        Verify that the KV cache memory layout is compatible for
        models with both attention and mamba KV cache groups.

        Args:
            kv_cache_config: The KV cache config
            kv_cache_raw_tensors: The KV cache buffer of each layer.
        """

        for i, kv_cache_group_spec in enumerate(
                kv_cache_config.kv_cache_groups):
            kv_cache_spec = kv_cache_group_spec.kv_cache_spec
            for layer_name in kv_cache_group_spec.layer_names:
                raw_tensor = kv_cache_raw_tensors[layer_name]
                num_blocks = (raw_tensor.numel() //
                              kv_cache_spec.page_size_bytes)
                if isinstance(kv_cache_spec, AttentionSpec):
                    kv_cache_shape = self.attn_backends[i].get_kv_cache_shape(
                        num_blocks, kv_cache_spec.block_size,
                        kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
                    if kv_cache_shape[0] != num_blocks or kv_cache_shape[
                            1] != 2:
                        raise ValueError(
                            "Hybrid models in V1 require an attention "
                            "backend with kv_cache_shape="
                            "(num_blocks, 2, ...). Please try setting "
                            "VLLM_ATTENTION_BACKEND=FLASHINFER")

    def initialize_kv_cache_tensors(
            self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
        """
        Initialize the memory buffer for KV cache.

        Args:
            kv_cache_config: The KV cache config
        Returns:
            Dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
        """
        # Initialize the memory buffer for KV cache
        kv_cache_raw_tensors = self._allocate_kv_cache_tensors(kv_cache_config)
        # Change the memory buffer to the desired shape
        kv_caches = self._reshape_kv_cache_tensors(kv_cache_config,
                                                   kv_cache_raw_tensors)

        # Setup `kv_cache_config` and `kv_caches` for models
        # with cross-layer KV sharing
        if self.shared_kv_cache_layers:
            initialize_kv_cache_for_kv_sharing(
                self.shared_kv_cache_layers,
                kv_cache_config.kv_cache_groups,
                kv_caches,
            )

        bind_kv_cache(kv_caches,
                      self.compilation_config.static_forward_context,
                      self.kv_caches)
        return kv_caches

    def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
        """
        Initialize KV cache based on `kv_cache_config`.
        Args:
            kv_cache_config: Configuration for the KV cache, including the KV
            cache size of each layer
        """
        self.kv_cache_config = kv_cache_config
        self.may_reinitialize_input_batch(kv_cache_config)
        self.initialize_attn_backend(kv_cache_config)
        kv_caches = self.initialize_kv_cache_tensors(kv_cache_config)

        if self.speculative_config and self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)
            # validate all draft model layers belong to the same kv cache
            # group
            self.drafter.validate_same_kv_cache_group(kv_cache_config)

        if has_kv_transfer_group():
            get_kv_transfer_group().register_kv_caches(kv_caches)

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        """
        Generates the KVCacheSpec by parsing the kv cache format from each
        Attention module in the static forward context.
        Returns:
            KVCacheSpec: A dictionary mapping layer names to their KV cache
            format. Layers that do not need KV cache are not included.
        """

        block_size = self.vllm_config.cache_config.block_size
        use_mla = self.vllm_config.model_config.use_mla
        kv_cache_spec: dict[str, KVCacheSpec] = {}
        attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
        for layer_name, attn_module in attn_layers.items():
            if (kv_tgt_layer :=
                    attn_module.kv_sharing_target_layer_name) is not None:
                # The layer doesn't need its own KV cache and will use that of
                # the target layer. We skip creating a KVCacheSpec for it, so
                # that KV cache management logic will act as this layer does
                # not exist, and doesn't allocate KV cache for the layer. This
                # enables the memory saving of cross-layer kv sharing, allowing
                # a given amount of memory to accommodate longer context lengths
                # or enable more requests to be processed simultaneously.
                self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
                continue

            # TODO: Support other attention modules, e.g., cross-attention
            if attn_module.attn_type == AttentionType.DECODER:
                if attn_module.sliding_window is not None:
                    kv_cache_spec[layer_name] = SlidingWindowSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype,
                        sliding_window=attn_module.sliding_window,
                        use_mla=use_mla)
                else:
                    kv_cache_spec[layer_name] = FullAttentionSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype,
                        use_mla=use_mla)
            elif attn_module.attn_type in (AttentionType.ENCODER,
                                           AttentionType.ENCODER_ONLY):
                # encoder-only attention does not need KV cache.
                continue
            elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
                raise NotImplementedError
            else:
                raise ValueError(
                    f"Unknown attention type: {attn_module.attn_type}")

        mamba_layers = get_layers_from_vllm_config(self.vllm_config,
                                                   MambaMixer2)
        if len(mamba_layers) > 0:
            if self.vllm_config.speculative_config is not None:
                raise NotImplementedError(
                    "Mamba with speculative decoding is not supported yet.")
            if not self.vllm_config.model_config.enforce_eager:
                raise NotImplementedError(
                    "Mamba with cuda graph is not supported yet.")
            if self.vllm_config.cache_config.enable_prefix_caching:
                raise NotImplementedError(
                    "Prefix caching is not supported for Mamba yet.")
            max_model_len = self.vllm_config.model_config.max_model_len

            page_size_padded = self._maybe_pad_mamba_page_size(
                attn_layers, mamba_layers, kv_cache_spec, max_model_len,
                block_size)

            # Set block_size to max_model_len, so that mamba model will always
            # have only one block in the KV cache.
            for layer_name, mamba_module in mamba_layers.items():
                kv_cache_spec[layer_name] = MambaSpec(
                    shapes=mamba_module.get_state_shape(),
                    dtype=self.kv_cache_dtype,
                    block_size=max_model_len,
                    page_size_padded=page_size_padded)

        return kv_cache_spec

    def _maybe_pad_mamba_page_size(
        self,
        attn_layers: dict[str, Attention],
        mamba_layers: dict[str, MambaMixer2],
        kv_cache_spec: dict[str, KVCacheSpec],
        max_model_len: int,
        block_size: int,
    ) -> Optional[int]:
        """
        Ensure that page size of attention KV cache groups is greater than or
        equal to the mamba KV cache groups. If not, we suggest to the user
        how to set the attention block size to ensure that it is.

        If the attention page size is strictly greater than the mamba page size,
        we pad the mamba page size to make them equal.

        Args:
            attn_layers: Attention layers
            mamba_layers: Mamba layers
            kv_cache_spec: KV cache spec (populated with attention layers)

        Returns:
            Optional[int]: Mamba page size with padding (None if no padding).
        """

        if len(attn_layers) == 0:
            return None

        attn_layer_name = next(iter(attn_layers))
        attn_page_size = kv_cache_spec[attn_layer_name].page_size_bytes
        mamba_layer_name = next(iter(mamba_layers))
        mamba_page_size = MambaSpec(
            shapes=mamba_layers[mamba_layer_name].get_state_shape(),
            dtype=self.kv_cache_dtype,
            block_size=max_model_len).page_size_bytes
        if attn_page_size < mamba_page_size:
            # attention page size (for 16 tokens)
            attn_page_size_16 = 16 * attn_page_size // block_size
            # some attention backends (e.g. FA) only support setting
            # block size to multiple of 16, so let's suggest a value
            # that would work (note: FA is currently not compatible
            # with mamba layers, use FlashInfer instead).
            suggest_attn_block_size = 16 * cdiv(mamba_page_size,
                                                attn_page_size_16)
            raise ValueError(
                "Attention block size should be increased to at least "
                f"{suggest_attn_block_size} in order to match "
                "the mamba page size")

        return attn_page_size

arange_np instance-attribute

arange_np = arange(
    max(max_num_reqs + 1, max_model_len, max_num_tokens),
    dtype=int64,
)

attention_chunk_size instance-attribute

attention_chunk_size = attention_chunk_size

attn_backends instance-attribute

attn_backends: list[type[AttentionBackend]] = []

attn_metadata_builders instance-attribute

attn_metadata_builders: list[AttentionMetadataBuilder] = []

cache_config instance-attribute

cache_config = cache_config

cascade_attn_enabled instance-attribute

cascade_attn_enabled = not disable_cascade_attn

compilation_config instance-attribute

compilation_config = compilation_config

cudagraph_batch_sizes instance-attribute

cudagraph_batch_sizes = list(
    reversed(cudagraph_capture_sizes)
)

device instance-attribute

device = device

drafter instance-attribute

drafter = NgramProposer(vllm_config)

dtype instance-attribute

dtype = dtype

encoder_cache instance-attribute

encoder_cache: dict[str, dict[int, Tensor]] = {}

encoder_cache_size instance-attribute

encoder_cache_size = encoder_cache_size

eplb_state instance-attribute

eplb_state: Optional[EplbState] = None

State of the expert parallelism load balancer.

Will be lazily initialized when the model is loaded.

full_cuda_graph instance-attribute

full_cuda_graph = full_cuda_graph

hidden_size instance-attribute

hidden_size = get_hidden_size()

input_batch instance-attribute

input_batch = InputBatch(
    max_num_reqs=max_num_reqs,
    max_model_len=max_model_len,
    max_num_batched_tokens=max_num_tokens,
    device=device,
    pin_memory=pin_memory,
    vocab_size=get_vocab_size(),
    block_sizes=[block_size],
    is_spec_decode=bool(speculative_config),
)

input_ids instance-attribute

input_ids = zeros(
    max_num_tokens, dtype=int32, device=device
)

input_ids_cpu instance-attribute

input_ids_cpu = zeros(
    max_num_tokens,
    dtype=int32,
    device="cpu",
    pin_memory=pin_memory,
)

inputs_embeds instance-attribute

inputs_embeds = zeros(
    (max_num_tokens, hidden_size),
    dtype=dtype,
    device=device,
)

intermediate_tensors instance-attribute

intermediate_tensors: Optional[IntermediateTensors] = None

is_multimodal_model instance-attribute

is_multimodal_model = is_multimodal_model

is_pooling_model instance-attribute

is_pooling_model = pooler_config is not None

kv_cache_dtype instance-attribute

kv_cache_dtype = dtype

kv_caches instance-attribute

kv_caches: list[Tensor] = []

load_config instance-attribute

load_config = load_config

lora_config instance-attribute

lora_config = lora_config

max_model_len instance-attribute

max_model_len = max_model_len

max_num_encoder_input_tokens instance-attribute

max_num_encoder_input_tokens = encoder_compute_budget

max_num_reqs instance-attribute

max_num_reqs = max_num_seqs

max_num_tokens instance-attribute

max_num_tokens = max_num_batched_tokens

mm_registry instance-attribute

mm_registry = MULTIMODAL_REGISTRY

model_config instance-attribute

model_config = model_config

mrope_positions instance-attribute

mrope_positions = zeros(
    (3, max_num_tokens + 1), dtype=int64, device=device
)

mrope_positions_cpu instance-attribute

mrope_positions_cpu = zeros(
    (3, max_num_tokens + 1),
    dtype=int64,
    device="cpu",
    pin_memory=pin_memory,
)

mrope_positions_np instance-attribute

mrope_positions_np = numpy()

num_query_heads instance-attribute

num_query_heads = get_num_attention_heads(parallel_config)

observability_config instance-attribute

observability_config = observability_config

parallel_config instance-attribute

parallel_config = parallel_config

pin_memory instance-attribute

pin_memory = is_pin_memory_available()

positions instance-attribute

positions = zeros(
    max_num_tokens, dtype=int64, device=device
)

positions_cpu instance-attribute

positions_cpu = zeros(
    max_num_tokens,
    dtype=int64,
    device="cpu",
    pin_memory=pin_memory,
)

positions_np instance-attribute

positions_np = numpy()

prompt_adapter_config instance-attribute

prompt_adapter_config = prompt_adapter_config

query_start_loc instance-attribute

query_start_loc = zeros(
    max_num_reqs + 1, dtype=int32, device=device
)

query_start_loc_cpu instance-attribute

query_start_loc_cpu = zeros(
    max_num_reqs + 1,
    dtype=int32,
    device="cpu",
    pin_memory=pin_memory,
)

query_start_loc_np instance-attribute

query_start_loc_np = numpy()

rejection_sampler instance-attribute

rejection_sampler = RejectionSampler()

requests instance-attribute

requests: dict[str, CachedRequestState] = {}

sampler instance-attribute

sampler = Sampler()

scheduler_config instance-attribute

scheduler_config = scheduler_config

seq_lens instance-attribute

seq_lens = zeros(max_num_reqs, dtype=int32, device=device)

seq_lens_cpu instance-attribute

seq_lens_cpu = zeros(
    max_num_reqs,
    dtype=int32,
    device="cpu",
    pin_memory=pin_memory,
)

seq_lens_np instance-attribute

seq_lens_np = numpy()

shared_kv_cache_layers instance-attribute

shared_kv_cache_layers: dict[str, str] = {}

slot_mapping instance-attribute

slot_mapping = zeros(
    max_num_tokens, dtype=int64, device=device
)

speculative_config instance-attribute

speculative_config = speculative_config

use_alibi instance-attribute

use_alibi = check_use_alibi(model_config)

use_aux_hidden_state_outputs instance-attribute

use_aux_hidden_state_outputs = False

use_cuda_graph instance-attribute

use_cuda_graph = (
    level == PIECEWISE
    and use_cudagraph
    and not enforce_eager
)

uses_mrope instance-attribute

uses_mrope = uses_mrope

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(vllm_config: VllmConfig, device: device)
Source code in vllm/v1/worker/gpu_model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
):
    self.vllm_config = vllm_config
    self.model_config = vllm_config.model_config
    self.cache_config = vllm_config.cache_config
    self.compilation_config = vllm_config.compilation_config
    self.lora_config = vllm_config.lora_config
    self.load_config = vllm_config.load_config
    self.parallel_config = vllm_config.parallel_config
    self.scheduler_config = vllm_config.scheduler_config
    self.speculative_config = vllm_config.speculative_config
    self.prompt_adapter_config = vllm_config.prompt_adapter_config
    self.observability_config = vllm_config.observability_config

    from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
    set_cpu_offload_max_bytes(
        int(self.cache_config.cpu_offload_gb * 1024**3))

    model_config = self.model_config
    cache_config = self.cache_config
    scheduler_config = self.scheduler_config
    parallel_config = self.parallel_config
    self.device = device
    self.pin_memory = is_pin_memory_available()
    self.dtype = self.model_config.dtype
    if cache_config.cache_dtype == "auto":
        self.kv_cache_dtype = self.dtype
    else:
        self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
            cache_config.cache_dtype]

    self.is_multimodal_model = model_config.is_multimodal_model
    self.is_pooling_model = model_config.pooler_config is not None
    self.max_model_len = model_config.max_model_len
    self.max_num_tokens = scheduler_config.max_num_batched_tokens
    self.max_num_reqs = scheduler_config.max_num_seqs

    # Model-related.
    self.num_query_heads = model_config.get_num_attention_heads(
        parallel_config)
    self.hidden_size = model_config.get_hidden_size()
    self.attention_chunk_size = model_config.attention_chunk_size

    self.cascade_attn_enabled = not self.model_config.disable_cascade_attn

    # Multi-modal data support
    self.mm_registry = MULTIMODAL_REGISTRY
    self.uses_mrope = model_config.uses_mrope

    encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
        model_config=model_config,
        scheduler_config=scheduler_config,
        mm_registry=self.mm_registry,
    )
    self.max_num_encoder_input_tokens = encoder_compute_budget
    self.encoder_cache_size = encoder_cache_size

    # Sampler
    self.sampler = Sampler()

    self.eplb_state: Optional[EplbState] = None
    """
    State of the expert parallelism load balancer.

