Skip to content

vllm.v1.sample.sampler

A layer that samples the next tokens from the model's outputs.

_SAMPLING_EPS module-attribute

_SAMPLING_EPS = 1e-05

Sampler

Bases: Module

Source code in vllm/v1/sample/sampler.py
class Sampler(nn.Module):

    def __init__(self):
        super().__init__()
        self.topk_topp_sampler = TopKTopPSampler()
        self.pin_memory = is_pin_memory_available()

    def forward(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> SamplerOutput:
        # NOTE(woosuk): Use the original logits (before any penalties or
        # temperature scaling) for the top-k logprobs.
        # This is different from the V0 sampler, which uses the logits that
        # is used for sampling (after penalties and temperature scaling).
        # TODO(rob): provide option for logprobs post sampling.
        # See https://vllm-dev.slack.com/archives/C07UUL8E61Z/p1735907856007919 # noqa: E501
        num_logprobs = sampling_metadata.max_num_logprobs
        if num_logprobs is not None:
            raw_logprobs = self.compute_logprobs(logits)

        # Use float32 for the logits.
        logits = logits.to(torch.float32)
        # Apply allowed token ids.
        logits = self.apply_allowed_token_ids(logits, sampling_metadata)
        # Apply bad words exclusion.
        logits = self.apply_bad_words(logits, sampling_metadata)

        # Apply logits processors which can impact greedy sampling
        for processor in (sampling_metadata.logitsprocs.non_argmax_invariant):
            logits = processor.apply(logits)

        # Apply penalties (e.g., min_tokens, freq_penalties).
        logits = self.apply_penalties(logits, sampling_metadata)
        # Sample the next token.
        sampled = self.sample(logits, sampling_metadata)
        # Convert sampled token ids to int64 (long) type to ensure compatibility
        # with subsequent operations that may use these values as indices.
        # This conversion is necessary because FlashInfer sampling operations
        # return int32 (while PyTorch argmax and topk return int64).
        sampled = sampled.long()

        # Gather the logprobs of the topk and sampled token (if requested).
        # Get logprobs and rank tensors (if requested)
        logprobs_tensors = None if num_logprobs is None else \
            self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=sampled)

        # Use int32 to reduce the tensor size.
        sampled = sampled.to(torch.int32)

        # These are GPU tensors.
        sampler_output = SamplerOutput(
            # The sampled tokens are expanded to 2D tensor with shape
            # [num_requests, 1], where each row represents one generated
            # token per request.
            sampled_token_ids=sampled.unsqueeze(-1),
            logprobs_tensors=logprobs_tensors,
        )
        return sampler_output

    def apply_temperature(
        self,
        logits: torch.Tensor,
        temp: torch.Tensor,
    ) -> torch.Tensor:
        # Use in-place division to avoid creating a new tensor.
        return logits.div_(temp.unsqueeze(dim=1))

    def greedy_sample(self, logits: torch.Tensor) -> torch.Tensor:
        return logits.argmax(dim=-1).view(-1)

    def sample(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        """Sample logits based on sampling metadata.

        The various logits processing functions called in this method
        may update the logits tensor in-place.
        """

        assert not (sampling_metadata.all_greedy
                    and sampling_metadata.all_random)
        if sampling_metadata.all_random:
            greedy_sampled = None
        else:
            greedy_sampled = self.greedy_sample(logits)
            if sampling_metadata.all_greedy:
                return greedy_sampled

        assert sampling_metadata.temperature is not None

        # Apply temperature.
        logits = self.apply_temperature(logits, sampling_metadata.temperature)

        # Apply logits processors that only apply to random sampling
        # (argmax invariant)
        for processor in sampling_metadata.logitsprocs.argmax_invariant:
            logits = processor.apply(logits)

