class Top1Proposer(SpeculativeProposer):
"""Helper class which separates out sequences which would exceed the max
model length when speculated upon.
This allows combinations of models such as JackFram/llama-68m draft with
meta-llama/Llama2-13b-chat-hf, as llama-68m has max_position_embeddings of
2048 while Llama2-13b has max_position_embeddings of 4096.
We treat the sequences which exceed the proposal draft model length as
"non-spec sequences". Essentially they skip the draft model and go through
normal decoding in the target model.
Currently, only proposal_lens of 0 and k are supported, where k is a global
batch proposal length. In the future vLLM should support per-sequence
proposal lengths.
"""
def __init__(
self,
worker: ProposerWorkerBase,
device: str,
vocab_size: int,
max_proposal_len: Optional[int] = None,
):
self._worker = worker
self._device = device
self.max_proposal_len = max_proposal_len
self._vocab_size = vocab_size
def get_spec_proposals(
self,
execute_model_req: ExecuteModelRequest,
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> SpeculativeProposals:
"""Get speculative proposals given the input batch.
Sequences which would exceed the max model length are skipped during
speculation.
"""
proposal_len = execute_model_req.num_lookahead_slots
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
# Split speculative- and non-speculative- sequences.
(
proposal_lens,
nonzero_proposal_len_seqs,
nonzero_proposal_len_indices,
) = self._split_by_proposal_len(seq_group_metadata_list, proposal_len)
if nonzero_proposal_len_seqs:
# Speculate tokens using the draft worker for the speculative
# sequences.
# If sampler_transposed is true, then maybe_sampler_output's
# token_ids is like [batch] format in proposal_len size list,
# while if it is false, the format would be [proposal_len]
# in batch size list
hidden_states = execute_model_req.previous_hidden_states
if hidden_states is not None:
hidden_states.prune(nonzero_proposal_len_seqs)
nonzero_execute_model_req = ExecuteModelRequest(
seq_group_metadata_list=nonzero_proposal_len_seqs,
num_lookahead_slots=proposal_len,
previous_hidden_states=hidden_states,
)
maybe_sampler_output, transposed = self._worker.sampler_output(
execute_model_req=nonzero_execute_model_req,
sample_len=proposal_len,
seq_ids_with_bonus_token_in_last_step=\
seq_ids_with_bonus_token_in_last_step,
)
(
proposal_lens,
maybe_sampler_output,
nonzero_proposal_len_indices,
) = self._remove_no_proposal_seqs(proposal_lens,
maybe_sampler_output,
nonzero_proposal_len_indices,
transposed)
else:
# If no sequences can be speculated, set sampler output to None.
maybe_sampler_output = None
transposed = False
# Combine speculative- and non-speculative sequences into the same
# representation.
proposal_tokens, proposal_probs, proposal_lens = self._merge_outputs(
batch_size=len(seq_group_metadata_list),
proposal_len=proposal_len,
maybe_sampler_output=maybe_sampler_output,
proposal_lens=proposal_lens,
nonzero_proposal_len_indices=nonzero_proposal_len_indices,
sampler_transposed=transposed,
)
proposals = SpeculativeProposals(proposal_token_ids=proposal_tokens,
proposal_probs=proposal_probs,
proposal_lens=proposal_lens,
no_proposals=maybe_sampler_output
is None)
return proposals
def _split_by_proposal_len(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
proposal_len: int,
) -> Tuple[List[int], List[SequenceGroupMetadata], List[int]]:
"""Split sequences by two groups:
1. Sequences with non-zero proposal length.
2. Sequences with zero proposal length (due to disabled speculation
or exceed the maximum model length).
"""
proposal_lens: List[int] = []
nonzero_proposal_len_seqs: List[SequenceGroupMetadata] = []
nonzero_proposal_len_indices: List[int] = []
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
# The speculative decoding for this request has either been disabled
# (e.g. due to high traffic) or this is a prompt request.
if (seq_group_metadata.is_prompt
or seq_group_metadata.num_speculative_tokens == 0):
proposal_lens.append(0)
continue
seq_data = next(iter(seq_group_metadata.seq_data.values()))
seq_len = seq_data.get_len()
# Currently only proposal lens of 0 or the global batch proposal len
# are supported.
# If max_proposal_len is defined, then we shall not exceed this
# quota for nonzero_proposal
new_k = 0
if (self.max_proposal_len is None
or seq_len + proposal_len < self.max_proposal_len):
new_k = proposal_len
nonzero_proposal_len_seqs.append(seq_group_metadata)
nonzero_proposal_len_indices.append(i)
proposal_lens.append(new_k)
seq_group_metadata.num_speculative_tokens = new_k
return (
proposal_lens,
nonzero_proposal_len_seqs,
nonzero_proposal_len_indices,
)
@staticmethod
def _remove_no_proposal_seqs(proposal_lens, maybe_sampler_output,
nonzero_proposal_len_indices, transposed):
"""Remove sequences from nonzero_proposal_len_indices and reset
their proposal_len to 0 the draft worker does not provide a proposal
(maybe_sampler_output=None). This can avoid scoring overheads.