    Will be lazily initialized when the model is loaded.
    """

    # Lazy initializations
    # self.model: nn.Module  # Set after load_model
    # Initialize in initialize_kv_cache
    self.kv_caches: list[torch.Tensor] = []
    self.attn_metadata_builders: list[AttentionMetadataBuilder] = []
    self.attn_backends: list[type[AttentionBackend]] = []
    # self.kv_cache_config: KVCacheConfig

    # req_id -> (input_id -> encoder_output)
    self.encoder_cache: dict[str, dict[int, torch.Tensor]] = {}

    self.use_aux_hidden_state_outputs = False
    # Set up speculative decoding.
    # NOTE(Jiayi): currently we put the entire draft model on
    # the last PP rank. This is not ideal if there are many
    # layers in the draft model.
    if self.speculative_config and get_pp_group().is_last_rank:
        if self.speculative_config.method == "ngram":
            self.drafter = NgramProposer(self.vllm_config)
        elif self.speculative_config.use_eagle():
            self.drafter = EagleProposer(self.vllm_config, self.device,
                                         self)  # type: ignore
            if self.speculative_config.method == "eagle3":
                self.use_aux_hidden_state_outputs = True
        elif self.speculative_config.method == "medusa":
            self.drafter = MedusaProposer(
                vllm_config=self.vllm_config,
                device=self.device)  # type: ignore
        else:
            raise ValueError("Unknown speculative decoding method: "
                             f"{self.speculative_config.method}")
        self.rejection_sampler = RejectionSampler()

    # Request states.
    self.requests: dict[str, CachedRequestState] = {}

    # Input Batch
    # NOTE(Chen): Ideally, we should initialize the input batch inside
    # `initialize_kv_cache` based on the kv cache config. However, as in
    # https://github.com/vllm-project/vllm/pull/18298, due to some unknown
    # reasons, we have to initialize the input batch before `load_model`,
    # quantization + weight offloading will fail otherwise. As a temporary
    # solution, we initialize the input batch here, and re-initialize it
    # in `initialize_kv_cache` if the block_sizes here is different from
    # the block_sizes in the kv cache config.
    self.input_batch = InputBatch(
        max_num_reqs=self.max_num_reqs,
        max_model_len=self.max_model_len,
        max_num_batched_tokens=self.max_num_tokens,
        device=self.device,
        pin_memory=self.pin_memory,
        vocab_size=self.model_config.get_vocab_size(),
        block_sizes=[self.cache_config.block_size],
        is_spec_decode=bool(self.vllm_config.speculative_config),
    )

    self.use_cuda_graph = (
        self.vllm_config.compilation_config.level
        == CompilationLevel.PIECEWISE
        and self.vllm_config.compilation_config.use_cudagraph
        and not self.model_config.enforce_eager)
    # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
    # The convention is different.
    # self.cudagraph_batch_sizes sorts in ascending order.
    # The batch sizes in the config are in descending order.
    self.cudagraph_batch_sizes = list(
        reversed(self.compilation_config.cudagraph_capture_sizes))

    self.full_cuda_graph = self.compilation_config.full_cuda_graph

    # Cache the device properties.
    self._init_device_properties()

    # Persistent buffers for CUDA graphs.
    self.input_ids = torch.zeros(self.max_num_tokens,
                                 dtype=torch.int32,
                                 device=self.device)
    self.positions = torch.zeros(self.max_num_tokens,
                                 dtype=torch.int64,
                                 device=self.device)
    self.query_start_loc = torch.zeros(self.max_num_reqs + 1,
                                       dtype=torch.int32,
                                       device=self.device)
    self.seq_lens = torch.zeros(self.max_num_reqs,
                                dtype=torch.int32,
                                device=self.device)
    self.slot_mapping = torch.zeros(self.max_num_tokens,
                                    dtype=torch.int64,
                                    device=self.device)

    # None in the first PP rank. The rest are set after load_model.
    self.intermediate_tensors: Optional[IntermediateTensors] = None

    # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
    if self.uses_mrope:
        # NOTE: `mrope_positions` is implemented with one additional dummy
        # position on purpose to make it non-contiguous so that it can work
        # with torch compile.
        # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923

        # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
        # the modality of inputs. For text-only inputs, each dimension has
        # identical position IDs, making M-RoPE functionally equivalent to
        # 1D-RoPE.
        # See page 5 of https://arxiv.org/abs/2409.12191
        self.mrope_positions = torch.zeros((3, self.max_num_tokens + 1),
                                           dtype=torch.int64,
                                           device=self.device)
        self.mrope_positions_cpu = torch.zeros(
            (3, self.max_num_tokens + 1),
            dtype=torch.int64,
            device="cpu",
            pin_memory=self.pin_memory)
        self.mrope_positions_np = self.mrope_positions_cpu.numpy()

    # Only relevant for models using ALiBi (e.g, MPT)
    self.use_alibi = check_use_alibi(model_config)

    self.inputs_embeds = torch.zeros(
        (self.max_num_tokens, self.hidden_size),
        dtype=self.dtype,
        device=self.device)

    # OPTIMIZATION: Cache the tensors rather than creating them every step.
    # Keep in int64 to avoid overflow with long context
    self.arange_np = np.arange(max(self.max_num_reqs + 1,
                                   self.max_model_len,
                                   self.max_num_tokens),
                               dtype=np.int64)
    # NOTE(woosuk): These tensors are "stateless", i.e., they are literally
    # a faster version of creating a new tensor every time. Thus, we should
    # not make any assumptions about the values in these tensors.
    self.input_ids_cpu = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int32,
                                     device="cpu",
                                     pin_memory=self.pin_memory)
    self.positions_cpu = torch.zeros(self.max_num_tokens,
                                     dtype=torch.int64,
                                     device="cpu",
                                     pin_memory=self.pin_memory)
    self.positions_np = self.positions_cpu.numpy()
    self.query_start_loc_cpu = torch.zeros(self.max_num_reqs + 1,
                                           dtype=torch.int32,
                                           device="cpu",
                                           pin_memory=self.pin_memory)
    self.query_start_loc_np = self.query_start_loc_cpu.numpy()
    self.seq_lens_cpu = torch.zeros(self.max_num_reqs,
                                    dtype=torch.int32,
                                    device="cpu",
                                    pin_memory=self.pin_memory)
    self.seq_lens_np = self.seq_lens_cpu.numpy()

    # Layer pairings for cross-layer KV sharing.
    # If an Attention layer `layer_name` is in the keys of this dict, it
    # means this layer will perform attention using the keys and values
    # from the KV cache of `shared_kv_cache_layers[layer_name]`.
    self.shared_kv_cache_layers: dict[str, str] = {}

_allocate_kv_cache_tensors

_allocate_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
) -> dict[str, Tensor]

Initializes the KV cache buffer with the correct size. The buffer needs to be reshaped to the desired shape before being used by the models.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required

Returns: dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def _allocate_kv_cache_tensors(
        self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
    """
    Initializes the KV cache buffer with the correct size. The buffer needs
    to be reshaped to the desired shape before being used by the models.

    Args:
        kv_cache_config: The KV cache config
    Returns:
        dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
     """
    kv_cache_raw_tensors: dict[str, torch.Tensor] = {}
    for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
        tensor = torch.zeros(kv_cache_tensor.size,
                             dtype=torch.int8,
                             device=self.device)
        for layer_name in kv_cache_tensor.shared_by:
            kv_cache_raw_tensors[layer_name] = tensor

    layer_names = set()
    for group in kv_cache_config.kv_cache_groups:
        layer_names.update(group.layer_names)
    assert layer_names == set(kv_cache_raw_tensors.keys(
    )), "Some layers are not correctly initialized"
    return kv_cache_raw_tensors

_calc_mrope_positions

_calc_mrope_positions(scheduler_output: SchedulerOutput)
Source code in vllm/v1/worker/gpu_model_runner.py
def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
    mrope_pos_ptr = 0
    for index, req_id in enumerate(self.input_batch.req_ids):
        req = self.requests[req_id]
        assert req.mrope_positions is not None

        num_computed_tokens = \
            self.input_batch.num_computed_tokens_cpu[index]
        num_scheduled_tokens = \
            scheduler_output.num_scheduled_tokens[req_id]
        num_prompt_tokens = len(req.prompt_token_ids)

        if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
            prompt_part_len = max(0,
                                  num_prompt_tokens - num_computed_tokens)
            completion_part_len = max(
                0, num_scheduled_tokens - prompt_part_len)
        else:
            prompt_part_len = num_scheduled_tokens
            completion_part_len = 0

        assert num_scheduled_tokens == prompt_part_len + completion_part_len

        if prompt_part_len > 0:
            # prompt's mrope_positions are pre-computed
            dst_start = mrope_pos_ptr
            dst_end = mrope_pos_ptr + prompt_part_len
            src_start = num_computed_tokens
            src_end = num_computed_tokens + prompt_part_len

            self.mrope_positions_cpu[:, dst_start:dst_end] = \
                req.mrope_positions[:,src_start:src_end]

            mrope_pos_ptr += prompt_part_len

        if completion_part_len > 0:
            # compute completion's mrope_positions on-the-fly
            dst_start = mrope_pos_ptr
            dst_end = mrope_pos_ptr + completion_part_len

            MRotaryEmbedding.get_next_input_positions_tensor(
                out=self.mrope_positions_np,
                out_offset=dst_start,
                mrope_position_delta=req.mrope_position_delta,
                context_len=num_computed_tokens + prompt_part_len,
                num_new_tokens=completion_part_len,
            )

            mrope_pos_ptr += completion_part_len

_calc_spec_decode_metadata

_calc_spec_decode_metadata(
    num_draft_tokens: ndarray,
    cu_num_scheduled_tokens: ndarray,
) -> SpecDecodeMetadata
Source code in vllm/v1/worker/gpu_model_runner.py
def _calc_spec_decode_metadata(
    self,
    num_draft_tokens: np.ndarray,
    cu_num_scheduled_tokens: np.ndarray,
) -> SpecDecodeMetadata:
    # Inputs:
    # cu_num_scheduled_tokens:  [  4, 104, 107, 207, 209]
    # num_draft_tokens:         [  3,   0,   2,   0,   1]
    # Outputs:
    # cu_num_draft_tokens:      [  3,   3,   5,   5,   6]
    # logits_indices:           [  0,   1,   2,   3, 103, 104, 105, 106,
    #                            206, 207, 208]
    # target_logits_indices:    [  0,   1,   2,   5,   6,   9]
    # bonus_logits_indices:     [  3,   4,   7,   8,  10]

    # Compute the logits indices.
    # [4, 1, 3, 1, 2]
    num_sampled_tokens = num_draft_tokens + 1

    # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
    # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
    cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
        num_sampled_tokens, cumsum_dtype=np.int32)
    # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
    logits_indices = np.repeat(
        cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
    # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
    logits_indices += arange

    # Compute the bonus logits indices.
    bonus_logits_indices = cu_num_sampled_tokens - 1

    # Compute the draft logits indices.
    # cu_num_draft_tokens: [3, 3, 5, 5, 6]
    # arange: [0, 1, 2, 0, 1, 0]
    cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
        num_draft_tokens, cumsum_dtype=np.int32)
    # [0, 0, 0, 5, 5, 9]
    target_logits_indices = np.repeat(
        cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
    # [0, 1, 2, 5, 6, 9]
    target_logits_indices += arange

    # TODO: Optimize the CPU -> GPU copy.
    cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
        self.device, non_blocking=True)
    logits_indices = torch.from_numpy(logits_indices).to(self.device,
                                                         non_blocking=True)
    target_logits_indices = torch.from_numpy(target_logits_indices).to(
        self.device, non_blocking=True)
    bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
        self.device, non_blocking=True)

    # Compute the draft token ids.
    # draft_token_indices:      [  1,   2,   3, 105, 106, 208]
    draft_token_ids = self.input_ids[logits_indices]
    draft_token_ids = draft_token_ids[target_logits_indices + 1]

    metadata = SpecDecodeMetadata(
        draft_token_ids=draft_token_ids,
        num_draft_tokens=num_draft_tokens.tolist(),
        cu_num_draft_tokens=cu_num_draft_tokens,
        target_logits_indices=target_logits_indices,
        bonus_logits_indices=bonus_logits_indices,
        logits_indices=logits_indices,
    )
    return metadata

_compute_cascade_attn_prefix_len

_compute_cascade_attn_prefix_len(
    num_scheduled_tokens: ndarray,
    num_common_prefix_blocks: int,
    kv_cache_spec: KVCacheSpec,
    attn_metadata_builder: AttentionMetadataBuilder,
) -> int

Compute the length of the common prefix for cascade attention.

NOTE(woosuk): The common prefix length returned by this function represents the length used specifically for cascade attention, not the actual number of tokens shared between requests. When cascade attention is disabled (use_cascade=False), this function returns 0 even if requests share common tokens. Additionally, the common prefix length is truncated to a multiple of the block size and may be further truncated due to implementation details explained below.

Parameters:

Name Type Description Default
num_scheduled_tokens ndarray

Number of tokens scheduled per request.

required
num_common_prefix_blocks int

Number of shared KV cache blocks.

required

Returns:

Name Type Description
int int

Length of common prefix in tokens.

Source code in vllm/v1/worker/gpu_model_runner.py
def _compute_cascade_attn_prefix_len(
    self,
    num_scheduled_tokens: np.ndarray,
    num_common_prefix_blocks: int,
    kv_cache_spec: KVCacheSpec,
    attn_metadata_builder: AttentionMetadataBuilder,
) -> int:
    """Compute the length of the common prefix for cascade attention.

    NOTE(woosuk): The common prefix length returned by this function
    represents the length used specifically for cascade attention, not the
    actual number of tokens shared between requests. When cascade attention
    is disabled (use_cascade=False), this function returns 0 even if
    requests share common tokens. Additionally, the common prefix length is
    truncated to a multiple of the block size and may be further truncated
    due to implementation details explained below.

    Args:
        num_scheduled_tokens: Number of tokens scheduled per request.
        num_common_prefix_blocks: Number of shared KV cache blocks.

    Returns:
        int: Length of common prefix in tokens.
    """
    common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
    if common_prefix_len == 0:
        # Common case.
        return 0

    # NOTE(woosuk): Cascade attention uses two attention kernels: one
    # for the common prefix and the other for the rest. For the first
    # kernel, we concatenate all the query tokens (possibly from
    # different requests) and treat them as if they are from the same
    # request. Then, we use bi-directional attention to process the
    # common prefix in the KV cache. Importantly, this means that the
    # first kernel does not do any masking.

