vllm.v1.sample.tpu.metadata
DEFAULT_SAMPLING_PARAMS
module-attribute
¶
DEFAULT_SAMPLING_PARAMS = dict(
temperature=-1.0, min_p=0.0, top_k=0, top_p=1.0
)
TPUSupportedSamplingMetadata
dataclass
¶
Source code in vllm/v1/sample/tpu/metadata.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
_generators
class-attribute
instance-attribute
¶
logit_bias
class-attribute
instance-attribute
¶
output_token_ids
class-attribute
instance-attribute
¶
__init__
¶
__init__(
temperature: Tensor = None,
min_p: Tensor = None,
top_k: Tensor = None,
top_p: Tensor = None,
all_greedy: bool = True,
logprobs: bool = False,
no_penalties: bool = True,
output_token_ids: list[list[int]] = lambda: list()(),
logit_bias: list[
Optional[dict[int, float]]
] = lambda: list()(),
_generators: dict[int, Generator] = lambda: dict()(),
) -> None
from_input_batch
classmethod
¶
from_input_batch(
input_batch: InputBatch,
padded_num_reqs: int,
xla_device: device,
generate_params_if_all_greedy: bool = False,
) -> TPUSupportedSamplingMetadata
Copy sampling tensors slices from input_batch
to on device tensors.
InputBatch._make_sampling_metadata
causes recompilation on XLA as it
slices dynamic shapes on device tensors. This impl moves the dynamic
ops to CPU and produces tensors of fixed padded_num_reqs
size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_batch
|
InputBatch
|
The input batch containing sampling parameters. |
required |
padded_num_reqs
|
int
|
The padded number of requests. |
required |
xla_device
|
device
|
The XLA device. |
required |
generate_params_if_all_greedy
|
bool
|
If True, generate sampling parameters even if all requests are greedy. this is useful for cases where we want to pre-compile a graph with sampling parameters, even if they are not strictly needed for greedy decoding. |
False
|