vllm.spec_decode.multi_step_worker
MultiStepWorker
¶
Bases: ProposerWorkerBase
, DelegateWorkerBase
The MultiStepWorker is equivalent to a Worker except that it allows multiple forward passes in a single call, assuming the scheduler has allocated enough space to store the additional KV. This reduces overhead by invoking the scheduler less.
The MultiStepWorker does not support cache swap operations, or beam search. Cache swap operations do not require large modifications. On the other hand, beam search requires memory allocations during sequence forks and thus requires more thought for MultiStepWorker support.
Source code in vllm/spec_decode/multi_step_worker.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
__init__
¶
_append_new_tokens
staticmethod
¶
_append_new_tokens(
model_output: List[SamplerOutput],
seq_group_metadata_list: List[SequenceGroupMetadata],
indices_of_seq_with_bonus_tokens: List[int],
) -> None
Given model output from a single run, append the tokens to the sequences. This is normally done outside of the worker, but it is required if the worker is to perform multiple forward passes.
Source code in vllm/spec_decode/multi_step_worker.py
_assert_enough_kv_space
¶
_assert_enough_kv_space(
seq_group_metadata_list: List[SequenceGroupMetadata],
num_steps: int,
) -> None
Assert there are enough physical blocks per sequence to store the current KV plus additional KV from num_steps tokens.
Source code in vllm/spec_decode/multi_step_worker.py
_copy_seq_metadata_excluding_last_token
staticmethod
¶
_copy_seq_metadata_excluding_last_token(
seq_group_metadata: SequenceGroupMetadata,
seq_ids_to_copy: Set[int],
) -> SequenceGroupMetadata
Creates a shallow copy of the given SequenceGroupMetadata, retaining only the sequence IDs specified in seq_ids_to_copy. For each of these sequence IDs, all output_token_ids except the last one are copied. Sequence IDs not in seq_ids_to_copy are excluded from the copy.
seq_group_metadata (SequenceGroupMetadata): The original sequence group metadata. seq_ids_to_copy (Set[int]): The set of sequence IDs to include in the copy.
SequenceGroupMetadata: A shallow copy of the sequence group metadata with the specified modifications.
Source code in vllm/spec_decode/multi_step_worker.py
_expand_execute_model_request
staticmethod
¶
_expand_execute_model_request(
execute_model_req: ExecuteModelRequest,
seq_with_bonus_token_in_last_step: set,
) -> Tuple[ExecuteModelRequest, List[int]]
Expands the execute model request based on sequences with bonus tokens.
For each sequence with a bonus token, this method creates a new sequence without the bonus token and adds it to the execute model request. The original sequence groups are also retained. The indices of the original sequence groups are returned for further processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
execute_model_req
|
ExecuteModelRequest
|
The original execute |
required |
seq_with_bonus_token_in_last_step
|
set
|
Set of sequence IDs that |
required |
Returns:
Type | Description |
---|---|
ExecuteModelRequest
|
Tuple[ExecuteModelRequest, List[int]]: The updated execute model |
List[int]
|
request with expanded sequences and a list of indices corresponding |
Tuple[ExecuteModelRequest, List[int]]
|
to the original sequence groups. |
Source code in vllm/spec_decode/multi_step_worker.py
_filter_model_output
staticmethod
¶
_filter_model_output(
expanded_batch_outputs: List[SamplerOutput],
output_indices_to_retain: Tensor,
) -> List[SamplerOutput]
Filters the model output to include only the specified sequence outputs. This method contracts the expanded batch output from the model to retain the outputs of only those sequences indicated by the provided indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expanded_batch_output
|
List[SamplerOutput]
|
The expanded output batch from the model. |
required |
output_indices_to_retain
|
Tensor
|
Indices of the model outputs to retain. |
required |
Returns:
Type | Description |
---|---|
List[SamplerOutput]
|
List[SamplerOutput]: A list containing the filtered model |
List[SamplerOutput]
|
outputs for the specified indices. |
Source code in vllm/spec_decode/multi_step_worker.py
_maybe_update_previous_hidden_states
staticmethod
¶
_maybe_update_previous_hidden_states(
model_output: SamplerOutput,
expanded_request: ExecuteModelRequest,
) -> None
Updates the previous hidden states in an expanded request in-place with the hidden states from the model output.
Source code in vllm/spec_decode/multi_step_worker.py
_raise_if_unsupported
¶
_raise_if_unsupported(
execute_model_req: ExecuteModelRequest,
) -> None
MultiStepWorker does not yet implement support for cache swap operations or beam search.
Source code in vllm/spec_decode/multi_step_worker.py
_shallow_copy_seq_group_metadata
staticmethod
¶
_shallow_copy_seq_group_metadata(
seq_group_metadata: SequenceGroupMetadata,
) -> SequenceGroupMetadata
Copy input data structures to remove side-effects when input data structures are shared with other modules.
Helpful when the vLLM scheduler runs in the same process as the worker. The alternative is deep-copying (or other form of deep copy); this has performance downsides.
Source code in vllm/spec_decode/multi_step_worker.py
get_spec_proposals
¶
get_spec_proposals(
execute_model_req: ExecuteModelRequest,
seq_ids_with_bonus_token_in_last_step: set,
) -> SpeculativeProposals
Produce speculations given an input batch of sequences. The number of speculative tokens per sequence is determined by max_proposal_len.
Source code in vllm/spec_decode/multi_step_worker.py
init_device
¶
maybe_load_lm_head_weight
¶
maybe_load_lm_head_weight(lm_head_weight: Tensor) -> None
Source code in vllm/spec_decode/multi_step_worker.py
sampler_output
¶
sampler_output(
execute_model_req: ExecuteModelRequest,
sample_len: int,
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> Tuple[List[SamplerOutput], bool]
Run the model forward pass sample_len times. Returns the list of sampler output, one per model forward pass, along with indicator of whether torch tensor in sampler output need to be transposed in latter sampler_output_to_torch logic.
For multi step worker, this indicator shall be True.