    # Consider the following example:
    # Request 1's input query: [D, E, X]
    # Request 1's kv cache: [A, B, C, D, E, X]
    # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
    # Request 2's input query: [E, Y]
    # Request 2's kv cache: [A, B, C, D, E, Y]
    # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])

    # If we use [A, B, C, D, E] as the common prefix, then the
    # first kernel will compute the bi-directional attention between
    # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
    # However, this is wrong because D in Request 1 should not attend to
    # E in the common prefix (i.e., we need masking).
    # To avoid this, [A, B, C, D] should be the common prefix.
    # That is, the common prefix should be capped by the minimum
    # num_computed_tokens among the requests, and plus one to include
    # the first token of the query.

    # In practice, we use [A, B, C] as the common prefix, instead of
    # [A, B, C, D] (i.e., the common prefix is capped by the minimum
    # num_computed_tokens, without plus one).
    # This is because of an implementation detail: We want to always
    # use two kernels for cascade attention. Let's imagine:
    # Request 3's input query: [D]
    # Request 3's kv cache: [A, B, C, D]
    # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
    # If we use [A, B, C, D] as the common prefix for Request 1-3,
    # then Request 3 will be processed only by the first kernel,
    # and the second kernel will get an empty input. While this is not
    # a fundamental problem, our current implementation does not support
    # this case.
    num_reqs = len(num_scheduled_tokens)
    common_prefix_len = min(
        common_prefix_len,
        self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
    # common_prefix_len should be a multiple of the block size.
    common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
                         kv_cache_spec.block_size)
    use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
                          (isinstance(kv_cache_spec, FullAttentionSpec)
                           and kv_cache_spec.sliding_window is not None))
    assert isinstance(kv_cache_spec, AttentionSpec)
    use_cascade = attn_metadata_builder.use_cascade_attention(
        common_prefix_len=common_prefix_len,
        query_lens=num_scheduled_tokens,
        num_query_heads=self.num_query_heads,
        num_kv_heads=kv_cache_spec.num_kv_heads,
        use_alibi=self.use_alibi,
        use_sliding_window=use_sliding_window,
        num_sms=self.num_sms,
    )
    return common_prefix_len if use_cascade else 0

_dummy_pooler_run

_dummy_pooler_run(hidden_states: Tensor) -> Tensor
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_pooler_run(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor:

    num_tokens = hidden_states.shape[0]
    max_num_reqs = self.scheduler_config.max_num_seqs
    num_reqs = min(num_tokens, max_num_reqs)
    min_tokens_per_req = num_tokens // num_reqs
    num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
    num_scheduled_tokens_list[-1] += num_tokens % num_reqs
    assert sum(num_scheduled_tokens_list) == num_tokens
    assert len(num_scheduled_tokens_list) == num_reqs

    hidden_states_list = list(
        torch.split(hidden_states, num_scheduled_tokens_list))

    req_num_tokens = num_tokens // num_reqs

    dummy_metadata = PoolingMetadata(
        prompt_lens=torch.tensor([h.shape[0] for h in hidden_states_list],
                                 device=self.device),
        prompt_token_ids=torch.zeros((num_reqs, req_num_tokens),
                                     dtype=torch.int32,
                                     device=self.device),
        pooling_params=[PoolingParams()] * num_reqs)

    try:
        pooler_output = self.model.pooler(hidden_states=hidden_states_list,
                                          pooling_metadata=dummy_metadata)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            raise RuntimeError(
                "CUDA out of memory occurred when warming up pooler with "
                f"{num_reqs} dummy requests. Please try lowering "
                "`max_num_seqs` or `gpu_memory_utilization` when "
                "initializing the engine.") from e
        else:
            raise e
    return pooler_output

_dummy_run

_dummy_run(
    num_tokens: int,
    capture_attn_cudagraph: bool = False,
    skip_eplb: bool = False,
    is_profile: bool = False,
) -> tuple[Tensor, Tensor]
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_run(
    self,
    num_tokens: int,
    capture_attn_cudagraph: bool = False,
    skip_eplb: bool = False,
    is_profile: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:

    # Padding for DP
    num_pad, num_tokens_across_dp = self.get_dp_padding(num_tokens)
    num_tokens += num_pad

    # Set num_scheduled_tokens based on num_tokens and max_num_seqs
    # for dummy run with LoRA so that the num_reqs collectively
    # has num_tokens in total.
    assert num_tokens <= self.scheduler_config.max_num_batched_tokens
    max_num_reqs = self.scheduler_config.max_num_seqs
    num_reqs = min(num_tokens, max_num_reqs)
    min_tokens_per_req = num_tokens // num_reqs
    num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
    num_scheduled_tokens_list[-1] += num_tokens % num_reqs
    assert sum(num_scheduled_tokens_list) == num_tokens
    assert len(num_scheduled_tokens_list) == num_reqs
    num_scheduled_tokens = np.array(num_scheduled_tokens_list,
                                    dtype=np.int32)

    attn_metadata: Optional[dict[str, Any]] = None
    if capture_attn_cudagraph:
        attn_metadata = {}

        query_start_loc = self.query_start_loc[:num_reqs + 1]
        # Make sure max_model_len is used at the graph capture time.
        self.seq_lens_np[:num_reqs] = self.max_model_len
        self.seq_lens_np[num_reqs:] = 0
        self.seq_lens[:num_reqs].copy_(self.seq_lens_cpu[:num_reqs],
                                       non_blocking=True)
        seq_lens = self.seq_lens[:num_reqs]

        common_attn_metadata = CommonAttentionMetadata(
            query_start_loc=query_start_loc,
            seq_lens=seq_lens,
            num_reqs=num_reqs,
            num_actual_tokens=num_tokens,
            max_query_len=num_tokens,
        )

        for kv_cache_group_id, kv_cache_group_spec in enumerate(
                self.kv_cache_config.kv_cache_groups):

            attn_metadata_i = self.attn_metadata_builders[
                kv_cache_group_id].build_for_cudagraph_capture(
                    common_attn_metadata)
            for layer_name in kv_cache_group_spec.layer_names:
                attn_metadata[layer_name] = attn_metadata_i

    with self.maybe_dummy_run_with_lora(self.lora_config,
                                        num_scheduled_tokens):
        model = self.model
        if self.is_multimodal_model:
            input_ids = None
            inputs_embeds = self.inputs_embeds[:num_tokens]
        else:
            input_ids = self.input_ids[:num_tokens]
            inputs_embeds = None
        if self.uses_mrope:
            positions = self.mrope_positions[:, :num_tokens]
        else:
            positions = self.positions[:num_tokens]

        if get_pp_group().is_first_rank:
            intermediate_tensors = None
        else:
            if self.intermediate_tensors is None:
                self.intermediate_tensors = (
                    self.model.make_empty_intermediate_tensors(
                        batch_size=self.max_num_tokens,
                        dtype=self.model_config.dtype,
                        device=self.device))

            intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                num_tokens, None, False)

        with self.maybe_randomize_inputs(input_ids), set_forward_context(
                attn_metadata,
                self.vllm_config,
                num_tokens=num_tokens,
                num_tokens_across_dp=num_tokens_across_dp):
            outputs = model(
                input_ids=input_ids,
                positions=positions,
                intermediate_tensors=intermediate_tensors,
                inputs_embeds=inputs_embeds,
            )
        if self.use_aux_hidden_state_outputs:
            hidden_states, _ = outputs
        else:
            hidden_states = outputs

        if self.speculative_config and self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)
            self.drafter.dummy_run(num_tokens)

    # This is necessary to avoid blocking DP.
    # For dummy runs, we typically skip EPLB since we don't have any real
    # requests to process.
    # However, in DP settings, there may be cases when some DP ranks do
    # not have any requests to process, so they're executing dummy batches.
    # In such cases, we still have to trigger EPLB to make sure
    # ranks execute the rearrangement in synchronization.
    if not skip_eplb:
        self.eplb_step(is_dummy=True, is_profile=is_profile)

    logit_indices = np.cumsum(num_scheduled_tokens) - 1
    return hidden_states, hidden_states[logit_indices]

_dummy_sampler_run

_dummy_sampler_run(hidden_states: Tensor) -> Tensor
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_sampler_run(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    # The dummy hidden states may contain special values,
    # like `inf` or `nan`.
    # To avoid breaking the sampler, we use a random tensor here instead.
    hidden_states = torch.rand_like(hidden_states)

    logits = self.model.compute_logits(hidden_states, None)
    num_reqs = logits.size(0)

    dummy_tensors = lambda v: torch.full(
        (num_reqs, ), v, device=self.device)

    dummy_metadata = SamplingMetadata(
        temperature=dummy_tensors(0.5),
        all_greedy=False,
        all_random=False,
        top_p=dummy_tensors(0.9),
        top_k=dummy_tensors(logits.size(1) - 1),
        generators={},
        max_num_logprobs=None,
        no_penalties=True,
        prompt_token_ids=None,
        frequency_penalties=dummy_tensors(0.1),
        presence_penalties=dummy_tensors(0.1),
        repetition_penalties=dummy_tensors(0.1),
        output_token_ids=[[] for _ in range(num_reqs)],
        allowed_token_ids_mask=None,
        bad_words_token_ids={},
        logitsprocs=LogitsProcessorManager(),
    )
    try:
        sampler_output = self.sampler(logits=logits,
                                      sampling_metadata=dummy_metadata)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            raise RuntimeError(
                "CUDA out of memory occurred when warming up sampler with "
                f"{num_reqs} dummy requests. Please try lowering "
                "`max_num_seqs` or `gpu_memory_utilization` when "
                "initializing the engine.") from e
        else:
            raise e
    if self.speculative_config:
        draft_token_ids = [[0] for _ in range(num_reqs)]
        dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
            draft_token_ids, self.device)

        num_tokens = sum(len(ids) for ids in draft_token_ids)
        # draft_probs = torch.randn(
        #     num_tokens, logits.shape[-1], device=self.device,
        #     dtype=logits.dtype)
        draft_probs = None
        target_logits = torch.randn(num_tokens,
                                    logits.shape[-1],
                                    device=self.device,
                                    dtype=logits.dtype)
        # NOTE(woosuk): Here, we should use int32 because the sampler uses
        # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
        # will occur at runtime.
        bonus_token_ids = torch.zeros(num_reqs,
                                      device=self.device,
                                      dtype=torch.int32)
        self.rejection_sampler(
            dummy_spec_decode_metadata,
            draft_probs,
            target_logits,
            bonus_token_ids,
            dummy_metadata,
        )
    return sampler_output

_execute_mm_encoder

_execute_mm_encoder(scheduler_output: SchedulerOutput)
Source code in vllm/v1/worker/gpu_model_runner.py
def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
    scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
    if not scheduled_encoder_inputs:
        return

    # Batch the multi-modal inputs.
    mm_inputs = list[MultiModalKwargs]()
    req_ids_pos = list[tuple[str, int, PlaceholderRange]]()
    for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
        req_state = self.requests[req_id]

        for mm_input_id in encoder_input_ids:
            mm_inputs.append(req_state.mm_inputs[mm_input_id])
            req_ids_pos.append(
                (req_id, mm_input_id, req_state.mm_positions[mm_input_id]))

    # Batch mm inputs as much as we can: if a request in the batch has
    # multiple modalities or a different modality than the previous one,
    # we process it separately to preserve item order.
    # FIXME(ywang96): This is a hacky way to deal with multiple modalities
    # in the same batch while still being able to benefit from batching
    # multimodal inputs. The proper solution should be reordering the
    # encoder outputs.
    grouped_mm_inputs_list = group_mm_inputs_by_modality(mm_inputs)

    encoder_outputs = []
    for grouped_mm_inputs in grouped_mm_inputs_list:
        batched_mm_inputs = MultiModalKwargs.batch(
            grouped_mm_inputs, pin_memory=self.pin_memory)
        batched_mm_inputs = MultiModalKwargs.as_kwargs(
            batched_mm_inputs,
            device=self.device,
        )

        # Run the encoder.
        # `curr_group_outputs` is either of the following:
        # 1. A tensor of shape (num_items, feature_size, hidden_size)
        # in case feature_size is fixed across all multimodal items.
        # 2. A list or tuple (length: num_items) of tensors, each of shape
        # (feature_size, hidden_size) in case the feature size is dynamic
        # depending on the input multimodal items.
        curr_group_outputs = self.model.get_multimodal_embeddings(
            **batched_mm_inputs)

        sanity_check_mm_encoder_outputs(
            curr_group_outputs,
            expected_num_items=len(grouped_mm_inputs),
        )

        for output in curr_group_outputs:
            encoder_outputs.append(output)

    # Cache the encoder outputs.
    for (req_id, input_id, pos_info), output in zip(
            req_ids_pos,
            encoder_outputs,
    ):
        if req_id not in self.encoder_cache:
            self.encoder_cache[req_id] = {}

        self.encoder_cache[req_id][input_id] = scatter_mm_placeholders(
            output,
            is_embed=pos_info.is_embed,
        )

_gather_mm_embeddings

_gather_mm_embeddings(
    scheduler_output: SchedulerOutput,
) -> list[Tensor]
Source code in vllm/v1/worker/gpu_model_runner.py
def _gather_mm_embeddings(
    self,
    scheduler_output: "SchedulerOutput",
) -> list[torch.Tensor]:
    mm_embeds: list[torch.Tensor] = []
    for req_id in self.input_batch.req_ids:
        num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
            req_id]
        req_state = self.requests[req_id]
        num_computed_tokens = req_state.num_computed_tokens
        mm_positions = req_state.mm_positions
        for i, pos_info in enumerate(mm_positions):
            start_pos = pos_info.offset
            num_encoder_tokens = pos_info.length

            # The encoder output is needed if the two ranges overlap:
            # [num_computed_tokens,
            #  num_computed_tokens + num_scheduled_tokens) and
            # [start_pos, start_pos + num_encoder_tokens)
            if start_pos >= num_computed_tokens + num_scheduled_tokens:
                # The encoder output is not needed in this step.
                break
            if start_pos + num_encoder_tokens <= num_computed_tokens:
                # The encoder output is already processed and stored
                # in the decoder's KV cache.
                continue

            start_idx = max(num_computed_tokens - start_pos, 0)
            end_idx = min(
                num_computed_tokens - start_pos + num_scheduled_tokens,
                num_encoder_tokens)
            assert start_idx < end_idx
            assert req_id in self.encoder_cache
            assert i in self.encoder_cache[req_id]
            encoder_output = self.encoder_cache[req_id][i]

            if (is_embed := pos_info.is_embed) is not None:
                is_embed = is_embed[start_idx:end_idx]

            mm_embeds_item = gather_mm_placeholders(
                encoder_output[start_idx:end_idx],
                is_embed=is_embed,
            )
            mm_embeds.append(mm_embeds_item)
    return mm_embeds

_get_cumsum_and_arange

_get_cumsum_and_arange(
    num_tokens: ndarray,
    cumsum_dtype: Optional[dtype] = None,
) -> tuple[ndarray, ndarray]

Get the cumulative sum and batched arange of the given array.

