Skip to content

vllm.v1.attention.backends.rocm_aiter_fa

Attention layer with AiterFlashAttention.

logger module-attribute

logger = init_logger(__name__)

AiterFlashAttentionBackend

Bases: AttentionBackend

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
class AiterFlashAttentionBackend(AttentionBackend):

    accept_output_buffer: bool = True

    @staticmethod
    def get_supported_head_sizes() -> list[int]:
        return [32, 64, 96, 128, 160, 192, 224, 256]

    @staticmethod
    def get_name() -> str:
        return "FLASH_ATTN_VLLM_V1"

    @staticmethod
    def get_impl_cls() -> type["AiterFlashAttentionImpl"]:
        return AiterFlashAttentionImpl

    @staticmethod
    def get_metadata_cls() -> type["AttentionMetadata"]:
        return AiterFlashAttentionMetadata

    @staticmethod
    def get_builder_cls() -> type["AiterFlashAttentionMetadataBuilder"]:
        return AiterFlashAttentionMetadataBuilder

    @staticmethod
    def get_kv_cache_shape(
        num_blocks: int,
        block_size: int,
        num_kv_heads: int,
        head_size: int,
    ) -> tuple[int, ...]:
        if block_size % 16 != 0:
            raise ValueError("Block size must be a multiple of 16.")
        return (2, num_blocks, block_size, num_kv_heads, head_size)

accept_output_buffer class-attribute instance-attribute

accept_output_buffer: bool = True

get_builder_cls staticmethod

get_builder_cls() -> type[
    AiterFlashAttentionMetadataBuilder
]
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_builder_cls() -> type["AiterFlashAttentionMetadataBuilder"]:
    return AiterFlashAttentionMetadataBuilder

get_impl_cls staticmethod

get_impl_cls() -> type[AiterFlashAttentionImpl]
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_impl_cls() -> type["AiterFlashAttentionImpl"]:
    return AiterFlashAttentionImpl

get_kv_cache_shape staticmethod

get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> tuple[int, ...]
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> tuple[int, ...]:
    if block_size % 16 != 0:
        raise ValueError("Block size must be a multiple of 16.")
    return (2, num_blocks, block_size, num_kv_heads, head_size)

get_metadata_cls staticmethod

get_metadata_cls() -> type[AttentionMetadata]
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
    return AiterFlashAttentionMetadata

get_name staticmethod

get_name() -> str
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_name() -> str:
    return "FLASH_ATTN_VLLM_V1"

get_supported_head_sizes staticmethod

get_supported_head_sizes() -> list[int]
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@staticmethod
def get_supported_head_sizes() -> list[int]:
    return [32, 64, 96, 128, 160, 192, 224, 256]

AiterFlashAttentionImpl

Bases: AttentionImpl

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
class AiterFlashAttentionImpl(AttentionImpl):

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: Optional[list[float]],
        sliding_window: Optional[int],
        kv_cache_dtype: str,
        blocksparse_params: Optional[dict[str, Any]] = None,
        logits_soft_cap: Optional[float] = None,
        attn_type: AttentionType = AttentionType.DECODER,
        kv_sharing_target_layer_name: Optional[int] = None,
        use_irope: bool = False,
    ) -> None:
        if blocksparse_params is not None:
            raise ValueError(
                "AiterFlashAttention does not support block-sparse attention.")
        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = float(scale)
        self.num_kv_heads = num_kv_heads
        if alibi_slopes is not None:
            alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
        self.alibi_slopes = alibi_slopes
        if sliding_window is None:
            self.sliding_window = [-1, -1]
        else:
            self.sliding_window = [sliding_window - 1, 0]
        self.kv_cache_dtype = kv_cache_dtype
        if logits_soft_cap is None:
            # In flash-attn, setting logits_soft_cap as 0 means no soft cap.
            logits_soft_cap = 0.
        self.logits_soft_cap = logits_soft_cap
        self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

        assert self.num_heads % self.num_kv_heads == 0
        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        support_head_sizes = \
            AiterFlashAttentionBackend.get_supported_head_sizes()
        if head_size not in support_head_sizes:
            raise ValueError(
                f"Head size {head_size} is not supported by "
                "AiterFlashAttention. "
                f"Supported head sizes are: {support_head_sizes}. "
                "Set VLLM_USE_V1=0 to use another attention backend.")

        if attn_type != AttentionType.DECODER:
            raise NotImplementedError("Encoder self-attention and "
                                      "encoder/decoder cross-attention "
                                      "are not implemented for "
                                      "FlashAttentionImpl")
        self.use_irope = use_irope
        if is_quantized_kv_cache(self.kv_cache_dtype):
            raise NotImplementedError(
                "AiterFlashAttention does not support fp8 kv-cache on this "
                "device.")

    def forward(
        self,
        layer: torch.nn.Module,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AiterFlashAttentionMetadata,
        output: Optional[torch.Tensor] = None,
        output_scale: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass with AiterFlashAttention.