        # Apply top_k and/or top_p.
        random_sampled = self.topk_topp_sampler(
            logits,
            sampling_metadata.generators,
            sampling_metadata.top_k,
            sampling_metadata.top_p,
        )

        if greedy_sampled is None:
            return random_sampled

        sampled = torch.where(
            sampling_metadata.temperature < _SAMPLING_EPS,
            greedy_sampled,
            random_sampled,
            out=greedy_sampled,  # Reuse tensor
        )
        return sampled

    def compute_logprobs(self, logits: torch.Tensor) -> torch.Tensor:
        return logits.log_softmax(dim=-1, dtype=torch.float32)

    def gather_logprobs(
        self,
        logprobs: torch.Tensor,
        num_logprobs: int,
        token_ids: torch.Tensor,
    ) -> LogprobsTensors:
        """
        Gather logprobs for topk and sampled/prompt token.

        Args:
          logprobs: (num tokens) x (vocab) tensor
          num_logprobs: minimum number of logprobs to
                        retain per token
          token_ids: prompt tokens (if prompt logprobs)
                     or sampled tokens (if sampled
                     logprobs); 1D token ID tensor
                     with (num tokens) elements
                     Must be int64.

        Returns:
          Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
          Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
          Sampled token rank tensor, (num tokens)
        """
        assert token_ids.dtype == torch.int64
        # Find the topK values.
        topk_logprobs, topk_indices = torch.topk(logprobs,
                                                 num_logprobs,
                                                 dim=-1)

        # Get with the logprob of the prompt or sampled token.
        token_ids = token_ids.unsqueeze(-1)
        token_logprobs = logprobs.gather(-1, token_ids)

        # Compute the ranks of the actual token.
        token_ranks = (logprobs >= token_logprobs).sum(-1)

        # Concatenate together with the topk.
        indices = torch.cat((token_ids, topk_indices), dim=1)
        logprobs = torch.cat((token_logprobs, topk_logprobs), dim=1)

        # Use int32 to reduce the tensor size.
        indices = indices.to(torch.int32)

        return LogprobsTensors(indices, logprobs, token_ranks)

    def apply_penalties(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if not sampling_metadata.no_penalties:
            assert sampling_metadata.prompt_token_ids is not None
            logits = apply_all_penalties(
                logits,
                sampling_metadata.prompt_token_ids,
                sampling_metadata.presence_penalties,
                sampling_metadata.frequency_penalties,
                sampling_metadata.repetition_penalties,
                sampling_metadata.output_token_ids,
            )
        return logits

    def apply_allowed_token_ids(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if sampling_metadata.allowed_token_ids_mask is not None:
            logits.masked_fill_(sampling_metadata.allowed_token_ids_mask,
                                float("-inf"))
        return logits

    def apply_bad_words(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if sampling_metadata.bad_words_token_ids:
            apply_bad_words(
                logits,
                sampling_metadata.bad_words_token_ids,
                sampling_metadata.output_token_ids,
            )
        return logits

pin_memory instance-attribute

pin_memory = is_pin_memory_available()

topk_topp_sampler instance-attribute

topk_topp_sampler = TopKTopPSampler()

__init__

__init__()
Source code in vllm/v1/sample/sampler.py
def __init__(self):
    super().__init__()
    self.topk_topp_sampler = TopKTopPSampler()
    self.pin_memory = is_pin_memory_available()

apply_allowed_token_ids

apply_allowed_token_ids(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
def apply_allowed_token_ids(
    self,
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    if sampling_metadata.allowed_token_ids_mask is not None:
        logits.masked_fill_(sampling_metadata.allowed_token_ids_mask,
                            float("-inf"))
    return logits

apply_bad_words

apply_bad_words(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
def apply_bad_words(
    self,
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    if sampling_metadata.bad_words_token_ids:
        apply_bad_words(
            logits,
            sampling_metadata.bad_words_token_ids,
            sampling_metadata.output_token_ids,
        )
    return logits