E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])

Equivalent to but faster than:

np.concatenate([np.arange(n) for n in num_tokens])

Source code in vllm/v1/worker/gpu_model_runner.py
def _get_cumsum_and_arange(
    self,
    num_tokens: np.ndarray,
    cumsum_dtype: Optional[np.dtype] = None,
) -> tuple[np.ndarray, np.ndarray]:
    """Get the cumulative sum and batched arange of the given array.
    # E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
    # Equivalent to but faster than:
    # np.concatenate([np.arange(n) for n in num_tokens])
    """
    # Step 1. [2, 5, 3] -> [2, 7, 10]
    cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
    total_num_tokens = cu_num_tokens[-1]
    # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
    cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
    # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    arange = self.arange_np[:total_num_tokens] - cumsums_offsets

    return cu_num_tokens, arange

_get_nans_in_logits

_get_nans_in_logits(
    logits: Optional[Tensor],
) -> dict[str, int]
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_nans_in_logits(
    self,
    logits: Optional[torch.Tensor],
) -> dict[str, int]:
    try:
        if logits is None:
            return {req_id: 0 for req_id in self.input_batch.req_ids}

        num_nans_in_logits = {}
        num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
        for req_id in self.input_batch.req_ids:
            req_index = self.input_batch.req_id_to_index[req_id]
            num_nans_in_logits[req_id] = (
                int(num_nans_for_index[req_index])
                if num_nans_for_index is not None
                and req_index < logits.shape[0] else 0)
        return num_nans_in_logits
    except IndexError:
        return {}

_get_prompt_logprobs_dict

_get_prompt_logprobs_dict(
    hidden_states: Tensor, scheduler_output: SchedulerOutput
) -> dict[str, Optional[LogprobsTensors]]
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_prompt_logprobs_dict(
    self,
    hidden_states: torch.Tensor,
    scheduler_output: "SchedulerOutput",
) -> dict[str, Optional[LogprobsTensors]]:
    num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
    if not num_prompt_logprobs_dict:
        return {}

    in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
    prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}

    # Since prompt logprobs are a rare feature, prioritize simple,
    # maintainable loop over optimal performance.
    completed_prefill_reqs = []
    for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():

        num_tokens = scheduler_output.num_scheduled_tokens[req_id]

        # Get metadata for this request.
        request = self.requests[req_id]
        num_prompt_tokens = len(request.prompt_token_ids)
        prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
            self.device, non_blocking=True)

        # Set up target LogprobsTensors object.
        logprobs_tensors = in_progress_dict.get(req_id)
        if not logprobs_tensors:
            # Create empty logprobs CPU tensors for the entire prompt.
            # If chunked, we'll copy in slice by slice.
            logprobs_tensors = LogprobsTensors.empty_cpu(
                num_prompt_tokens - 1, num_prompt_logprobs + 1)
            in_progress_dict[req_id] = logprobs_tensors

        # Determine number of logits to retrieve.
        start_idx = request.num_computed_tokens
        start_tok = start_idx + 1
        num_remaining_tokens = num_prompt_tokens - start_tok
        if num_tokens <= num_remaining_tokens:
            # This is a chunk, more tokens remain.
            # In the == case, there are no more prompt logprobs to produce
            # but we want to defer returning them to the next step where we
            # have new generated tokens to return.
            num_logits = num_tokens
        else:
            # This is the last chunk of prompt tokens to return.
            num_logits = num_remaining_tokens
            completed_prefill_reqs.append(req_id)
            prompt_logprobs_dict[req_id] = logprobs_tensors

        if num_logits <= 0:
            # This can happen for the final chunk if we prefilled exactly
            # (num_prompt_tokens - 1) tokens for this request in the prior
            # step. There are no more prompt logprobs to produce.
            continue

        # Get the logits corresponding to this req's prompt tokens.
        # If this is a partial request (i.e. chunked prefill),
        # then there is prompt logprob generated for each index.
        req_idx = self.input_batch.req_id_to_index[req_id]
        offset = self.query_start_loc_np[req_idx].item()
        prompt_hidden_states = hidden_states[offset:offset + num_logits]
        logits = self.model.compute_logits(prompt_hidden_states, None)

        # Get the "target" tokens for each index. For prompt at index i,
        # the token at prompt index i+1 is the "sampled" token we want
        # to gather the logprob for.
        tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]

        # Compute prompt logprobs.
        logprobs = self.sampler.compute_logprobs(logits)
        token_ids, logprobs, ranks = self.sampler.gather_logprobs(
            logprobs, num_prompt_logprobs, tgt_token_ids)

        # Transfer GPU->CPU async.
        chunk_slice = slice(start_idx, start_idx + num_logits)
        logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
            token_ids, non_blocking=True)
        logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
                                                     non_blocking=True)
        logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
            ranks, non_blocking=True)

    # Remove requests that have completed prefill from the batch
    # num_prompt_logprobs_dict.
    for req_id in completed_prefill_reqs:
        del num_prompt_logprobs_dict[req_id]
        del in_progress_dict[req_id]

    # Must synchronize the non-blocking GPU->CPU transfers.
    if prompt_logprobs_dict:
        self._sync_device()

    return prompt_logprobs_dict

_init_device_properties

_init_device_properties() -> None

Initialize attributes from torch.cuda.get_device_properties

Source code in vllm/v1/worker/gpu_model_runner.py
def _init_device_properties(self) -> None:
    """Initialize attributes from torch.cuda.get_device_properties
    """
    self.device_properties = torch.cuda.get_device_properties(self.device)
    self.num_sms = self.device_properties.multi_processor_count

_may_reorder_batch

_may_reorder_batch(
    scheduler_output: SchedulerOutput,
) -> None

Update the order of requests in the batch based on the attention backend's needs. For example, some attention backends (namely MLA) may want to separate requests based on if the attention computation will be compute-bound or memory-bound.

Parameters:

Name Type Description Default
scheduler_output SchedulerOutput

The scheduler output.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> None:
    """
    Update the order of requests in the batch based on the attention
    backend's needs. For example, some attention backends (namely MLA) may
    want to separate requests based on if the attention computation will be
    compute-bound or memory-bound.

    Args:
        scheduler_output: The scheduler output.
    """
    self.attn_metadata_builders[0].reorder_batch(self.input_batch,
                                                 scheduler_output)

    # For models with multiple KV cache groups, the groups should agree on
    # the same order of requests. We ensure this by only allowing the first
    # group to reorder the batch and asserting that all other groups do not
    # reorder the batch.
    # TODO(tdoublep): make this more flexible so that any group can
    # re-order the batch (not only the first).
    # TODO(tdoublep): verify this during engine init instead of at runtime
    for i in range(1, len(self.kv_cache_config.kv_cache_groups)):
        batch_reordered = self.attn_metadata_builders[i].reorder_batch(
            self.input_batch, scheduler_output)
        assert not batch_reordered

_maybe_pad_mamba_page_size

_maybe_pad_mamba_page_size(
    attn_layers: dict[str, Attention],
    mamba_layers: dict[str, MambaMixer2],
    kv_cache_spec: dict[str, KVCacheSpec],
    max_model_len: int,
    block_size: int,
) -> Optional[int]

Ensure that page size of attention KV cache groups is greater than or equal to the mamba KV cache groups. If not, we suggest to the user how to set the attention block size to ensure that it is.

If the attention page size is strictly greater than the mamba page size, we pad the mamba page size to make them equal.

Parameters:

Name Type Description Default
attn_layers dict[str, Attention]

Attention layers

required
mamba_layers dict[str, MambaMixer2]

Mamba layers

required
kv_cache_spec dict[str, KVCacheSpec]

KV cache spec (populated with attention layers)

required

Returns:

Type Description
Optional[int]

Optional[int]: Mamba page size with padding (None if no padding).

Source code in vllm/v1/worker/gpu_model_runner.py
def _maybe_pad_mamba_page_size(
    self,
    attn_layers: dict[str, Attention],
    mamba_layers: dict[str, MambaMixer2],
    kv_cache_spec: dict[str, KVCacheSpec],
    max_model_len: int,
    block_size: int,
) -> Optional[int]:
    """
    Ensure that page size of attention KV cache groups is greater than or
    equal to the mamba KV cache groups. If not, we suggest to the user
    how to set the attention block size to ensure that it is.

    If the attention page size is strictly greater than the mamba page size,
    we pad the mamba page size to make them equal.

    Args:
        attn_layers: Attention layers
        mamba_layers: Mamba layers
        kv_cache_spec: KV cache spec (populated with attention layers)

    Returns:
        Optional[int]: Mamba page size with padding (None if no padding).
    """

    if len(attn_layers) == 0:
        return None

    attn_layer_name = next(iter(attn_layers))
    attn_page_size = kv_cache_spec[attn_layer_name].page_size_bytes
    mamba_layer_name = next(iter(mamba_layers))
    mamba_page_size = MambaSpec(
        shapes=mamba_layers[mamba_layer_name].get_state_shape(),
        dtype=self.kv_cache_dtype,
        block_size=max_model_len).page_size_bytes
    if attn_page_size < mamba_page_size:
        # attention page size (for 16 tokens)
        attn_page_size_16 = 16 * attn_page_size // block_size
        # some attention backends (e.g. FA) only support setting
        # block size to multiple of 16, so let's suggest a value
        # that would work (note: FA is currently not compatible
        # with mamba layers, use FlashInfer instead).
        suggest_attn_block_size = 16 * cdiv(mamba_page_size,
                                            attn_page_size_16)
        raise ValueError(
            "Attention block size should be increased to at least "
            f"{suggest_attn_block_size} in order to match "
            "the mamba page size")

    return attn_page_size

_pool

_pool(
    hidden_states: Tensor,
    num_scheduled_tokens: int,
    num_scheduled_tokens_np: ndarray,
    finished_sending: Optional[set[str]],
    finished_recving: Optional[set[str]],
) -> ModelRunnerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
def _pool(
    self,
    hidden_states: torch.Tensor,
    num_scheduled_tokens: int,
    num_scheduled_tokens_np: np.ndarray,
    finished_sending: Optional[set[str]],
    finished_recving: Optional[set[str]],
) -> ModelRunnerOutput:
    assert self.input_batch.num_reqs ==\
        len(self.input_batch.pooling_params), \
    "Either all or none of the requests in" \
    " a batch must be pooling request"

    extracted_hidden_states = list(
        torch.split(hidden_states[:num_scheduled_tokens],
                    num_scheduled_tokens_np.tolist()))

    pooling_metadata = self.input_batch.pooling_metadata

    raw_pooler_output = self.model.pooler(
        hidden_states=extracted_hidden_states,
        pooling_metadata=pooling_metadata)

    pooler_output: list[Optional[torch.Tensor]] = []
    seq_lens = self.seq_lens[:self.input_batch.num_reqs]
    for raw_output, seq_len, prompt_len in zip(
            raw_pooler_output, seq_lens, pooling_metadata.prompt_lens):

        if seq_len == prompt_len:
            pooler_output.append(raw_output.data.cpu())
        else:
            pooler_output.append(None)

    return ModelRunnerOutput(
        req_ids=self.input_batch.req_ids,
        req_id_to_index=self.input_batch.req_id_to_index,
        sampled_token_ids=[],
        spec_token_ids=None,
        logprobs=None,
        prompt_logprobs_dict={},
        pooler_output=pooler_output,
        finished_sending=finished_sending,
        finished_recving=finished_recving,
    )

_prepare_inputs

_prepare_inputs(
    scheduler_output: SchedulerOutput,
) -> tuple[
    dict[str, Any],
    bool,
    Tensor,
    Optional[SpecDecodeMetadata],
    ndarray,
]

:return: tuple[ attn_metadata: layer-to-attention_metadata mapping, attention_cuda_graphs: whether attention can run in cudagraph logits_indices, spec_decode_metadata ]

Source code in vllm/v1/worker/gpu_model_runner.py
def _prepare_inputs(
    self,
    scheduler_output: "SchedulerOutput",
) -> tuple[dict[str, Any], bool, torch.Tensor,
           Optional[SpecDecodeMetadata], np.ndarray]:
    """
    :return: tuple[
        attn_metadata: layer-to-attention_metadata mapping,
        attention_cuda_graphs: whether attention can run in cudagraph
        logits_indices, spec_decode_metadata
    ]
    """
    total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    assert total_num_scheduled_tokens > 0
    num_reqs = self.input_batch.num_reqs
    assert num_reqs > 0

    # OPTIMIZATION: Start copying the block table first.
    # This way, we can overlap the copy with the following CPU operations.
    self.input_batch.block_table.commit(num_reqs)

    # Get the number of scheduled tokens for each request.
    req_ids = self.input_batch.req_ids
    tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
    num_scheduled_tokens = np.array(tokens, dtype=np.int32)
    max_num_scheduled_tokens = max(tokens)

    # Get request indices.
    # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
    req_indices = np.repeat(self.arange_np[:num_reqs],
                            num_scheduled_tokens)

    # cu_num_tokens: [2, 5, 3] -> [2, 7, 10]
    # arange: [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    cu_num_tokens, arange = self._get_cumsum_and_arange(
        num_scheduled_tokens)

    # Get positions.
    positions_np = self.positions_np[:total_num_scheduled_tokens]
    np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
           arange,
           out=positions_np)

    # Calculate M-RoPE positions.
    # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
    if self.uses_mrope:
        self._calc_mrope_positions(scheduler_output)

    # Get token indices.
    # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
    # where M is the max_model_len.
    token_indices = (positions_np +
                     req_indices * self.input_batch.token_ids_cpu.shape[1])

    # NOTE(woosuk): We use torch.index_select instead of np.take here
    # because torch.index_select is much faster than np.take for large
    # tensors.
    torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
                       0,
                       torch.from_numpy(token_indices),
                       out=self.input_ids_cpu[:total_num_scheduled_tokens])

    # Calculate the slot mapping for each KV cache group.
    for kv_cache_group_id, kv_cache_group_spec in enumerate(
            self.kv_cache_config.kv_cache_groups):
        block_size = kv_cache_group_spec.kv_cache_spec.block_size
        block_table: BlockTable = self.input_batch.block_table[
            kv_cache_group_id]
        # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        # -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1]
        # where K is the max_num_blocks_per_req and the block size is 2.
        # NOTE(woosuk): We can't simply use `token_indices // block_size`
        # here because M (max_model_len) is not necessarily divisible by
        # block_size.
        block_table_indices = (
            req_indices * block_table.max_num_blocks_per_req +
            positions_np // block_size)
        block_table_cpu = block_table.get_cpu_tensor()
        block_numbers = block_table_cpu.flatten(
        )[block_table_indices].numpy()
        block_offsets = positions_np % block_size
        np.add(
            block_numbers * block_size,
            block_offsets,
            out=block_table.slot_mapping_np[:total_num_scheduled_tokens])

    # Prepare the attention metadata.
    self.query_start_loc_np[0] = 0
    self.query_start_loc_np[1:num_reqs + 1] = cu_num_tokens

    self.seq_lens_np[:num_reqs] = (
        self.input_batch.num_computed_tokens_cpu[:num_reqs] +
        num_scheduled_tokens)