        Args:
            query: shape = [num_tokens, num_heads, head_size]
            key: shape = [num_tokens, num_kv_heads, head_size]
            value: shape = [num_tokens, num_kv_heads, head_size]
            kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
            attn_metadata: Metadata for attention.
        Returns:
            shape = [num_tokens, num_heads * head_size]
        NOTE: FP8 quantization, flash-attn expect the size of
              {q,k,v}_descale to be (num_sequences, num_kv_heads).
              We use torch's .expand() to avoid duplicating values
        """
        assert output is not None, "Output tensor must be provided."

        if output_scale is not None:
            raise NotImplementedError(
                "fused output quantization is not yet supported"
                " for FlashAttentionImpl")

        if attn_metadata is None:
            # Profiling run.
            return output

        # IMPORTANT!
        # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
        # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
        # in this method. For example, `view` and `slice` (or `[:n]`) operations
        # are surprisingly slow even in the case they do not invoke any GPU ops.
        # Minimize the PyTorch ops in this method as much as possible.
        # Whenever making a change in this method, please benchmark the
        # performance to make sure it does not introduce any overhead.

        num_actual_tokens = attn_metadata.num_actual_tokens
        key_cache, value_cache = kv_cache.unbind(0)
        if self.kv_sharing_target_layer_name is None:
            # Reshape the input keys and values and store them in the cache.
            # Skip this if sharing KV cache with an earlier attention layer.
            # NOTE(woosuk): Here, key and value are padded while slot_mapping is
            # not padded. However, we don't need to do key[:num_actual_tokens]
            # and value[:num_actual_tokens] because the reshape_and_cache_flash
            # op uses the slot_mapping's shape to determine the number of
            # actual tokens.
            torch.ops._C_cache_ops.reshape_and_cache_flash(
                key,
                value,
                key_cache,
                value_cache,
                attn_metadata.slot_mapping,
                self.kv_cache_dtype,
                layer._k_scale,
                layer._v_scale,
            )

        if self.kv_cache_dtype.startswith("fp8"):
            key_cache = key_cache.view(torch.float8_e4m3fnuz)
            value_cache = value_cache.view(torch.float8_e4m3fnuz)
            num_tokens, num_heads, head_size = query.shape
            query, _ = ops.scaled_fp8_quant(
                query.reshape(
                    (num_tokens, num_heads * head_size)).contiguous(),
                layer._q_scale)
            query = query.reshape((num_tokens, num_heads, head_size))

        # Compute attention and update output up to `num_actual_tokens`.
        use_local_attn = \
            (self.use_irope and attn_metadata.local_attn_metadata is not None)

        if not attn_metadata.use_cascade or use_local_attn:
            if use_local_attn:
                assert attn_metadata.local_attn_metadata is not None
                local_metadata = attn_metadata.local_attn_metadata
                cu_seqlens_q = local_metadata.local_query_start_loc
                seqused_k = local_metadata.local_seqused_k
                max_seqlen_q = local_metadata.local_max_query_len
                max_seqlen_k = local_metadata.local_max_seq_len
                block_table = local_metadata.local_block_table
            else:
                cu_seqlens_q = attn_metadata.query_start_loc
                seqused_k = attn_metadata.seq_lens
                max_seqlen_q = attn_metadata.max_query_len
                max_seqlen_k = attn_metadata.max_seq_len
                block_table = attn_metadata.block_table

            if max_seqlen_q > 1:
                cu_seq_lens = attn_metadata.cu_seq_lens
                total_tokens = attn_metadata.total_tokens
                torch.ops.vllm.flash_attn_varlen_func(
                    query[:num_actual_tokens],
                    key_cache,
                    value_cache,
                    out=output[:num_actual_tokens],
                    cu_seqlens_q=cu_seqlens_q,
                    max_seqlen_q=max_seqlen_q,
                    max_seqlen_k=max_seqlen_k,
                    total_tokens=total_tokens,
                    softmax_scale=self.scale,
                    alibi_slopes=self.alibi_slopes,
                    window_size=self.sliding_window,
                    block_table=block_table,
                    cu_seqlens_k=(cu_seq_lens if not use_local_attn else
                                  local_metadata.local_cu_seq_lens),
                )

            _, num_heads, head_size = query.shape
            _PARTITION_SIZE_ROCM = 256
            num_seqs = seqused_k.shape[0]
            nbyes_per_qo_elem = torch.finfo(output.dtype).bits // 8
            max_num_partitions = (max_seqlen_k + _PARTITION_SIZE_ROCM -
                                  1) // _PARTITION_SIZE_ROCM

            workspace_buffer = torch.empty(
                (num_seqs * num_heads * max_num_partitions * head_size) *
                nbyes_per_qo_elem + 2 *
                (num_seqs * num_heads * max_num_partitions) * 4,
                dtype=torch.uint8,
                device=output.device,
            )

            aiter.paged_attention_v1(
                output[:num_actual_tokens],
                workspace_buffer,
                query[:num_actual_tokens],
                key_cache,
                value_cache,
                self.scale,
                block_table,
                cu_seqlens_q,
                seqused_k,
                max_seqlen_k,
                self.alibi_slopes,
                self.kv_cache_dtype,
                "NHD",
                self.logits_soft_cap,
                layer._k_scale,
                layer._v_scale,
                None,
                _PARTITION_SIZE_ROCM,
            )
            return output
        else:
            raise NotImplementedError(
                "Cascade attention is not implemented for ROCM AITER")

alibi_slopes instance-attribute

alibi_slopes = alibi_slopes

head_size instance-attribute

head_size = head_size

kv_cache_dtype instance-attribute

kv_cache_dtype = kv_cache_dtype

kv_sharing_target_layer_name instance-attribute

kv_sharing_target_layer_name = kv_sharing_target_layer_name

logits_soft_cap instance-attribute

logits_soft_cap = logits_soft_cap

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

num_queries_per_kv instance-attribute

num_queries_per_kv = num_heads // num_kv_heads

scale instance-attribute

scale = float(scale)

