vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe
TritonOrDeepGemmExperts
¶
Bases: FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
activation_formats
property
¶
activation_formats: tuple[
FusedMoEActivationFormat, FusedMoEActivationFormat
]
allow_deep_gemm
instance-attribute
¶
deep_gemm_expert
instance-attribute
¶
deep_gemm_expert = (
DeepGemmExperts() if allow_deep_gemm else None
)
triton_expert
instance-attribute
¶
triton_expert = TritonExperts(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int4_w4a16=use_int4_w4a16,
use_int8_w8a16=use_int8_w8a16,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
)
__init__
¶
__init__(
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_act_token_quant: bool = False,
block_shape: Optional[list[int]] = None,
allow_deep_gemm: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
apply
¶
apply(
output: Tensor,
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
topk_ids: Tensor,
activation: str,
global_num_experts: int,
expert_map: Optional[Tensor],
w1_scale: Optional[Tensor],
w2_scale: Optional[Tensor],
w1_zp: Optional[Tensor],
w2_zp: Optional[Tensor],
a1q_scale: Optional[Tensor],
a2_scale: Optional[Tensor],
workspace13: Tensor,
workspace2: Tensor,
expert_num_tokens: Optional[Tensor],
)
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
workspace_shapes
¶
workspace_shapes(
a: Tensor,
aq: Tensor,
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
) -> tuple[
tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]