    # Copy the tensors to the GPU.
    self.input_ids[:total_num_scheduled_tokens].copy_(
        self.input_ids_cpu[:total_num_scheduled_tokens], non_blocking=True)
    if self.uses_mrope:
        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        self.mrope_positions[:, :total_num_scheduled_tokens].copy_(
            self.mrope_positions_cpu[:, :total_num_scheduled_tokens],
            non_blocking=True)
    else:
        # Common case (1D positions)
        self.positions[:total_num_scheduled_tokens].copy_(
            self.positions_cpu[:total_num_scheduled_tokens],
            non_blocking=True)

    self.query_start_loc[:num_reqs + 1].copy_(
        self.query_start_loc_cpu[:num_reqs + 1], non_blocking=True)
    self.seq_lens[:num_reqs].copy_(self.seq_lens_cpu[:num_reqs],
                                   non_blocking=True)

    # Fill unused with -1. Needed for reshape_and_cache
    self.seq_lens[num_reqs:].fill_(0)
    # Note: pad query_start_loc to be non-decreasing, as kernels
    # like FlashAttention requires that
    self.query_start_loc[num_reqs + 1:].fill_(
        self.query_start_loc_cpu[num_reqs].item())

    query_start_loc = self.query_start_loc[:num_reqs + 1]
    seq_lens = self.seq_lens[:num_reqs]

    common_attn_metadata = CommonAttentionMetadata(
        query_start_loc=query_start_loc,
        seq_lens=seq_lens,
        num_reqs=num_reqs,
        num_actual_tokens=total_num_scheduled_tokens,
        max_query_len=max_num_scheduled_tokens,
    )

    attn_metadata: dict[str, Any] = {}
    # Prepare the attention metadata for each KV cache group and make layers
    # in the same group share the same metadata.
    for kv_cache_group_id, kv_cache_group_spec in enumerate(
            self.kv_cache_config.kv_cache_groups):

        # Prepare for cascade attention if enabled & beneficial.
        common_prefix_len = 0
        builder = self.attn_metadata_builders[kv_cache_group_id]
        if self.cascade_attn_enabled:
            common_prefix_len = self._compute_cascade_attn_prefix_len(
                num_scheduled_tokens,
                scheduler_output.
                num_common_prefix_blocks[kv_cache_group_id],
                kv_cache_group_spec.kv_cache_spec,
                builder,
            )

        attn_metadata_i = (builder.build(
            common_prefix_len=common_prefix_len,
            common_attn_metadata=common_attn_metadata,
        ))

        for layer_name in kv_cache_group_spec.layer_names:
            attn_metadata[layer_name] = attn_metadata_i

    attention_cuda_graphs = all(
        b.can_run_in_cudagraph(common_attn_metadata)
        for b in self.attn_metadata_builders)

    use_spec_decode = len(
        scheduler_output.scheduled_spec_decode_tokens) > 0
    if not use_spec_decode:
        # NOTE(woosuk): Due to chunked prefills, the batch may contain
        # partial requests. While we should not sample any token
        # from these partial requests, we do so for simplicity.
        # We will ignore the sampled tokens from the partial requests.
        # TODO: Support prompt logprobs.
        logits_indices = query_start_loc[1:] - 1
        spec_decode_metadata = None
    else:
        # Get the number of draft tokens for each request.
        # Iterate over the dictionary rather than all requests since not all
        # requests have draft tokens.
        num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
        for req_id, draft_token_ids in (
                scheduler_output.scheduled_spec_decode_tokens.items()):
            req_idx = self.input_batch.req_id_to_index[req_id]
            num_draft_tokens[req_idx] = len(draft_token_ids)

        spec_decode_metadata = self._calc_spec_decode_metadata(
            num_draft_tokens, cu_num_tokens)
        logits_indices = spec_decode_metadata.logits_indices

    # Hot-Swap lora model
    if self.lora_config:
        self.set_active_loras(self.input_batch, num_scheduled_tokens)

    return (attn_metadata, attention_cuda_graphs, logits_indices,
            spec_decode_metadata, num_scheduled_tokens)

_reshape_kv_cache_tensors

_reshape_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
    kv_cache_raw_tensors: dict[str, Tensor],
) -> dict[str, Tensor]

Reshape the KV cache tensors to the desired shape and dtype.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required
kv_cache_raw_tensors dict[str, Tensor]

The KV cache buffer of each layer, with

required

Returns: Dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def _reshape_kv_cache_tensors(
    self,
    kv_cache_config: KVCacheConfig,
    kv_cache_raw_tensors: dict[str, torch.Tensor],
) -> dict[str, torch.Tensor]:
    """
    Reshape the KV cache tensors to the desired shape and dtype.

    Args:
        kv_cache_config: The KV cache config
        kv_cache_raw_tensors: The KV cache buffer of each layer, with
        correct size but uninitialized shape.
    Returns:
        Dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
    """
    kv_caches: dict[str, torch.Tensor] = {}
    has_attn, has_mamba = False, False
    for i, kv_cache_group_spec in enumerate(
            kv_cache_config.kv_cache_groups):
        kv_cache_spec = kv_cache_group_spec.kv_cache_spec
        for layer_name in kv_cache_group_spec.layer_names:
            raw_tensor = kv_cache_raw_tensors[layer_name]
            assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
            num_blocks = (raw_tensor.numel() //
                          kv_cache_spec.page_size_bytes)
            if isinstance(kv_cache_spec, AttentionSpec):
                has_attn = True
                kv_cache_shape = self.attn_backends[i].get_kv_cache_shape(
                    num_blocks, kv_cache_spec.block_size,
                    kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
                dtype = kv_cache_spec.dtype
                try:
                    kv_cache_stride_order = self.attn_backends[
                        i].get_kv_cache_stride_order()
                    assert len(kv_cache_stride_order) == len(
                        kv_cache_shape)
                except (AttributeError, NotImplementedError):
                    kv_cache_stride_order = tuple(
                        range(len(kv_cache_shape)))
                # The allocation respects the backend-defined stride order
                # to ensure the semantic remains consistent for each
                # backend. We first obtain the generic kv cache shape and
                # then permute it according to the stride order which could
                # result in a non-contiguous tensor.
                kv_cache_shape = tuple(kv_cache_shape[i]
                                       for i in kv_cache_stride_order)
                # Maintain original KV shape view.
                inv_order = [
                    kv_cache_stride_order.index(i)
                    for i in range(len(kv_cache_stride_order))
                ]
                kv_caches[layer_name] = kv_cache_raw_tensors[
                    layer_name].view(dtype).view(kv_cache_shape).permute(
                        *inv_order)
            elif isinstance(kv_cache_spec, MambaSpec):
                has_mamba = True
                raw_tensor = kv_cache_raw_tensors[layer_name]
                dtype = kv_cache_spec.dtype
                num_element_per_page = (kv_cache_spec.page_size_bytes //
                                        get_dtype_size(dtype))
                state_tensors = []
                storage_offset = 0
                for shape in kv_cache_spec.shapes:
                    target_shape = (num_blocks, *shape)
                    stride = torch.empty(target_shape).stride()
                    target_stride = (num_element_per_page, *stride[1:])
                    tensor = torch.as_strided(
                        raw_tensor.view(dtype),
                        size=target_shape,
                        stride=target_stride,
                        storage_offset=storage_offset,
                    )
                    state_tensors.append(tensor)
                    storage_offset += stride[0]

                kv_caches[layer_name] = state_tensors
            else:
                raise NotImplementedError

    if has_attn and has_mamba:
        self._verify_hybrid_attention_mamba_layout(kv_cache_config,
                                                   kv_cache_raw_tensors)

    return kv_caches

_sync_device

_sync_device() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def _sync_device(self) -> None:
    torch.cuda.synchronize()

_update_states

_update_states(scheduler_output: SchedulerOutput) -> None

Update the cached states and the persistent batch with the scheduler output.

The updated states are used by the _prepare_inputs function to create the input GPU tensors for the model.

The SamplingMetadata is updated and copied to the GPU if there is a new/resumed/paused/finished request in the batch.

Source code in vllm/v1/worker/gpu_model_runner.py
def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
    """Update the cached states and the persistent batch with the scheduler
    output.

    The updated states are used by the `_prepare_inputs` function to create
    the input GPU tensors for the model.

    The SamplingMetadata is updated and copied to the GPU if there is a
    new/resumed/paused/finished request in the batch.
    """
    # Remove finished requests from the cached states.
    for req_id in scheduler_output.finished_req_ids:
        self.requests.pop(req_id, None)
        self.encoder_cache.pop(req_id, None)
    # Remove the finished requests from the persistent batch.
    # NOTE(woosuk): There could be an edge case where finished_req_ids and
    # scheduled_req_ids overlap. This happens when a request is aborted and
    # then resubmitted with the same ID. In this case, we treat them as two
    # distinct requests - clearing the cached states for the first request
    # and handling the second as a new request.
    for req_id in scheduler_output.finished_req_ids:
        self.input_batch.remove_request(req_id)

    # Free the cached encoder outputs.
    for req_id, input_id in scheduler_output.free_encoder_input_ids:
        encoder_outputs = self.encoder_cache.get(req_id)
        if encoder_outputs is not None:
            encoder_outputs.pop(input_id, None)
            if not encoder_outputs:
                self.encoder_cache.pop(req_id, None)

    # Remove the unscheduled requests from the persistent batch.
    # NOTE(woosuk): The unscheduled requests are either preempted requests
    # or running requests that are not scheduled in this step. We remove
    # them from the persistent batch but keep their cached states since
    # they will be scheduled again sometime in the future.
    scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
    cached_req_ids = self.input_batch.req_id_to_index.keys()
    unscheduled_req_ids = cached_req_ids - scheduled_req_ids
    # NOTE(woosuk): The persistent batch optimization assumes that
    # consecutive batches contain mostly the same requests. If batches
    # have low request overlap (e.g., alternating between two distinct
    # sets of requests), this optimization becomes very inefficient.
    for req_id in unscheduled_req_ids:
        self.input_batch.remove_request(req_id)

    req_ids_to_add: list[str] = []
    # Add new requests to the cached states.
    for new_req_data in scheduler_output.scheduled_new_reqs:
        req_id = new_req_data.req_id
        sampling_params = new_req_data.sampling_params
        pooling_params = new_req_data.pooling_params
        if sampling_params and \
            sampling_params.sampling_type == SamplingType.RANDOM_SEED:
            generator = torch.Generator(device=self.device)
            generator.manual_seed(sampling_params.seed)
        else:
            generator = None

        self.requests[req_id] = CachedRequestState(
            req_id=req_id,
            prompt_token_ids=new_req_data.prompt_token_ids,
            mm_inputs=new_req_data.mm_inputs,
            mm_positions=new_req_data.mm_positions,
            sampling_params=sampling_params,
            pooling_params=pooling_params,
            generator=generator,
            block_ids=new_req_data.block_ids,
            num_computed_tokens=new_req_data.num_computed_tokens,
            output_token_ids=[],
            lora_request=new_req_data.lora_request,
        )

        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            image_grid_thw = []
            video_grid_thw = []
            second_per_grid_ts = []
            audio_feature_lengths = []
            use_audio_in_video = False
            for mm_input in self.requests[req_id].mm_inputs:
                if mm_input.get("image_grid_thw") is not None:
                    image_grid_thw.extend(
                        mm_input["image_grid_thw"].tolist())
                if mm_input.get("video_grid_thw") is not None:
                    video_grid_thw.extend(
                        mm_input["video_grid_thw"].tolist())
                if mm_input.get("second_per_grid_ts") is not None:
                    second_per_grid_ts.extend(
                        mm_input["second_per_grid_ts"])
                if mm_input.get("audio_feature_lengths") is not None:
                    audio_feature_lengths.extend(
                        mm_input["audio_feature_lengths"])
                if mm_input.get("use_audio_in_video") is True:
                    use_audio_in_video = True

            hf_config = self.model_config.hf_config

            self.requests[req_id].mrope_positions, \
                self.requests[req_id].mrope_position_delta = \
                MRotaryEmbedding.get_input_positions_tensor(
                    self.requests[req_id].prompt_token_ids,
                    hf_config=hf_config,
                    image_grid_thw=image_grid_thw,
                    video_grid_thw=video_grid_thw,
                    second_per_grid_ts=second_per_grid_ts,
                    audio_feature_lengths=audio_feature_lengths,
                    use_audio_in_video=use_audio_in_video,
                )

        req_ids_to_add.append(req_id)

    # Update the states of the running/resumed requests.
    is_last_rank = get_pp_group().is_last_rank
    req_data = scheduler_output.scheduled_cached_reqs
    for i, req_id in enumerate(req_data.req_ids):
        req_state = self.requests[req_id]
        num_computed_tokens = req_data.num_computed_tokens[i]
        new_block_ids = req_data.new_block_ids[i]
        resumed_from_preemption = req_data.resumed_from_preemption[i]

        # Update the cached states.
        req_state.num_computed_tokens = num_computed_tokens

        if not is_last_rank:
            # When using PP, the scheduler sends the sampled tokens back,
            # because there's no direct communication between the first-
            # stage worker and the last-stage worker.
            new_token_ids = req_data.new_token_ids[i]
            # Add the sampled token(s) from the previous step (if any).
            # This doesn't include "unverified" tokens like spec tokens.
            num_new_tokens = (num_computed_tokens + len(new_token_ids) -
                              req_state.num_tokens)
            if num_new_tokens == 1:
                # Avoid slicing list in most common case.
                req_state.output_token_ids.append(new_token_ids[-1])
            elif num_new_tokens > 0:
                req_state.output_token_ids.extend(
                    new_token_ids[-num_new_tokens:])

        # Update the block IDs.
        if not resumed_from_preemption:
            # Append the new blocks to the existing block IDs.
            for block_ids, new_ids in zip(req_state.block_ids,
                                          new_block_ids):
                block_ids.extend(new_ids)
        else:
            # The request is resumed from preemption.
            # Replace the existing block IDs with the new ones.
            req_state.block_ids = new_block_ids

        req_index = self.input_batch.req_id_to_index.get(req_id)
        if req_index is None:
            # The request is not in the persistent batch.
            # The request was either preempted and resumed later, or was not
            # scheduled in the previous step and needs to be added again.
            req_ids_to_add.append(req_id)
            continue

        # Update the persistent batch.
        self.input_batch.num_computed_tokens_cpu[req_index] = (
            num_computed_tokens)
        self.input_batch.block_table.append_row(new_block_ids, req_index)

        # For the last rank, we don't need to update the token_ids_cpu
        # because the sampled tokens are already cached.
        if not is_last_rank:
            # Add new_token_ids to token_ids_cpu.
            start_token_index = num_computed_tokens
            end_token_index = num_computed_tokens + len(new_token_ids)
            self.input_batch.token_ids_cpu[
                req_index,
                start_token_index:end_token_index] = new_token_ids
            self.input_batch.num_tokens_no_spec[
                req_index] = end_token_index
            # Add spec_token_ids to token_ids_cpu.
            spec_token_ids = (
                scheduler_output.scheduled_spec_decode_tokens.get(
                    req_id, ()))
            if spec_token_ids:
                start_index = end_token_index
                end_token_index += len(spec_token_ids)
                self.input_batch.token_ids_cpu[
                    req_index,
                    start_index:end_token_index] = spec_token_ids
            # NOTE(woosuk): `num_tokens` here may include spec tokens.
            self.input_batch.num_tokens[req_index] = end_token_index

    # Add the new or resumed requests to the persistent batch.
    # The smaller empty indices are filled first.
    for req_id in req_ids_to_add:
        req_state = self.requests[req_id]
        self.input_batch.add_request(req_state)

    # Condense the batched states if there are gaps left by removed requests
    self.input_batch.condense()
    # Allow attention backend to reorder the batch, potentially
    self._may_reorder_batch(scheduler_output)
    # Refresh batch metadata with any pending updates.
    self.input_batch.refresh_metadata()

_verify_hybrid_attention_mamba_layout

_verify_hybrid_attention_mamba_layout(
    kv_cache_config: KVCacheConfig,
    kv_cache_raw_tensors: dict[str, Tensor],
) -> None

Verify that the KV cache memory layout is compatible for models with both attention and mamba KV cache groups.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required
kv_cache_raw_tensors dict[str, Tensor]

The KV cache buffer of each layer.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def _verify_hybrid_attention_mamba_layout(
        self, kv_cache_config: KVCacheConfig,
        kv_cache_raw_tensors: dict[str, torch.Tensor]) -> None:
    """
    Verify that the KV cache memory layout is compatible for
    models with both attention and mamba KV cache groups.