sliding_window instance-attribute

sliding_window = [-1, -1]

use_irope instance-attribute

use_irope = use_irope

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[list[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: AttentionType = DECODER,
    kv_sharing_target_layer_name: Optional[int] = None,
    use_irope: bool = False,
) -> None
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[list[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: AttentionType = AttentionType.DECODER,
    kv_sharing_target_layer_name: Optional[int] = None,
    use_irope: bool = False,
) -> None:
    if blocksparse_params is not None:
        raise ValueError(
            "AiterFlashAttention does not support block-sparse attention.")
    self.num_heads = num_heads
    self.head_size = head_size
    self.scale = float(scale)
    self.num_kv_heads = num_kv_heads
    if alibi_slopes is not None:
        alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
    self.alibi_slopes = alibi_slopes
    if sliding_window is None:
        self.sliding_window = [-1, -1]
    else:
        self.sliding_window = [sliding_window - 1, 0]
    self.kv_cache_dtype = kv_cache_dtype
    if logits_soft_cap is None:
        # In flash-attn, setting logits_soft_cap as 0 means no soft cap.
        logits_soft_cap = 0.
    self.logits_soft_cap = logits_soft_cap
    self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

    assert self.num_heads % self.num_kv_heads == 0
    self.num_queries_per_kv = self.num_heads // self.num_kv_heads

    support_head_sizes = \
        AiterFlashAttentionBackend.get_supported_head_sizes()
    if head_size not in support_head_sizes:
        raise ValueError(
            f"Head size {head_size} is not supported by "
            "AiterFlashAttention. "
            f"Supported head sizes are: {support_head_sizes}. "
            "Set VLLM_USE_V1=0 to use another attention backend.")

    if attn_type != AttentionType.DECODER:
        raise NotImplementedError("Encoder self-attention and "
                                  "encoder/decoder cross-attention "
                                  "are not implemented for "
                                  "FlashAttentionImpl")
    self.use_irope = use_irope
    if is_quantized_kv_cache(self.kv_cache_dtype):
        raise NotImplementedError(
            "AiterFlashAttention does not support fp8 kv-cache on this "
            "device.")

forward

forward(
    layer: Module,
    query: Tensor,
    key: Tensor,
    value: Tensor,
    kv_cache: Tensor,
    attn_metadata: AiterFlashAttentionMetadata,
    output: Optional[Tensor] = None,
    output_scale: Optional[Tensor] = None,
) -> Tensor

Forward pass with AiterFlashAttention.

Parameters:

Name Type Description Default
query Tensor

shape = [num_tokens, num_heads, head_size]

required
key Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
value Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
attn_metadata AiterFlashAttentionMetadata

Metadata for attention.

required

Returns: shape = [num_tokens, num_heads * head_size] NOTE: FP8 quantization, flash-attn expect the size of {q,k,v}_descale to be (num_sequences, num_kv_heads). We use torch's .expand() to avoid duplicating values

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def forward(
    self,
    layer: torch.nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata: AiterFlashAttentionMetadata,
    output: Optional[torch.Tensor] = None,
    output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    """Forward pass with AiterFlashAttention.

    Args:
        query: shape = [num_tokens, num_heads, head_size]
        key: shape = [num_tokens, num_kv_heads, head_size]
        value: shape = [num_tokens, num_kv_heads, head_size]
        kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
        attn_metadata: Metadata for attention.
    Returns:
        shape = [num_tokens, num_heads * head_size]
    NOTE: FP8 quantization, flash-attn expect the size of
          {q,k,v}_descale to be (num_sequences, num_kv_heads).
          We use torch's .expand() to avoid duplicating values
    """
    assert output is not None, "Output tensor must be provided."

    if output_scale is not None:
        raise NotImplementedError(
            "fused output quantization is not yet supported"
            " for FlashAttentionImpl")

    if attn_metadata is None:
        # Profiling run.
        return output

    # IMPORTANT!
    # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
    # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
    # in this method. For example, `view` and `slice` (or `[:n]`) operations
    # are surprisingly slow even in the case they do not invoke any GPU ops.
    # Minimize the PyTorch ops in this method as much as possible.
    # Whenever making a change in this method, please benchmark the
    # performance to make sure it does not introduce any overhead.

    num_actual_tokens = attn_metadata.num_actual_tokens
    key_cache, value_cache = kv_cache.unbind(0)
    if self.kv_sharing_target_layer_name is None:
        # Reshape the input keys and values and store them in the cache.
        # Skip this if sharing KV cache with an earlier attention layer.
        # NOTE(woosuk): Here, key and value are padded while slot_mapping is
        # not padded. However, we don't need to do key[:num_actual_tokens]
        # and value[:num_actual_tokens] because the reshape_and_cache_flash
        # op uses the slot_mapping's shape to determine the number of
        # actual tokens.
        torch.ops._C_cache_ops.reshape_and_cache_flash(
            key,
            value,
            key_cache,
            value_cache,
            attn_metadata.slot_mapping,
            self.kv_cache_dtype,
            layer._k_scale,
            layer._v_scale,
        )

    if self.kv_cache_dtype.startswith("fp8"):
        key_cache = key_cache.view(torch.float8_e4m3fnuz)
        value_cache = value_cache.view(torch.float8_e4m3fnuz)
        num_tokens, num_heads, head_size = query.shape
        query, _ = ops.scaled_fp8_quant(
            query.reshape(
                (num_tokens, num_heads * head_size)).contiguous(),
            layer._q_scale)
        query = query.reshape((num_tokens, num_heads, head_size))

