vllm.spec_decode.ngram_worker
NGramWorker
¶
Bases: NonLLMProposerWorkerBase
NGramWorker provides a light drafter without need for model.
Current NGramWorker only implements prompt lookup decoding, and in future we may also do RAG type drafter and other scenarios which don't rely on LLM model to give proposals.
Source code in vllm/spec_decode/ngram_worker.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
__init__
¶
__init__(
vllm_config: VllmConfig,
local_rank: int,
device_type: str = "cuda",
**kwargs,
)
Source code in vllm/spec_decode/ngram_worker.py
_raise_if_unsupported
¶
_raise_if_unsupported(
execute_model_req: ExecuteModelRequest,
) -> None
NGramWorker does not yet implement support for cache swap operations or beam search.
Source code in vllm/spec_decode/ngram_worker.py
get_spec_proposals
¶
get_spec_proposals(
execute_model_req: ExecuteModelRequest,
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> SpeculativeProposals
Produce speculations given an input batch of sequences. The number of speculative tokens per sequence is determined by max_proposal_len.
Source code in vllm/spec_decode/ngram_worker.py
init_device
¶
Source code in vllm/spec_decode/ngram_worker.py
load_model
¶
sampler_output
¶
sampler_output(
execute_model_req: ExecuteModelRequest,
sample_len: int,
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> Tuple[Optional[List[Optional[SamplerOutput]]], bool]
NGram match algo to pick proposal candidate. Returns the list of sampler output, one per SequenceGroupMetadata.
For ngram worker, we already done needed transposed internal, so the indicator pass to sampler_output_to_torch shall be False.
Source code in vllm/spec_decode/ngram_worker.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|