    Args:
        kv_cache_config: The KV cache config
        kv_cache_raw_tensors: The KV cache buffer of each layer.
    """

    for i, kv_cache_group_spec in enumerate(
            kv_cache_config.kv_cache_groups):
        kv_cache_spec = kv_cache_group_spec.kv_cache_spec
        for layer_name in kv_cache_group_spec.layer_names:
            raw_tensor = kv_cache_raw_tensors[layer_name]
            num_blocks = (raw_tensor.numel() //
                          kv_cache_spec.page_size_bytes)
            if isinstance(kv_cache_spec, AttentionSpec):
                kv_cache_shape = self.attn_backends[i].get_kv_cache_shape(
                    num_blocks, kv_cache_spec.block_size,
                    kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
                if kv_cache_shape[0] != num_blocks or kv_cache_shape[
                        1] != 2:
                    raise ValueError(
                        "Hybrid models in V1 require an attention "
                        "backend with kv_cache_shape="
                        "(num_blocks, 2, ...). Please try setting "
                        "VLLM_ATTENTION_BACKEND=FLASHINFER")

apply_grammar_bitmask

apply_grammar_bitmask(
    scheduler_output: SchedulerOutput, logits: Tensor
)
Source code in vllm/v1/worker/gpu_model_runner.py
def apply_grammar_bitmask(
    self,
    scheduler_output: "SchedulerOutput",
    logits: torch.Tensor,
):
    grammar_bitmask = scheduler_output.grammar_bitmask
    if grammar_bitmask is None:
        return

    # We receive the structured output bitmask from the scheduler,
    # compacted to contain bitmasks only for structured output requests.
    # The order of the requests in the bitmask is not guaranteed to be the
    # same as the order of the requests in the gpu runner's batch. We need
    # to sort the bitmask to match the order of the requests used here.

    # Get the batch indices of the structured output requests.
    # Keep track of the number of speculative tokens scheduled for every
    # request in the batch, as the logit indices are offset by this amount.
    struct_out_req_batch_indices: dict[str, int] = {}
    cumulative_offset = 0
    seq = sorted(self.input_batch.req_id_to_index.items(),
                 key=lambda x: x[1])
    for req_id, batch_index in seq:
        logit_index = batch_index + cumulative_offset
        cumulative_offset += len(
            scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
        if req_id in scheduler_output.structured_output_request_ids:
            struct_out_req_batch_indices[req_id] = logit_index

    out_indices = []

    # Reorder the bitmask to match the order of the requests in the batch.
    sorted_bitmask = np.zeros_like(grammar_bitmask,
                                   shape=(logits.shape[0],
                                          grammar_bitmask.shape[1]))
    cumulative_index = 0
    seq = sorted(scheduler_output.structured_output_request_ids.items(),
                 key=lambda x: x[1])
    for req_id, _ in seq:
        logit_index = struct_out_req_batch_indices[req_id]
        num_spec_tokens = len(
            scheduler_output.scheduled_spec_decode_tokens.get(req_id, []))
        for i in range(1 + num_spec_tokens):
            sorted_bitmask[logit_index + i] = \
                grammar_bitmask[cumulative_index + i]
            out_indices.append(logit_index + i)
        cumulative_index += 1 + num_spec_tokens
    grammar_bitmask = sorted_bitmask

    # Serialization of np.ndarray is much more efficient than a tensor,
    # so we receive it in that format.
    grammar_bitmask = torch.from_numpy(grammar_bitmask)

    # Force use of the torch.compile implementation from xgrammar to work
    # around issues with the Triton kernel in concurrent structured output
    # scenarios. See PR #19565 and issues #19493, #18376 for details.
    xgr_torch_compile.apply_token_bitmask_inplace_torch_compile(
        logits,
        grammar_bitmask.to(self.device, non_blocking=True),
        indices=out_indices,
    )

capture_model

capture_model() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def capture_model(self) -> None:
    if not self.use_cuda_graph:
        logger.warning(
            "Skipping CUDA graph capture. To turn on CUDA graph capture, "
            "set -O %s and ensure `use_cudagraph` was not manually set to "
            "False", CompilationLevel.PIECEWISE)
        return

    compilation_counter.num_gpu_runner_capture_triggers += 1

    start_time = time.perf_counter()
    start_free_gpu_memory = torch.cuda.mem_get_info()[0]

    # Trigger CUDA graph capture for specific shapes.
    # Capture the large shapes first so that the smaller shapes
    # can reuse the memory pool allocated for the large shapes.
    with graph_capture(device=self.device):
        full_cg = self.full_cuda_graph
        # Only rank 0 should print progress bar during capture
        compilation_cases = reversed(self.cudagraph_batch_sizes)
        if is_global_first_rank():
            compilation_cases = tqdm(list(compilation_cases),
                                     desc="Capturing CUDA graph shapes")
        for num_tokens in compilation_cases:
            # We skip EPLB here since we don't want to record dummy metrics
            for _ in range(
                    self.compilation_config.cudagraph_num_of_warmups):
                self._dummy_run(num_tokens,
                                capture_attn_cudagraph=full_cg,
                                skip_eplb=True)
            self._dummy_run(num_tokens,
                            capture_attn_cudagraph=full_cg,
                            skip_eplb=True)

    end_time = time.perf_counter()
    end_free_gpu_memory = torch.cuda.mem_get_info()[0]
    elapsed_time = end_time - start_time
    cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
    # This usually takes 5~20 seconds.
    logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
                elapsed_time, cuda_graph_size / (1 << 30))

eplb_step

eplb_step(
    is_dummy: bool = False, is_profile: bool = False
) -> None

Step for the EPLB (Expert Parallelism Load Balancing) state.

Source code in vllm/v1/worker/gpu_model_runner.py
def eplb_step(self,
              is_dummy: bool = False,
              is_profile: bool = False) -> None:
    """
    Step for the EPLB (Expert Parallelism Load Balancing) state.
    """
    if not self.parallel_config.enable_eplb:
        return

    assert self.eplb_state is not None
    assert is_mixture_of_experts(self.model)
    self.eplb_state.step(
        self.model,
        is_dummy,
        is_profile,
        log_stats=self.parallel_config.eplb_log_balancedness,
    )

execute_model

execute_model(
    scheduler_output: SchedulerOutput,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
) -> Union[ModelRunnerOutput, IntermediateTensors]
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def execute_model(
    self,
    scheduler_output: "SchedulerOutput",
    intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[ModelRunnerOutput, IntermediateTensors]:
    self._update_states(scheduler_output)
    if not scheduler_output.total_num_scheduled_tokens:
        if not has_kv_transfer_group():
            # Return empty ModelRunnerOutput if there's no work to do.
            return EMPTY_MODEL_RUNNER_OUTPUT

        return self.kv_connector_no_forward(scheduler_output)

    # Prepare the decoder inputs.
    (attn_metadata, attention_cuda_graphs, logits_indices,
     spec_decode_metadata,
     num_scheduled_tokens_np) = (self._prepare_inputs(scheduler_output))
    num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    if (self.use_cuda_graph
            and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
        # Use piecewise CUDA graphs.
        # Add padding to the batch size.
        num_input_tokens = self.vllm_config.pad_for_cudagraph(
            num_scheduled_tokens)
    else:
        # Eager mode.
        # Pad tokens to multiple of tensor_parallel_size when
        # enabled collective fusion for SP
        tp_size = self.vllm_config.parallel_config.tensor_parallel_size
        if self.compilation_config.pass_config. \
            enable_sequence_parallelism and tp_size > 1:
            num_input_tokens = round_up(num_scheduled_tokens, tp_size)
        else:
            num_input_tokens = num_scheduled_tokens

    # Padding for DP
    num_pad, num_tokens_across_dp = self.get_dp_padding(num_input_tokens)
    num_input_tokens += num_pad

    # _prepare_inputs may reorder the batch, so we must gather multi
    # modal outputs after that to ensure the correct order
    if self.is_multimodal_model:
        # Run the multimodal encoder if any.
        self._execute_mm_encoder(scheduler_output)
        mm_embeds = self._gather_mm_embeddings(scheduler_output)
    else:
        mm_embeds = []

    if self.is_multimodal_model and get_pp_group().is_first_rank:
        # NOTE(woosuk): To unify token ids and soft tokens (vision
        # embeddings), we always use embeddings (rather than token ids)
        # as input to the multimodal model, even when the input is text.
        input_ids = self.input_ids[:num_scheduled_tokens]
        if mm_embeds:
            inputs_embeds = self.model.get_input_embeddings(
                input_ids, mm_embeds)
        else:
            inputs_embeds = self.model.get_input_embeddings(input_ids)
        # TODO(woosuk): Avoid the copy. Optimize.
        self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds)
        inputs_embeds = self.inputs_embeds[:num_input_tokens]
        input_ids = None
    else:
        # For text-only models, we use token ids as input.
        # While it is possible to use embeddings as input just like the
        # multimodal models, it is not desirable for performance since
        # then the embedding layer is not included in the CUDA graph.
        input_ids = self.input_ids[:num_input_tokens]
        inputs_embeds = None
    if self.uses_mrope:
        positions = self.mrope_positions[:, :num_input_tokens]
    else:
        positions = self.positions[:num_input_tokens]

    if get_pp_group().is_first_rank:
        intermediate_tensors = None
    else:
        intermediate_tensors = self.sync_and_slice_intermediate_tensors(
            num_input_tokens, intermediate_tensors, True)

    # Some attention backends only support CUDA Graphs in pure decode.
    # If attention doesn't support CUDA Graphs for this batch, but we
    # compiled with full CUDA graphs, we have to skip them entirely.
    skip_cuda_graphs = self.full_cuda_graph and not attention_cuda_graphs

    # Run the model.
    # Use persistent buffers for CUDA graphs.
    with set_forward_context(
            attn_metadata,
            self.vllm_config,
            num_tokens=num_input_tokens,
            num_tokens_across_dp=num_tokens_across_dp,
            skip_cuda_graphs=skip_cuda_graphs,
    ):
        self.maybe_setup_kv_connector(scheduler_output)

        model_output = self.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )

        self.maybe_wait_for_kv_save()
        finished_sending, finished_recving = (
            self.get_finished_kv_transfers(scheduler_output))

    if self.use_aux_hidden_state_outputs:
        hidden_states, aux_hidden_states = model_output
    else:
        hidden_states = model_output
        aux_hidden_states = None

    # Broadcast PP output for external_launcher (torchrun)
    # to make sure we are synced across pp ranks
    # TODO: Support overlapping mirco-batches
    # https://github.com/vllm-project/vllm/issues/18019
    broadcast_pp_output = \
        self.parallel_config.distributed_executor_backend \
        == "external_launcher" and len(get_pp_group().ranks) > 0
    if not get_pp_group().is_last_rank:
        # For mid-pipeline stages, return the hidden states.
        if not broadcast_pp_output:
            return hidden_states
        assert isinstance(hidden_states, IntermediateTensors)
        get_pp_group().send_tensor_dict(hidden_states.tensors,
                                        all_gather_group=get_tp_group())
        logits = None
    else:
        if self.input_batch.pooling_params:
            return self._pool(hidden_states, num_scheduled_tokens,
                              num_scheduled_tokens_np, finished_sending,
                              finished_recving)

        sample_hidden_states = hidden_states[logits_indices]
        logits = self.model.compute_logits(sample_hidden_states, None)
    if broadcast_pp_output:
        model_output_broadcast_data = {
            "logits": logits.contiguous(),
        } if logits is not None else {}
        model_output_broadcast_data = get_pp_group().broadcast_tensor_dict(
            model_output_broadcast_data, src=len(get_pp_group().ranks) - 1)
        assert model_output_broadcast_data is not None
        logits = model_output_broadcast_data["logits"]

    # Apply structured output bitmasks if present
    if scheduler_output.grammar_bitmask is not None:
        self.apply_grammar_bitmask(scheduler_output, logits)

    # Sample the next token and get logprobs if needed.
    sampling_metadata = self.input_batch.sampling_metadata
    if spec_decode_metadata is None:
        sampler_output = self.sampler(
            logits=logits,
            sampling_metadata=sampling_metadata,
        )
    else:
        # When indexing with a tensor (bonus_logits_indices), PyTorch
        # creates a new tensor with separate storage from the original
        # logits tensor. This means any in-place operations on bonus_logits
        # won't affect the original logits tensor.
        assert logits is not None
        bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
        sampler_output = self.sampler(
            logits=bonus_logits,
            sampling_metadata=sampling_metadata,
        )
        bonus_token_ids = sampler_output.sampled_token_ids

        # Just like `bonus_logits`, `target_logits` is a new tensor with
        # separate storage from the original `logits` tensor. Therefore,
        # it is safe to update `target_logits` in place.
        target_logits = logits[spec_decode_metadata.target_logits_indices]
        output_token_ids = self.rejection_sampler(
            spec_decode_metadata,
            None,  # draft_probs
            target_logits,
            bonus_token_ids,
            sampling_metadata,
        )
        sampler_output.sampled_token_ids = output_token_ids

    num_nans_in_logits = {}
    if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
        num_nans_in_logits = self._get_nans_in_logits(logits)

    # TODO(woosuk): The following loop can be slow since it iterates over
    # the requests one by one. Optimize.
    discard_sampled_tokens_req_indices = []
    for i, req_id in enumerate(self.input_batch.req_ids):
        req_state = self.requests[req_id]
        seq_len = (req_state.num_computed_tokens +
                   scheduler_output.num_scheduled_tokens[req_id])
        if seq_len < req_state.num_tokens:
            # Ignore the sampled token for partial prefills.
            # Rewind the generator state as if the token was not sampled.
            # This relies on cuda-specific torch-internal impl details
            generator = self.input_batch.generators.get(i)
            if generator is not None:
                generator.set_offset(generator.get_offset() - 4)
            # Record the index of the request that should not be sampled,
            # so that we could clear the sampled tokens before returning.
            discard_sampled_tokens_req_indices.append(i)