    # Compute attention and update output up to `num_actual_tokens`.
    use_local_attn = \
        (self.use_irope and attn_metadata.local_attn_metadata is not None)

    if not attn_metadata.use_cascade or use_local_attn:
        if use_local_attn:
            assert attn_metadata.local_attn_metadata is not None
            local_metadata = attn_metadata.local_attn_metadata
            cu_seqlens_q = local_metadata.local_query_start_loc
            seqused_k = local_metadata.local_seqused_k
            max_seqlen_q = local_metadata.local_max_query_len
            max_seqlen_k = local_metadata.local_max_seq_len
            block_table = local_metadata.local_block_table
        else:
            cu_seqlens_q = attn_metadata.query_start_loc
            seqused_k = attn_metadata.seq_lens
            max_seqlen_q = attn_metadata.max_query_len
            max_seqlen_k = attn_metadata.max_seq_len
            block_table = attn_metadata.block_table

        if max_seqlen_q > 1:
            cu_seq_lens = attn_metadata.cu_seq_lens
            total_tokens = attn_metadata.total_tokens
            torch.ops.vllm.flash_attn_varlen_func(
                query[:num_actual_tokens],
                key_cache,
                value_cache,
                out=output[:num_actual_tokens],
                cu_seqlens_q=cu_seqlens_q,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_k=max_seqlen_k,
                total_tokens=total_tokens,
                softmax_scale=self.scale,
                alibi_slopes=self.alibi_slopes,
                window_size=self.sliding_window,
                block_table=block_table,
                cu_seqlens_k=(cu_seq_lens if not use_local_attn else
                              local_metadata.local_cu_seq_lens),
            )

        _, num_heads, head_size = query.shape
        _PARTITION_SIZE_ROCM = 256
        num_seqs = seqused_k.shape[0]
        nbyes_per_qo_elem = torch.finfo(output.dtype).bits // 8
        max_num_partitions = (max_seqlen_k + _PARTITION_SIZE_ROCM -
                              1) // _PARTITION_SIZE_ROCM

        workspace_buffer = torch.empty(
            (num_seqs * num_heads * max_num_partitions * head_size) *
            nbyes_per_qo_elem + 2 *
            (num_seqs * num_heads * max_num_partitions) * 4,
            dtype=torch.uint8,
            device=output.device,
        )

        aiter.paged_attention_v1(
            output[:num_actual_tokens],
            workspace_buffer,
            query[:num_actual_tokens],
            key_cache,
            value_cache,
            self.scale,
            block_table,
            cu_seqlens_q,
            seqused_k,
            max_seqlen_k,
            self.alibi_slopes,
            self.kv_cache_dtype,
            "NHD",
            self.logits_soft_cap,
            layer._k_scale,
            layer._v_scale,
            None,
            _PARTITION_SIZE_ROCM,
        )
        return output
    else:
        raise NotImplementedError(
            "Cascade attention is not implemented for ROCM AITER")

AiterFlashAttentionMetadata dataclass

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@dataclass
class AiterFlashAttentionMetadata:
    # NOTE(sang): Definition of context_len, query_len, and seq_len.
    # |---------- N-1 iteration --------|
    # |---------------- N iteration ---------------------|
    # |- tokenA -|......................|-- newTokens ---|
    # |---------- context_len ----------|
    # |-------------------- seq_len ---------------------|
    #                                   |-- query_len ---|

    num_actual_tokens: int  # Number of tokens excluding padding.
    max_query_len: int
    query_start_loc: torch.Tensor
    max_seq_len: int
    seq_lens: torch.Tensor
    cu_seq_lens: torch.Tensor
    total_tokens: int
    block_table: torch.Tensor
    slot_mapping: torch.Tensor

    # For cascade attention.
    use_cascade: bool
    common_prefix_len: int
    cu_prefix_query_lens: Optional[torch.Tensor]
    prefix_kv_lens: Optional[torch.Tensor]
    suffix_kv_lens: Optional[torch.Tensor]

    # for local attention
    @dataclass
    class LocalAttentionMetadata:
        local_query_start_loc: torch.Tensor
        local_seqused_k: torch.Tensor
        local_block_table: torch.Tensor
        local_max_query_len: int
        local_max_seq_len: int
        local_cu_seq_lens: torch.Tensor
        local_scheduler_metadata: Optional[torch.Tensor]

    local_attn_metadata: Optional[LocalAttentionMetadata] = None

block_table instance-attribute

block_table: Tensor

common_prefix_len instance-attribute

common_prefix_len: int

cu_prefix_query_lens instance-attribute

cu_prefix_query_lens: Optional[Tensor]

cu_seq_lens instance-attribute

cu_seq_lens: Tensor

local_attn_metadata class-attribute instance-attribute

local_attn_metadata: Optional[LocalAttentionMetadata] = None

max_query_len instance-attribute

max_query_len: int

max_seq_len instance-attribute

max_seq_len: int

num_actual_tokens instance-attribute

num_actual_tokens: int

prefix_kv_lens instance-attribute

prefix_kv_lens: Optional[Tensor]

