vllm.model_executor.layers.fused_moe.fused_marlin_moe
Fused MoE utilities for GPTQ.
fused_marlin_moe
¶
fused_marlin_moe(
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
w1_scale: Tensor,
w2_scale: Tensor,
gating_output: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
quant_type_id: int,
apply_router_weight_on_input: bool = False,
global_num_experts: int = -1,
expert_map: Optional[Tensor] = None,
global_scale1: Optional[Tensor] = None,
global_scale2: Optional[Tensor] = None,
g_idx1: Optional[Tensor] = None,
g_idx2: Optional[Tensor] = None,
sort_indices1: Optional[Tensor] = None,
sort_indices2: Optional[Tensor] = None,
w1_zeros: Optional[Tensor] = None,
w2_zeros: Optional[Tensor] = None,
workspace: Optional[Tensor] = None,
is_k_full: bool = True,
inplace: bool = False,
) -> Tensor
This function computes a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2, and top-k gating mechanism.
Parameters: - hidden_states (torch.Tensor): The input tensor to the MoE layer. - w1 (torch.Tensor): The first set of expert weights. - w2 (torch.Tensor): The second set of expert weights. - w1_scale (torch.Tensor): Scale to be used for w1. - w2_scale (torch.Tensor): Scale to be used for w2. - gating_output (torch.Tensor): The output of the gating operation (before softmax). - g_idx1 (Optional[torch.Tensor]): The first set of act_order indices. - g_idx2 (Optional[torch.Tensor]): The second set of act_order indices. - sort_indices1 (Optional[torch.Tensor]): The first act_order input permutation. - sort_indices2 (Optional[torch.Tensor]): The second act_order input permutation. - topk_weights (torch.Tensor): Top-k weights. - topk_ids (torch.Tensor): Indices of topk-k elements. - w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1. - w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2. - num_bits (bool): The number of bits in expert weights quantization.
Returns: - torch.Tensor: The output tensor after applying the MoE layer.
Source code in vllm/model_executor/layers/fused_moe/fused_marlin_moe.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
fused_marlin_moe_fake
¶
fused_marlin_moe_fake(
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
w1_scale: Tensor,
w2_scale: Tensor,
gating_output: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
quant_type_id: int,
apply_router_weight_on_input: bool = False,
global_num_experts: int = -1,
global_scale1: Optional[Tensor] = None,
global_scale2: Optional[Tensor] = None,
expert_map: Optional[Tensor] = None,
g_idx1: Optional[Tensor] = None,
g_idx2: Optional[Tensor] = None,
sort_indices1: Optional[Tensor] = None,
sort_indices2: Optional[Tensor] = None,
w1_zeros: Optional[Tensor] = None,
w2_zeros: Optional[Tensor] = None,
workspace: Optional[Tensor] = None,
is_k_full: bool = True,
inplace: bool = False,
) -> Tensor