    # NOTE: GPU -> CPU Sync happens here.
    # Move as many CPU operations as possible before this sync point.
    logprobs_tensors = sampler_output.logprobs_tensors
    logprobs_lists = logprobs_tensors.tolists() \
        if logprobs_tensors is not None else None

    # Compute prompt logprobs if needed.
    prompt_logprobs_dict = self._get_prompt_logprobs_dict(
        hidden_states[:num_scheduled_tokens],
        scheduler_output,
    )

    # Get the valid generated tokens.
    sampled_token_ids = sampler_output.sampled_token_ids
    max_gen_len = sampled_token_ids.shape[-1]
    if max_gen_len == 1:
        # No spec decode tokens.
        valid_sampled_token_ids = sampled_token_ids.tolist()
    else:
        # Includes spec decode tokens.
        valid_sampled_token_ids = self.rejection_sampler.parse_output(
            sampled_token_ids,
            self.input_batch.vocab_size,
        )
    # Mask out the sampled tokens that should not be sampled.
    for i in discard_sampled_tokens_req_indices:
        valid_sampled_token_ids[i].clear()

    # Cache the sampled tokens in the model runner, so that the scheduler
    # doesn't need to send them back.
    # NOTE(woosuk): As an exception, when using PP, the scheduler sends
    # the sampled tokens back, because there's no direct communication
    # between the first-stage worker and the last-stage worker.
    for req_idx, sampled_ids in enumerate(valid_sampled_token_ids):
        if not sampled_ids:
            continue

        start_idx = self.input_batch.num_tokens_no_spec[req_idx]
        end_idx = start_idx + len(sampled_ids)
        assert end_idx <= self.max_model_len, (
            "Sampled token IDs exceed the max model length. "
            f"Total number of tokens: {end_idx} > max_model_len: "
            f"{self.max_model_len}")

        self.input_batch.token_ids_cpu[req_idx,
                                       start_idx:end_idx] = sampled_ids
        self.input_batch.num_tokens_no_spec[req_idx] = end_idx
        self.input_batch.num_tokens[req_idx] = end_idx
        req_id = self.input_batch.req_ids[req_idx]
        req_state = self.requests[req_id]
        req_state.output_token_ids.extend(sampled_ids)

    if not self.speculative_config:
        # Speculative decoding is not enabled.
        spec_token_ids = None
    else:
        spec_token_ids = self.propose_draft_token_ids(
            scheduler_output,
            valid_sampled_token_ids,
            sampling_metadata,
            hidden_states,
            sample_hidden_states,
            aux_hidden_states,
            spec_decode_metadata,
            attn_metadata,
        )

    # Clear KVConnector state after all KVs are generated.
    if has_kv_transfer_group():
        get_kv_transfer_group().clear_connector_metadata()

    self.eplb_step()

    return ModelRunnerOutput(
        req_ids=self.input_batch.req_ids,
        req_id_to_index=self.input_batch.req_id_to_index,
        sampled_token_ids=valid_sampled_token_ids,
        spec_token_ids=spec_token_ids,
        logprobs=logprobs_lists,
        prompt_logprobs_dict=prompt_logprobs_dict,
        pooler_output=[],
        finished_sending=finished_sending,
        finished_recving=finished_recving,
        num_nans_in_logits=num_nans_in_logits,
    )

get_dp_padding

get_dp_padding(
    num_tokens: int,
) -> tuple[int, Optional[Tensor]]
Source code in vllm/v1/worker/gpu_model_runner.py
def get_dp_padding(self,
                   num_tokens: int) -> tuple[int, Optional[torch.Tensor]]:
    dp_size = self.vllm_config.parallel_config.data_parallel_size
    dp_rank = self.vllm_config.parallel_config.data_parallel_rank

    # For DP: Don't pad when setting enforce_eager.
    # This lets us set enforce_eager on the prefiller in a P/D setup and
    # still use CUDA graphs (enabled by this padding) on the decoder.
    #
    # TODO(tms) : There are many cases where padding is enabled for
    # prefills, causing unnecessary and excessive padding of activations.

    if dp_size == 1 or self.vllm_config.model_config.enforce_eager:
        # Early exit.
        return 0, None

    num_tokens_across_dp = DPMetadata.num_tokens_across_dp(
        num_tokens, dp_size, dp_rank)
    max_tokens_across_dp_cpu = torch.max(num_tokens_across_dp).item()
    num_tokens_after_padding = torch.tensor([max_tokens_across_dp_cpu] *
                                            dp_size,
                                            device="cpu",
                                            dtype=torch.int32)
    return max_tokens_across_dp_cpu - num_tokens, num_tokens_after_padding

get_finished_kv_transfers staticmethod

get_finished_kv_transfers(
    scheduler_output: SchedulerOutput,
) -> tuple[Optional[set[str]], Optional[set[str]]]
Source code in vllm/v1/worker/gpu_model_runner.py
@staticmethod
def get_finished_kv_transfers(
    scheduler_output: "SchedulerOutput",
) -> tuple[Optional[set[str]], Optional[set[str]]]:
    if has_kv_transfer_group():
        return get_kv_transfer_group().get_finished(
            scheduler_output.finished_req_ids)
    return None, None

get_kv_cache_spec

get_kv_cache_spec() -> dict[str, KVCacheSpec]

Generates the KVCacheSpec by parsing the kv cache format from each Attention module in the static forward context. Returns: KVCacheSpec: A dictionary mapping layer names to their KV cache format. Layers that do not need KV cache are not included.

Source code in vllm/v1/worker/gpu_model_runner.py
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
    """
    Generates the KVCacheSpec by parsing the kv cache format from each
    Attention module in the static forward context.
    Returns:
        KVCacheSpec: A dictionary mapping layer names to their KV cache
        format. Layers that do not need KV cache are not included.
    """

    block_size = self.vllm_config.cache_config.block_size
    use_mla = self.vllm_config.model_config.use_mla
    kv_cache_spec: dict[str, KVCacheSpec] = {}
    attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
    for layer_name, attn_module in attn_layers.items():
        if (kv_tgt_layer :=
                attn_module.kv_sharing_target_layer_name) is not None:
            # The layer doesn't need its own KV cache and will use that of
            # the target layer. We skip creating a KVCacheSpec for it, so
            # that KV cache management logic will act as this layer does
            # not exist, and doesn't allocate KV cache for the layer. This
            # enables the memory saving of cross-layer kv sharing, allowing
            # a given amount of memory to accommodate longer context lengths
            # or enable more requests to be processed simultaneously.
            self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
            continue

        # TODO: Support other attention modules, e.g., cross-attention
        if attn_module.attn_type == AttentionType.DECODER:
            if attn_module.sliding_window is not None:
                kv_cache_spec[layer_name] = SlidingWindowSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype,
                    sliding_window=attn_module.sliding_window,
                    use_mla=use_mla)
            else:
                kv_cache_spec[layer_name] = FullAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype,
                    use_mla=use_mla)
        elif attn_module.attn_type in (AttentionType.ENCODER,
                                       AttentionType.ENCODER_ONLY):
            # encoder-only attention does not need KV cache.
            continue
        elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
            raise NotImplementedError
        else:
            raise ValueError(
                f"Unknown attention type: {attn_module.attn_type}")

    mamba_layers = get_layers_from_vllm_config(self.vllm_config,
                                               MambaMixer2)
    if len(mamba_layers) > 0:
        if self.vllm_config.speculative_config is not None:
            raise NotImplementedError(
                "Mamba with speculative decoding is not supported yet.")
        if not self.vllm_config.model_config.enforce_eager:
            raise NotImplementedError(
                "Mamba with cuda graph is not supported yet.")
        if self.vllm_config.cache_config.enable_prefix_caching:
            raise NotImplementedError(
                "Prefix caching is not supported for Mamba yet.")
        max_model_len = self.vllm_config.model_config.max_model_len

        page_size_padded = self._maybe_pad_mamba_page_size(
            attn_layers, mamba_layers, kv_cache_spec, max_model_len,
            block_size)

        # Set block_size to max_model_len, so that mamba model will always
        # have only one block in the KV cache.
        for layer_name, mamba_module in mamba_layers.items():
            kv_cache_spec[layer_name] = MambaSpec(
                shapes=mamba_module.get_state_shape(),
                dtype=self.kv_cache_dtype,
                block_size=max_model_len,
                page_size_padded=page_size_padded)

    return kv_cache_spec

get_model

get_model() -> Module
Source code in vllm/v1/worker/gpu_model_runner.py
def get_model(self) -> nn.Module:
    return self.model

initialize_attn_backend

initialize_attn_backend(
    kv_cache_config: KVCacheConfig,
) -> None

Initialize the attention backends and attention metadata builders.

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
    """
    Initialize the attention backends and attention metadata builders.
    """
    assert len(self.attn_backends) == 0 and len(
        self.attn_metadata_builders
    ) == 0, "Attention backends are already initialized"
    for i, kv_cache_group_spec in enumerate(
            kv_cache_config.kv_cache_groups):
        kv_cache_spec = kv_cache_group_spec.kv_cache_spec
        if isinstance(kv_cache_spec, AttentionSpec):
            attn_backend_i = get_attn_backend(
                kv_cache_spec.head_size,
                self.dtype,
                kv_cache_spec.dtype,
                kv_cache_spec.block_size,
                self.model_config.is_attention_free,
                use_mla=kv_cache_spec.use_mla,
            )
            if attn_backend_i is None:
                error_msg = (f"Error with get_attn_backend: "
                             f"{kv_cache_spec.head_size=}, "
                             f"{self.dtype=}, {kv_cache_spec.dtype=}, "
                             f"{kv_cache_spec.block_size=}, "
                             f"{self.model_config.is_attention_free=}, "
                             f"{kv_cache_spec.use_mla=}")
                logger.error(error_msg)
                raise NotImplementedError(
                    "Non-Attention backend is not supported by V1 "
                    "GPUModelRunner.")
        elif isinstance(kv_cache_spec, MambaSpec):
            attn_backend_i = Mamba2AttentionBackend
        else:
            raise ValueError(
                f"Unknown KV cache spec type: {type(kv_cache_spec)}")

        block_table_i = self.input_batch.block_table[i]
        attn_metadata_builder_i = attn_backend_i.get_builder_cls()(
            weakref.proxy(self),
            kv_cache_spec,
            block_table_i,
        )

        if (self.full_cuda_graph
                and not attn_metadata_builder_i.full_cudagraph_supported):
            raise ValueError(
                f"Full CUDAGraph not supported for "
                f"{attn_backend_i.__name__}. Turn off CompilationConfig."
                f"full_cuda_graph or use a different attention backend.")

        self.attn_backends.append(attn_backend_i)
        self.attn_metadata_builders.append(attn_metadata_builder_i)

initialize_kv_cache

initialize_kv_cache(kv_cache_config: KVCacheConfig) -> None

Initialize KV cache based on kv_cache_config. Args: kv_cache_config: Configuration for the KV cache, including the KV cache size of each layer

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
    """
    Initialize KV cache based on `kv_cache_config`.
    Args:
        kv_cache_config: Configuration for the KV cache, including the KV
        cache size of each layer
    """
    self.kv_cache_config = kv_cache_config
    self.may_reinitialize_input_batch(kv_cache_config)
    self.initialize_attn_backend(kv_cache_config)
    kv_caches = self.initialize_kv_cache_tensors(kv_cache_config)

    if self.speculative_config and self.speculative_config.use_eagle():
        assert isinstance(self.drafter, EagleProposer)
        # validate all draft model layers belong to the same kv cache
        # group
        self.drafter.validate_same_kv_cache_group(kv_cache_config)

    if has_kv_transfer_group():
        get_kv_transfer_group().register_kv_caches(kv_caches)

initialize_kv_cache_tensors

initialize_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
) -> dict[str, Tensor]

Initialize the memory buffer for KV cache.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required

Returns: Dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_kv_cache_tensors(
        self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
    """
    Initialize the memory buffer for KV cache.

    Args:
        kv_cache_config: The KV cache config
    Returns:
        Dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
    """
    # Initialize the memory buffer for KV cache
    kv_cache_raw_tensors = self._allocate_kv_cache_tensors(kv_cache_config)
    # Change the memory buffer to the desired shape
    kv_caches = self._reshape_kv_cache_tensors(kv_cache_config,
                                               kv_cache_raw_tensors)

    # Setup `kv_cache_config` and `kv_caches` for models
    # with cross-layer KV sharing
    if self.shared_kv_cache_layers:
        initialize_kv_cache_for_kv_sharing(
            self.shared_kv_cache_layers,
            kv_cache_config.kv_cache_groups,
            kv_caches,
        )

    bind_kv_cache(kv_caches,
                  self.compilation_config.static_forward_context,
                  self.kv_caches)
    return kv_caches

kv_connector_no_forward

kv_connector_no_forward(
    scheduler_output: SchedulerOutput,
) -> ModelRunnerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
def kv_connector_no_forward(
        self, scheduler_output: "SchedulerOutput") -> ModelRunnerOutput:
    # KV send/recv even if no work to do.
    with set_forward_context(None, self.vllm_config):
        self.maybe_setup_kv_connector(scheduler_output)
        finished_sending, finished_recving = (
            self.get_finished_kv_transfers(scheduler_output))

    if not finished_sending and not finished_recving:
        return EMPTY_MODEL_RUNNER_OUTPUT

    output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
    output.finished_sending = finished_sending
    output.finished_recving = finished_recving
    return output

load_model

load_model() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def load_model(self) -> None:
    logger.info("Starting to load model %s...", self.model_config.model)
    with DeviceMemoryProfiler() as m:  # noqa: SIM117
        time_before_load = time.perf_counter()
        model_loader = get_model_loader(self.load_config)
        if not hasattr(self, "model"):
            logger.info("Loading model from scratch...")
            self.model = model_loader.load_model(
                vllm_config=self.vllm_config,
                model_config=self.model_config)
        else:
            logger.info(
                "Model was already initialized. Loading weights inplace..."
            )
            model_loader.load_weights(self.model,
                                      model_config=self.model_config)
        if has_step_pooler(self.model):
            self.input_batch.logits_processing_needs_token_ids = True
        if self.lora_config:
            self.model = self.load_lora_model(self.model,
                                              self.model_config,
                                              self.scheduler_config,
                                              self.lora_config,
                                              self.device)
        if hasattr(self, "drafter"):
            logger.info("Loading drafter model...")
            self.drafter.load_model(self.model)
        if self.use_aux_hidden_state_outputs:
            self.model.set_aux_hidden_state_layers(
                self.model.get_eagle3_aux_hidden_state_layers())
        time_after_load = time.perf_counter()
    self.model_memory_usage = m.consumed_memory
    logger.info("Model loading took %.4f GiB and %.6f seconds",
                self.model_memory_usage / GiB_bytes,
                time_after_load - time_before_load)
    prepare_communication_buffer_for_model(self.model)

    if is_mixture_of_experts(
            self.model) and self.parallel_config.enable_eplb:
        logger.info("EPLB is enabled for model %s.",
                    self.model_config.model)
        self.eplb_state = EplbState.build(
            self.model,
            self.device,
            self.parallel_config,
        )

may_reinitialize_input_batch

may_reinitialize_input_batch(
    kv_cache_config: KVCacheConfig,
) -> None

Re-initialize the input batch if the block sizes are different from [self.cache_config.block_size]. This usually happens when there are multiple KV cache groups.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache configuration.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def may_reinitialize_input_batch(self,
                                 kv_cache_config: KVCacheConfig) -> None:
    """
    Re-initialize the input batch if the block sizes are different from
    `[self.cache_config.block_size]`. This usually happens when there
    are multiple KV cache groups.