query_start_loc instance-attribute

query_start_loc: Tensor

seq_lens instance-attribute

seq_lens: Tensor

slot_mapping instance-attribute

slot_mapping: Tensor

suffix_kv_lens instance-attribute

suffix_kv_lens: Optional[Tensor]

total_tokens instance-attribute

total_tokens: int

use_cascade instance-attribute

use_cascade: bool

LocalAttentionMetadata dataclass

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@dataclass
class LocalAttentionMetadata:
    local_query_start_loc: torch.Tensor
    local_seqused_k: torch.Tensor
    local_block_table: torch.Tensor
    local_max_query_len: int
    local_max_seq_len: int
    local_cu_seq_lens: torch.Tensor
    local_scheduler_metadata: Optional[torch.Tensor]

local_block_table instance-attribute

local_block_table: Tensor

local_cu_seq_lens instance-attribute

local_cu_seq_lens: Tensor

local_max_query_len instance-attribute

local_max_query_len: int

local_max_seq_len instance-attribute

local_max_seq_len: int

local_query_start_loc instance-attribute

local_query_start_loc: Tensor

local_scheduler_metadata instance-attribute

local_scheduler_metadata: Optional[Tensor]

local_seqused_k instance-attribute

local_seqused_k: Tensor

__init__

__init__(
    local_query_start_loc: Tensor,
    local_seqused_k: Tensor,
    local_block_table: Tensor,
    local_max_query_len: int,
    local_max_seq_len: int,
    local_cu_seq_lens: Tensor,
    local_scheduler_metadata: Optional[Tensor],
) -> None

__init__

__init__(
    num_actual_tokens: int,
    max_query_len: int,
    query_start_loc: Tensor,
    max_seq_len: int,
    seq_lens: Tensor,
    cu_seq_lens: Tensor,
    total_tokens: int,
    block_table: Tensor,
    slot_mapping: Tensor,
    use_cascade: bool,
    common_prefix_len: int,
    cu_prefix_query_lens: Optional[Tensor],
    prefix_kv_lens: Optional[Tensor],
    suffix_kv_lens: Optional[Tensor],
    local_attn_metadata: Optional[
        LocalAttentionMetadata
    ] = None,
) -> None

AiterFlashAttentionMetadataBuilder

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
class AiterFlashAttentionMetadataBuilder:

    def __init__(self, runner: "GPUModelRunner", kv_cache_spec: AttentionSpec,
                 block_table: BlockTable):
        model_config = runner.model_config

        self.runner = runner
        self.num_heads_q = model_config.get_num_attention_heads(
            runner.parallel_config)
        self.num_heads_kv = model_config.get_num_kv_heads(
            runner.parallel_config)
        self.headdim = model_config.get_head_size()
        self.block_size = kv_cache_spec.block_size
        self.kv_cache_spec = kv_cache_spec
        self.block_table = block_table

        # Sliding window size to be used with the AOT scheduler will be
        # populated on first build() call.
        self.aot_sliding_window: Optional[tuple[int, int]] = None

    def reorder_batch(self, input_batch: "InputBatch",
                      scheduler_output: "SchedulerOutput") -> bool:
        return False

    def build(self, common_prefix_len: int,
              common_attn_metadata: CommonAttentionMetadata):

        num_reqs = common_attn_metadata.num_reqs
        num_actual_tokens = common_attn_metadata.num_actual_tokens
        max_query_len = common_attn_metadata.max_query_len

        max_seq_len = int(self.runner.seq_lens_np[:num_reqs].max())
        total_tokens = int(self.runner.seq_lens_np[:num_reqs].sum())
        query_start_loc = common_attn_metadata.query_start_loc
        seq_lens = common_attn_metadata.seq_lens
        block_table = self.block_table
        block_table_tensor = block_table.get_device_tensor()[:num_reqs]

        block_table.slot_mapping[:num_actual_tokens].copy_(
            block_table.slot_mapping_cpu[:num_actual_tokens],
            non_blocking=True)
        # Fill unused with -1. Needed for reshape_and_cache in full cuda graph
        # mode.
        block_table.slot_mapping[num_actual_tokens:].fill_(-1)

        slot_mapping = block_table.slot_mapping[:num_actual_tokens]

        cu_seq_lens = torch.zeros(seq_lens.shape[0] + 1,
                                  dtype=torch.int32,
                                  device="cuda")
        torch.cumsum(seq_lens,
                     dim=0,
                     dtype=cu_seq_lens.dtype,
                     out=cu_seq_lens[1:])

        def schedule(batch_size, cu_query_lens, max_query_len, seqlens,
                     max_seq_len, causal):
            return None