"""
# If maybe_sampler_output is None, then the draft worker did not
# provide a proposal for any sequence and thus no action needed.
# Also we do not support transposed maybe_sampler_output for now
# because it seems not straightforward for draft workers outputting
# transposed sampler outputs to handle the case of no proposal.
if maybe_sampler_output is None or transposed:
return (proposal_lens, maybe_sampler_output,
nonzero_proposal_len_indices)
new_proposal_lens: List[int] = []
new_nonzero_proposal_len_indices: List[int] = []
new_maybe_sampler_output: List[SamplerOutput] = []
nonzero_proposal_len_idx_ptr = 0
seq_idx = 0
while seq_idx < len(
proposal_lens) and nonzero_proposal_len_idx_ptr < len(
nonzero_proposal_len_indices):
if seq_idx < nonzero_proposal_len_indices[
nonzero_proposal_len_idx_ptr]:
# Sequence is not in the original nonzero_proposal_len_indices,
# meaning that it has a proposal length of 0 before sending to
# the draft worker.
assert proposal_lens[seq_idx] == 0
new_proposal_lens.append(0)
else:
# Sequence is in the original nonzero_proposal_len_indices
if maybe_sampler_output[nonzero_proposal_len_idx_ptr] is None:
# but does not have a proposal from the draft worker.
new_proposal_lens.append(0)
else:
# and has a proposal from the draft worker. Add it to the
# new nonzero proposal list and keep the sampler output.
new_proposal_lens.append(proposal_lens[seq_idx])
new_nonzero_proposal_len_indices.append(seq_idx)
new_maybe_sampler_output.append(
maybe_sampler_output[nonzero_proposal_len_idx_ptr])
nonzero_proposal_len_idx_ptr += 1
seq_idx += 1
# The remaining sequences should have proposal length of 0.
new_proposal_lens.extend(proposal_lens[seq_idx:])
# We assume sampler_output will not be a list of all Nones.
# In this case this function should not be called.
assert new_maybe_sampler_output
return (new_proposal_lens, new_maybe_sampler_output,
new_nonzero_proposal_len_indices)
def _merge_outputs(
self,
batch_size: int,
proposal_len: int,
maybe_sampler_output: Optional[List[SamplerOutput]],
proposal_lens: List[int],
nonzero_proposal_len_indices: List[int],
sampler_transposed: bool,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""After speculations are produced, merge the speculation results with
the skipped sequences.
"""
if maybe_sampler_output is None:
# If no speculative tokens, the sampler output will be None.
# In this case we return empty proposals.
proposal_tokens = torch.tensor(-1,
dtype=torch.long,
device=self._device).expand(
batch_size, proposal_len)
proposal_probs = torch.tensor(0,
dtype=torch.float32,
device=self._device).expand(
batch_size, proposal_len,
self._vocab_size)
proposal_lens_tensor = torch.tensor(0,
dtype=torch.long,
device=self._device).expand(
len(proposal_lens))
return proposal_tokens, proposal_probs, proposal_lens_tensor
sampler_output = maybe_sampler_output
proposal_tokens, proposal_probs, *_ = sampler_output_to_torch(
sampler_output, sampler_transposed)
# Now, reformat the output GPU tensors such that each sequence has
# a proposal. the proposal can be empty, e.g. [-1, -1, -1]
entire_proposal_tokens = proposal_tokens.new_full(
size=(batch_size, *proposal_tokens.shape[1:]),
fill_value=-1,
)
entire_proposal_tokens[nonzero_proposal_len_indices] = proposal_tokens
entire_proposal_probs = proposal_probs.new_zeros(
batch_size,
*proposal_probs.shape[1:],
)
entire_proposal_probs[nonzero_proposal_len_indices] = proposal_probs
proposal_tokens, proposal_probs = (
entire_proposal_tokens,
entire_proposal_probs,
)
proposal_lens_tensor = torch.zeros(batch_size,
dtype=torch.long,
device=self._device)
proposal_lens_tensor[nonzero_proposal_len_indices] = proposal_len
return proposal_tokens, proposal_probs, proposal_lens_tensor