    Args:
        kv_cache_config: The KV cache configuration.
    """
    block_sizes = [
        kv_cache_group.kv_cache_spec.block_size
        for kv_cache_group in kv_cache_config.kv_cache_groups
    ]
    if block_sizes != [self.cache_config.block_size]:
        assert self.cache_config.cpu_offload_gb == 0, (
            "Cannot re-initialize the input batch when CPU weight "
            "offloading is enabled. See https://github.com/vllm-project/vllm/pull/18298 "  # noqa: E501
            "for more details.")
        self.input_batch = InputBatch(
            max_num_reqs=self.max_num_reqs,
            max_model_len=self.max_model_len,
            max_num_batched_tokens=self.max_num_tokens,
            device=self.device,
            pin_memory=self.pin_memory,
            vocab_size=self.model_config.get_vocab_size(),
            block_sizes=block_sizes,
            is_spec_decode=bool(self.vllm_config.speculative_config),
        )

maybe_randomize_inputs

maybe_randomize_inputs(input_ids: Tensor)

Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set. This is to help balance expert-selection - during profile_run - during DP rank dummy run

Source code in vllm/v1/worker/gpu_model_runner.py
@contextmanager
def maybe_randomize_inputs(self, input_ids: torch.Tensor):
    """
    Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set.
    This is to help balance expert-selection
     - during profile_run
     - during DP rank dummy run 
    """
    dp_size = self.vllm_config.parallel_config.data_parallel_size
    randomize_inputs = envs.VLLM_RANDOMIZE_DP_DUMMY_INPUTS and dp_size > 1
    if not randomize_inputs:
        yield
    else:
        import functools

        @functools.cache
        def rand_input_ids() -> torch.Tensor:
            return torch.randint_like(
                self.input_ids,
                low=0,
                high=self.model_config.get_vocab_size(),
                dtype=input_ids.dtype)

        logger.debug("Randomizing dummy data for DP Rank")
        input_ids.copy_(rand_input_ids()[:input_ids.size(0)],
                        non_blocking=True)
        yield
        input_ids.fill_(0)

maybe_setup_kv_connector staticmethod

maybe_setup_kv_connector(scheduler_output: SchedulerOutput)
Source code in vllm/v1/worker/gpu_model_runner.py
@staticmethod
def maybe_setup_kv_connector(scheduler_output: "SchedulerOutput"):
    # Update KVConnector with the KVConnector metadata forward().
    if has_kv_transfer_group():
        kv_connector = get_kv_transfer_group()
        assert isinstance(kv_connector, KVConnectorBase_V1)
        assert scheduler_output.kv_connector_metadata is not None
        kv_connector.bind_connector_metadata(
            scheduler_output.kv_connector_metadata)

        # Background KV cache transfers happen here.
        # These transfers are designed to be async and the requests
        # involved may be disjoint from the running requests.
        # Do this here to save a collective_rpc.
        kv_connector.start_load_kv(get_forward_context())

maybe_wait_for_kv_save staticmethod

maybe_wait_for_kv_save() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
@staticmethod
def maybe_wait_for_kv_save() -> None:
    if has_kv_transfer_group():
        get_kv_transfer_group().wait_for_save()

profile_run

profile_run() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def profile_run(self) -> None:
    # Profile with multimodal encoder & encoder cache.
    # TODO: handle encoder-decoder models once we support them.
    if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
            and self.encoder_cache_size > 0):

        # NOTE: Currently model is profiled with a single non-text
        # modality with the max possible input tokens even when
        # it supports multiple.
        max_tokens_by_modality_dict = self.mm_registry \
            .get_max_tokens_per_item_by_nonzero_modality(self.model_config)
        dummy_data_modality, max_tokens_per_mm_item = max(
            max_tokens_by_modality_dict.items(), key=lambda item: item[1])

        # Check how many items of this modality can be supported by
        # the encoder budget.
        encoder_budget = min(self.max_num_encoder_input_tokens,
                             self.encoder_cache_size)

        max_num_mm_items_encoder_budget = cdiv(encoder_budget,
                                               max_tokens_per_mm_item)

        # Check how many items of this modality can be supported by
        # the decoder budget.
        max_mm_items_per_req = self.mm_registry.get_mm_limits_per_prompt(
            self.model_config)[dummy_data_modality]

        # NOTE: We do not consider max_num_batched_tokens on purpose
        # because the multimodal embeddings can be generated in advance
        # and chunked prefilled.
        max_num_mm_items_decoder_budget = self.max_num_reqs * \
            max_mm_items_per_req

        max_num_mm_items = min(max_num_mm_items_encoder_budget,
                               max_num_mm_items_decoder_budget)

        logger.info(
            "Encoder cache will be initialized with a budget of %s tokens,"
            " and profiled with %s %s items of the maximum feature size.",
            encoder_budget, max_num_mm_items, dummy_data_modality)

        # Create dummy batch of multimodal inputs.
        dummy_mm_kwargs = self.mm_registry.get_decoder_dummy_data(
            model_config=self.model_config,
            seq_len=self.max_num_tokens,
            mm_counts={
                dummy_data_modality: 1
            },
        ).multi_modal_data

        batched_dummy_mm_inputs = MultiModalKwargs.batch(
            [dummy_mm_kwargs] * max_num_mm_items,
            pin_memory=self.pin_memory)
        batched_dummy_mm_inputs = MultiModalKwargs.as_kwargs(
            batched_dummy_mm_inputs,
            device=self.device,
        )

        # Run multimodal encoder.
        dummy_encoder_outputs = self.model.get_multimodal_embeddings(
            **batched_dummy_mm_inputs)

        sanity_check_mm_encoder_outputs(
            dummy_encoder_outputs,
            expected_num_items=max_num_mm_items,
        )

        # Cache the dummy encoder outputs.
        self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))

    # Add `is_profile` here to pre-allocate communication buffers
    hidden_states, last_hidden_states \
        = self._dummy_run(self.max_num_tokens, is_profile=True)
    if get_pp_group().is_last_rank:
        if self.is_pooling_model:
            output = self._dummy_pooler_run(hidden_states)
        else:
            output = self._dummy_sampler_run(last_hidden_states)
    else:
        output = None
    self._sync_device()
    del hidden_states, output
    self.encoder_cache.clear()
    gc.collect()

propose_draft_token_ids

propose_draft_token_ids(
    scheduler_output: SchedulerOutput,
    sampled_token_ids: list[list[int]],
    sampling_metadata: SamplingMetadata,
    hidden_states: Tensor,
    sample_hidden_states: Tensor,
    aux_hidden_states: Optional[Tensor],
    spec_decode_metadata: Optional[SpecDecodeMetadata],
    attn_metadata: dict[str, Any],
) -> list[list[int]]
Source code in vllm/v1/worker/gpu_model_runner.py
def propose_draft_token_ids(
    self,
    scheduler_output: "SchedulerOutput",
    sampled_token_ids: list[list[int]],
    sampling_metadata: SamplingMetadata,
    hidden_states: torch.Tensor,
    sample_hidden_states: torch.Tensor,
    aux_hidden_states: Optional[torch.Tensor],
    spec_decode_metadata: Optional[SpecDecodeMetadata],
    attn_metadata: dict[str, Any],
) -> list[list[int]]:
    num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    if self.speculative_config.method == "ngram":
        assert isinstance(self.drafter, NgramProposer)
        spec_token_ids = self.propose_ngram_draft_token_ids(
            sampled_token_ids)
    elif self.speculative_config.method == "medusa":
        assert isinstance(self.drafter, MedusaProposer)
        if sample_hidden_states.shape[0] == len(sampled_token_ids):
            # The input to the target model does not include draft tokens.
            hidden_states = sample_hidden_states
        else:
            indices = []
            offset = 0
            for num_draft, tokens in zip(
                    spec_decode_metadata.num_draft_tokens,
                    sampled_token_ids):
                indices.append(offset + len(tokens) - 1)
                offset += num_draft + 1
            indices = torch.tensor(indices, device=self.device)
            hidden_states = sample_hidden_states[indices]

        spec_token_ids = self.drafter.propose(
            target_hidden_states=hidden_states,
            sampling_metadata=sampling_metadata,
        )
    elif self.speculative_config.use_eagle():
        assert isinstance(self.drafter, EagleProposer)
        # TODO(woosuk): Refactor the loop.
        next_token_ids: list[int] = []
        for i, token_ids in enumerate(sampled_token_ids):
            if token_ids:
                # Common case.
                next_token_id = token_ids[-1]
            else:
                # Partial prefill (rare case).
                # Get the next token id from the request state.
                req_id = self.input_batch.req_ids[i]
                req_state = self.requests[req_id]
                seq_len = (req_state.num_computed_tokens +
                           scheduler_output.num_scheduled_tokens[req_id])
                next_token_id = req_state.get_token_id(seq_len)
            next_token_ids.append(next_token_id)
        next_token_ids = torch.tensor(next_token_ids,
                                      dtype=torch.int32,
                                      device=self.device)
        # At this moment, we assume all eagle layers belong to the same KV
        # cache group, thus using the same attention metadata.
        eagle_attn_metadata = attn_metadata[
            self.drafter.attn_layer_names[0]]

        # NOTE: deepseek_mtp uses MLA which does not have `block_table`
        if hasattr(eagle_attn_metadata, "block_table"):
            block_table = eagle_attn_metadata.block_table
        else:
            block_table = None

        if spec_decode_metadata is None:
            # input_ids can be None for multimodal models.
            target_token_ids = self.input_ids[:num_scheduled_tokens]
            # TODO(woosuk): Support M-RoPE.
            target_positions = self.positions[:num_scheduled_tokens]
            if self.use_aux_hidden_state_outputs:
                target_hidden_states = torch.cat(
                    [h[:num_scheduled_tokens] for h in aux_hidden_states],
                    dim=-1)
            else:
                target_hidden_states = hidden_states[:num_scheduled_tokens]
            target_slot_mapping = eagle_attn_metadata.slot_mapping
            cu_num_tokens = eagle_attn_metadata.query_start_loc
        else:
            # TODO(woosuk): Refactor this.
            num_draft_tokens = spec_decode_metadata.num_draft_tokens
            num_rejected_tokens = [
                n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
                for i, n in enumerate(num_draft_tokens)
            ]
            num_rejected_tokens_tensor = async_tensor_h2d(
                num_rejected_tokens,
                dtype=torch.int32,
                target_device=self.device,
                pin_memory=True)
            num_tokens = num_scheduled_tokens - sum(num_rejected_tokens)
            cu_num_tokens, token_indices = self.drafter.prepare_inputs(
                eagle_attn_metadata.query_start_loc,
                num_rejected_tokens_tensor,
                num_tokens,
            )
            target_token_ids = self.input_ids[token_indices]
            # TODO(woosuk): Support M-RoPE.
            target_positions = self.positions[token_indices]
            if self.use_aux_hidden_state_outputs:
                target_hidden_states = torch.cat(
                    [h[token_indices] for h in aux_hidden_states], dim=-1)
            else:
                target_hidden_states = hidden_states[token_indices]
            target_slot_mapping = eagle_attn_metadata.slot_mapping[
                token_indices]
        draft_token_ids = self.drafter.propose(
            target_token_ids=target_token_ids,
            target_positions=target_positions,
            target_hidden_states=target_hidden_states,
            target_slot_mapping=target_slot_mapping,
            next_token_ids=next_token_ids,
            cu_num_tokens=cu_num_tokens,
            block_table=block_table,
            sampling_metadata=sampling_metadata,
        )
        spec_token_ids = draft_token_ids.tolist()
    return spec_token_ids

propose_ngram_draft_token_ids

propose_ngram_draft_token_ids(
    sampled_token_ids: list[list[int]],
) -> list[list[int]]
Source code in vllm/v1/worker/gpu_model_runner.py
def propose_ngram_draft_token_ids(
    self,
    sampled_token_ids: list[list[int]],
) -> list[list[int]]:
    # TODO(woosuk): Optimize.
    draft_token_ids: list[list[int]] = []
    for i, sampled_ids in enumerate(sampled_token_ids):
        num_sampled_ids = len(sampled_ids)
        if not num_sampled_ids:
            # Skip speculative decoding.
            draft_token_ids.append([])
            continue

        # Skip requests that require sampling parameters that are not
        # supported with speculative decoding.
        req_id = self.input_batch.req_ids[i]
        if req_id in self.input_batch.spec_decode_unsupported_reqs:
            draft_token_ids.append([])
            continue

        num_tokens = self.input_batch.num_tokens_no_spec[i]
        if num_tokens >= self.max_model_len:
            # Skip requests that have already reached the max model length.
            draft_token_ids.append([])
            continue

        drafter_output = self.drafter.propose(
            self.input_batch.token_ids_cpu[i, :num_tokens])
        if drafter_output is None or len(drafter_output) == 0:
            draft_token_ids.append([])
        else:
            draft_token_ids.append(drafter_output.tolist())
    return draft_token_ids

save_tensorized_model

save_tensorized_model(
    tensorizer_config: TensorizerConfig,
) -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def save_tensorized_model(
    self,
    tensorizer_config: "TensorizerConfig",
) -> None:
    TensorizerLoader.save_model(
        self.model,
        tensorizer_config=tensorizer_config,
    )

sync_and_slice_intermediate_tensors

sync_and_slice_intermediate_tensors(
    num_tokens: int,
    intermediate_tensors: IntermediateTensors,
    sync_self: bool,
) -> IntermediateTensors
Source code in vllm/v1/worker/gpu_model_runner.py
def sync_and_slice_intermediate_tensors(
        self, num_tokens: int, intermediate_tensors: IntermediateTensors,
        sync_self: bool) -> IntermediateTensors:

    assert self.intermediate_tensors is not None

    tp = self.vllm_config.parallel_config.tensor_parallel_size
    enabled_sp = self.compilation_config.pass_config. \
        enable_sequence_parallelism
    if enabled_sp:
        # When sequence parallelism is enabled, we always pad num_tokens
        # to be a multiple of tensor_parallel_size (tp) earlier
        assert num_tokens % tp == 0
    is_residual_scattered = tp > 1 and enabled_sp \
        and num_tokens % tp == 0

    # When sequence parallelism is enabled, the "residual" tensor is sharded
    # across tensor parallel ranks, so each rank only needs its own slice.
    if sync_self:
        assert intermediate_tensors is not None
        for k, v in intermediate_tensors.items():
            is_scattered = "residual" and is_residual_scattered
            copy_len = num_tokens // tp if is_scattered else \
                num_tokens
            self.intermediate_tensors[k][:copy_len].copy_(
                v[:copy_len], non_blocking=True)

    return IntermediateTensors({
        k:
        v[:num_tokens // tp]
        if k == "residual" and is_residual_scattered else v[:num_tokens]
        for k, v in self.intermediate_tensors.items()
    })