        # for local attention
        local_attn_metadata = None
        if self.runner.attention_chunk_size is not None:
            seqlens_q_local_np, virt_q_cu_seqlens_np, virt_k_seqlens_np, \
                virt_block_table_tensor = make_local_attention_virtual_batches(
                    self.runner.attention_chunk_size,
                    self.runner.query_start_loc_np[:num_reqs + 1],
                    self.runner.seq_lens_np[:num_reqs],
                    block_table_tensor,
                    self.block_size,
                )
            local_query_start_loc = torch.from_numpy(virt_q_cu_seqlens_np).to(
                self.runner.device, non_blocking=True)
            local_seqused_k = torch.from_numpy(virt_k_seqlens_np).to(
                self.runner.device, non_blocking=True)
            local_max_query_len = int(seqlens_q_local_np.max())
            local_max_seq_len = int(virt_k_seqlens_np.max())
            local_scheduler_metadata = schedule(
                batch_size=local_query_start_loc.shape[0] - 1,
                cu_query_lens=local_query_start_loc,
                max_query_len=local_max_query_len,
                seqlens=local_seqused_k,
                max_seq_len=local_max_seq_len,
                causal=True)

            local_cu_seq_lens = torch.zeros(virt_k_seqlens_np.shape[0] + 1,
                                            dtype=torch.int32,
                                            device=self.runner.device)
            local_cu_seq_lens[1:] = torch.cumsum(
                torch.from_numpy(virt_k_seqlens_np).to(
                    device=self.runner.device,
                    dtype=torch.int32,
                    non_blocking=True),
                dim=0)


            local_attn_metadata = \
            AiterFlashAttentionMetadata.LocalAttentionMetadata(
                local_query_start_loc=local_query_start_loc,
                local_seqused_k=local_seqused_k,
                local_block_table=virt_block_table_tensor,
                local_max_query_len=local_max_query_len,
                local_max_seq_len=local_max_seq_len,
                local_cu_seq_lens=local_cu_seq_lens,
                local_scheduler_metadata=local_scheduler_metadata,
            )

        use_cascade = common_prefix_len > 0

        cu_prefix_query_lens = None
        prefix_kv_lens = None
        suffix_kv_lens = None

        attn_metadata = AiterFlashAttentionMetadata(
            num_actual_tokens=num_actual_tokens,
            max_query_len=max_query_len,
            query_start_loc=query_start_loc,
            max_seq_len=max_seq_len,
            seq_lens=seq_lens,
            cu_seq_lens=cu_seq_lens,
            total_tokens=total_tokens,
            block_table=block_table_tensor,
            slot_mapping=slot_mapping,
            use_cascade=use_cascade,
            common_prefix_len=common_prefix_len,
            cu_prefix_query_lens=cu_prefix_query_lens,
            prefix_kv_lens=prefix_kv_lens,
            suffix_kv_lens=suffix_kv_lens,
            local_attn_metadata=local_attn_metadata,
        )
        return attn_metadata

    def can_run_in_cudagraph(
            self, common_attn_metadata: CommonAttentionMetadata) -> bool:
        # Full CUDA Graph always supported (FA2 support checked separately)
        return True

    def use_cascade_attention(self, *args, **kwargs) -> bool:
        return False

aot_sliding_window instance-attribute

aot_sliding_window: Optional[tuple[int, int]] = None

block_size instance-attribute

block_size = block_size

block_table instance-attribute

block_table = block_table

headdim instance-attribute

headdim = get_head_size()

kv_cache_spec instance-attribute

kv_cache_spec = kv_cache_spec

num_heads_kv instance-attribute

num_heads_kv = get_num_kv_heads(parallel_config)

num_heads_q instance-attribute

num_heads_q = get_num_attention_heads(parallel_config)

runner instance-attribute

runner = runner

__init__

__init__(
    runner: GPUModelRunner,
    kv_cache_spec: AttentionSpec,
    block_table: BlockTable,
)
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def __init__(self, runner: "GPUModelRunner", kv_cache_spec: AttentionSpec,
             block_table: BlockTable):
    model_config = runner.model_config

    self.runner = runner
    self.num_heads_q = model_config.get_num_attention_heads(
        runner.parallel_config)
    self.num_heads_kv = model_config.get_num_kv_heads(
        runner.parallel_config)
    self.headdim = model_config.get_head_size()
    self.block_size = kv_cache_spec.block_size
    self.kv_cache_spec = kv_cache_spec
    self.block_table = block_table

    # Sliding window size to be used with the AOT scheduler will be
    # populated on first build() call.
    self.aot_sliding_window: Optional[tuple[int, int]] = None

build

build(
    common_prefix_len: int,
    common_attn_metadata: CommonAttentionMetadata,
)
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def build(self, common_prefix_len: int,
          common_attn_metadata: CommonAttentionMetadata):

    num_reqs = common_attn_metadata.num_reqs
    num_actual_tokens = common_attn_metadata.num_actual_tokens
    max_query_len = common_attn_metadata.max_query_len

    max_seq_len = int(self.runner.seq_lens_np[:num_reqs].max())
    total_tokens = int(self.runner.seq_lens_np[:num_reqs].sum())
    query_start_loc = common_attn_metadata.query_start_loc
    seq_lens = common_attn_metadata.seq_lens
    block_table = self.block_table
    block_table_tensor = block_table.get_device_tensor()[:num_reqs]

    block_table.slot_mapping[:num_actual_tokens].copy_(
        block_table.slot_mapping_cpu[:num_actual_tokens],
        non_blocking=True)
    # Fill unused with -1. Needed for reshape_and_cache in full cuda graph
    # mode.
    block_table.slot_mapping[num_actual_tokens:].fill_(-1)

    slot_mapping = block_table.slot_mapping[:num_actual_tokens]

    cu_seq_lens = torch.zeros(seq_lens.shape[0] + 1,
                              dtype=torch.int32,
                              device="cuda")
    torch.cumsum(seq_lens,
                 dim=0,
                 dtype=cu_seq_lens.dtype,
                 out=cu_seq_lens[1:])

    def schedule(batch_size, cu_query_lens, max_query_len, seqlens,
                 max_seq_len, causal):
        return None

    # for local attention
    local_attn_metadata = None
    if self.runner.attention_chunk_size is not None:
        seqlens_q_local_np, virt_q_cu_seqlens_np, virt_k_seqlens_np, \
            virt_block_table_tensor = make_local_attention_virtual_batches(
                self.runner.attention_chunk_size,
                self.runner.query_start_loc_np[:num_reqs + 1],
                self.runner.seq_lens_np[:num_reqs],
                block_table_tensor,
                self.block_size,
            )
        local_query_start_loc = torch.from_numpy(virt_q_cu_seqlens_np).to(
            self.runner.device, non_blocking=True)
        local_seqused_k = torch.from_numpy(virt_k_seqlens_np).to(
            self.runner.device, non_blocking=True)
        local_max_query_len = int(seqlens_q_local_np.max())
        local_max_seq_len = int(virt_k_seqlens_np.max())
        local_scheduler_metadata = schedule(
            batch_size=local_query_start_loc.shape[0] - 1,
            cu_query_lens=local_query_start_loc,
            max_query_len=local_max_query_len,
            seqlens=local_seqused_k,
            max_seq_len=local_max_seq_len,
            causal=True)

        local_cu_seq_lens = torch.zeros(virt_k_seqlens_np.shape[0] + 1,
                                        dtype=torch.int32,
                                        device=self.runner.device)
        local_cu_seq_lens[1:] = torch.cumsum(
            torch.from_numpy(virt_k_seqlens_np).to(
                device=self.runner.device,
                dtype=torch.int32,
                non_blocking=True),
            dim=0)


        local_attn_metadata = \
        AiterFlashAttentionMetadata.LocalAttentionMetadata(
            local_query_start_loc=local_query_start_loc,
            local_seqused_k=local_seqused_k,
            local_block_table=virt_block_table_tensor,
            local_max_query_len=local_max_query_len,
            local_max_seq_len=local_max_seq_len,
            local_cu_seq_lens=local_cu_seq_lens,
            local_scheduler_metadata=local_scheduler_metadata,
        )

    use_cascade = common_prefix_len > 0

    cu_prefix_query_lens = None
    prefix_kv_lens = None
    suffix_kv_lens = None

    attn_metadata = AiterFlashAttentionMetadata(
        num_actual_tokens=num_actual_tokens,
        max_query_len=max_query_len,
        query_start_loc=query_start_loc,
        max_seq_len=max_seq_len,
        seq_lens=seq_lens,
        cu_seq_lens=cu_seq_lens,
        total_tokens=total_tokens,
        block_table=block_table_tensor,
        slot_mapping=slot_mapping,
        use_cascade=use_cascade,
        common_prefix_len=common_prefix_len,
        cu_prefix_query_lens=cu_prefix_query_lens,
        prefix_kv_lens=prefix_kv_lens,
        suffix_kv_lens=suffix_kv_lens,
        local_attn_metadata=local_attn_metadata,
    )
    return attn_metadata

can_run_in_cudagraph

can_run_in_cudagraph(
    common_attn_metadata: CommonAttentionMetadata,
) -> bool
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def can_run_in_cudagraph(
        self, common_attn_metadata: CommonAttentionMetadata) -> bool:
    # Full CUDA Graph always supported (FA2 support checked separately)
    return True

reorder_batch

reorder_batch(
    input_batch: InputBatch,
    scheduler_output: SchedulerOutput,
) -> bool
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def reorder_batch(self, input_batch: "InputBatch",
                  scheduler_output: "SchedulerOutput") -> bool:
    return False

use_cascade_attention

use_cascade_attention(*args, **kwargs) -> bool
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def use_cascade_attention(self, *args, **kwargs) -> bool:
    return False

_vllm_layout_trans_kernel

_vllm_layout_trans_kernel(
    k_buffer_ptr,
    v_buffer_ptr,
    k_values_ptr,
    v_values_ptr,
    b_query_lens_loc,
    b_seq_lens_loc,
    block_table,
    block_table_stride_0,
    E_DIM: constexpr,
    BLOCK_SIZE: constexpr,
)
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
@triton.jit
def _vllm_layout_trans_kernel(
    k_buffer_ptr,
    v_buffer_ptr,
    k_values_ptr,
    v_values_ptr,
    b_query_lens_loc,
    b_seq_lens_loc,
    block_table,
    block_table_stride_0,
    E_DIM: tl.constexpr,
    BLOCK_SIZE: tl.constexpr,
):
    batch_idx = tl.program_id(0)
    block_idx = tl.program_id(1)
    batch_token_indexes = tl.load(b_seq_lens_loc + batch_idx +
                                  tl.arange(0, 2))
    batch_token_start, batch_token_end = tl.split(batch_token_indexes)
    seq_len = batch_token_end - batch_token_start

    batch_query_indexes = tl.load(b_query_lens_loc + batch_idx +
                                  tl.arange(0, 2))
    batch_query_start, batch_query_end = tl.split(batch_query_indexes)
    query_len = batch_query_end - batch_query_start
    if query_len <= 1:
        return
    if block_idx * BLOCK_SIZE < seq_len:
        block_mask = (block_idx * BLOCK_SIZE +
                      tl.arange(0, BLOCK_SIZE)[:, None]) < seq_len

        kv_idx = tl.load(block_table + batch_idx * block_table_stride_0 +
                         block_idx)

        kv_buffer_off = kv_idx * BLOCK_SIZE * E_DIM + tl.arange(
            0, BLOCK_SIZE)[:, None] * E_DIM + tl.arange(0, E_DIM)[None, :]
        k_vals = tl.load(k_buffer_ptr + kv_buffer_off,
                         mask=block_mask,
                         other=0.0)
        v_vals = tl.load(v_buffer_ptr + kv_buffer_off,
                         mask=block_mask,
                         other=0.0)

        kv_values_off = batch_token_start * E_DIM + \
            block_idx * BLOCK_SIZE * E_DIM + \
            tl.arange(0, BLOCK_SIZE)[:, None] * E_DIM + \
            tl.arange(0, E_DIM)[None, :]
        tl.store(k_values_ptr + kv_values_off, k_vals, mask=block_mask)
        tl.store(v_values_ptr + kv_values_off, v_vals, mask=block_mask)

flash_attn_varlen_func_fake

flash_attn_varlen_func_fake(
    q: Tensor,
    k_cache: Tensor,
    v_cache: Tensor,
    out: Tensor,
    cu_seqlens_q: Tensor,
    cu_seqlens_k: Tensor,
    total_tokens: int,
    max_seqlen_q: int,
    max_seqlen_k: int,
    softmax_scale: float,
    window_size: Optional[list[int]],
    alibi_slopes: Optional[list[float]],
    block_table: Tensor,
) -> Tensor
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def flash_attn_varlen_func_fake(
    q: torch.Tensor,
    k_cache: torch.Tensor,
    v_cache: torch.Tensor,
    out: torch.Tensor,
    cu_seqlens_q: torch.Tensor,
    cu_seqlens_k: torch.Tensor,
    total_tokens: int,
    max_seqlen_q: int,
    max_seqlen_k: int,
    softmax_scale: float,
    window_size: Optional[list[int]],  # -1 means infinite context window
    alibi_slopes: Optional[list[float]],
    block_table: torch.Tensor,
) -> torch.Tensor:
    return torch.empty(q.shape[0],
                       q.shape[1],
                       v_cache.shape[-2],
                       dtype=torch.float8_e4m3fnuz,
                       device="cuda")

flash_attn_varlen_func_impl

flash_attn_varlen_func_impl(
    q: Tensor,
    k_cache: Tensor,
    v_cache: Tensor,
    out: Tensor,
    cu_seqlens_q: Tensor,
    cu_seqlens_k: Tensor,
    total_tokens: int,
    max_seqlen_q: int,
    max_seqlen_k: int,
    softmax_scale: float,
    window_size: Optional[list[int]],
    alibi_slopes: Optional[list[float]],
    block_table: Tensor,
) -> Tensor
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def flash_attn_varlen_func_impl(
    q: torch.Tensor,
    k_cache: torch.Tensor,
    v_cache: torch.Tensor,
    out: torch.Tensor,
    cu_seqlens_q: torch.Tensor,
    cu_seqlens_k: torch.Tensor,
    total_tokens: int,
    max_seqlen_q: int,
    max_seqlen_k: int,
    softmax_scale: float,
    window_size: Optional[list[int]],  # -1 means infinite context window
    alibi_slopes: Optional[list[float]],
    block_table: torch.Tensor,
) -> torch.Tensor:
    k, v = vllm_layout_trans(cu_seqlens_q, cu_seqlens_k, block_table,
                             k_cache, v_cache, max_seqlen_k, total_tokens)
    output = aiter.flash_attn_varlen_func(
        q=q,
        k=k,
        v=v,
        cu_seqlens_q=cu_seqlens_q,
        max_seqlen_q=max_seqlen_q,
        min_seqlen_q=1,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_k=max_seqlen_k,
        softmax_scale=softmax_scale,
        causal=True,
        alibi_slopes=alibi_slopes,
        window_size=window_size,
        out=out,
    )
    return output

vllm_layout_trans

vllm_layout_trans(
    b_query_lens_loc,
    b_seq_lens_loc,
    block_table,
    k_buffer,
    v_buffer,
    max_seq_len,
    total_tokens,
)
Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def vllm_layout_trans(b_query_lens_loc, b_seq_lens_loc, block_table,
                      k_buffer, v_buffer, max_seq_len, total_tokens):
    H_KV = v_buffer.shape[2]
    D = v_buffer.shape[3]
    BLOCK_SIZE = v_buffer.shape[1]
    dtype = k_buffer.dtype
    k_values = torch.empty((total_tokens, H_KV, D),
                           dtype=dtype,
                           device="cuda")
    v_values = torch.empty((total_tokens, H_KV, D),
                           dtype=dtype,
                           device="cuda")

    grid = (block_table.shape[0],
            (max_seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)

    _vllm_layout_trans_kernel[grid](k_buffer,
                                    v_buffer,
                                    k_values,
                                    v_values,
                                    b_query_lens_loc,
                                    b_seq_lens_loc,
                                    block_table,
                                    block_table.stride(0),
                                    E_DIM=H_KV * D,
                                    BLOCK_SIZE=BLOCK_SIZE)

    return k_values, v_values