apply_penalties

apply_penalties(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
def apply_penalties(
    self,
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    if not sampling_metadata.no_penalties:
        assert sampling_metadata.prompt_token_ids is not None
        logits = apply_all_penalties(
            logits,
            sampling_metadata.prompt_token_ids,
            sampling_metadata.presence_penalties,
            sampling_metadata.frequency_penalties,
            sampling_metadata.repetition_penalties,
            sampling_metadata.output_token_ids,
        )
    return logits

apply_temperature

apply_temperature(logits: Tensor, temp: Tensor) -> Tensor
Source code in vllm/v1/sample/sampler.py
def apply_temperature(
    self,
    logits: torch.Tensor,
    temp: torch.Tensor,
) -> torch.Tensor:
    # Use in-place division to avoid creating a new tensor.
    return logits.div_(temp.unsqueeze(dim=1))

compute_logprobs

compute_logprobs(logits: Tensor) -> Tensor
Source code in vllm/v1/sample/sampler.py
def compute_logprobs(self, logits: torch.Tensor) -> torch.Tensor:
    return logits.log_softmax(dim=-1, dtype=torch.float32)

forward

forward(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> SamplerOutput
Source code in vllm/v1/sample/sampler.py
def forward(
    self,
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
    # NOTE(woosuk): Use the original logits (before any penalties or
    # temperature scaling) for the top-k logprobs.
    # This is different from the V0 sampler, which uses the logits that
    # is used for sampling (after penalties and temperature scaling).
    # TODO(rob): provide option for logprobs post sampling.
    # See https://vllm-dev.slack.com/archives/C07UUL8E61Z/p1735907856007919 # noqa: E501
    num_logprobs = sampling_metadata.max_num_logprobs
    if num_logprobs is not None:
        raw_logprobs = self.compute_logprobs(logits)

    # Use float32 for the logits.
    logits = logits.to(torch.float32)
    # Apply allowed token ids.
    logits = self.apply_allowed_token_ids(logits, sampling_metadata)
    # Apply bad words exclusion.
    logits = self.apply_bad_words(logits, sampling_metadata)

    # Apply logits processors which can impact greedy sampling
    for processor in (sampling_metadata.logitsprocs.non_argmax_invariant):
        logits = processor.apply(logits)

    # Apply penalties (e.g., min_tokens, freq_penalties).
    logits = self.apply_penalties(logits, sampling_metadata)
    # Sample the next token.
    sampled = self.sample(logits, sampling_metadata)
    # Convert sampled token ids to int64 (long) type to ensure compatibility
    # with subsequent operations that may use these values as indices.
    # This conversion is necessary because FlashInfer sampling operations
    # return int32 (while PyTorch argmax and topk return int64).
    sampled = sampled.long()

    # Gather the logprobs of the topk and sampled token (if requested).
    # Get logprobs and rank tensors (if requested)
    logprobs_tensors = None if num_logprobs is None else \
        self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=sampled)

    # Use int32 to reduce the tensor size.
    sampled = sampled.to(torch.int32)

    # These are GPU tensors.
    sampler_output = SamplerOutput(
        # The sampled tokens are expanded to 2D tensor with shape
        # [num_requests, 1], where each row represents one generated
        # token per request.
        sampled_token_ids=sampled.unsqueeze(-1),
        logprobs_tensors=logprobs_tensors,
    )
    return sampler_output

gather_logprobs

gather_logprobs(
    logprobs: Tensor, num_logprobs: int, token_ids: Tensor
) -> LogprobsTensors

Gather logprobs for topk and sampled/prompt token.

Parameters:

Name Type Description Default
logprobs Tensor

(num tokens) x (vocab) tensor

required
num_logprobs int

minimum number of logprobs to retain per token

required
token_ids Tensor

prompt tokens (if prompt logprobs) or sampled tokens (if sampled logprobs); 1D token ID tensor with (num tokens) elements Must be int64.

required

Returns:

Type Description
LogprobsTensors

Top-k int indices tensor, (num tokens) x (num_logprobs + 1)

LogprobsTensors

Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)

LogprobsTensors

Sampled token rank tensor, (num tokens)

Source code in vllm/v1/sample/sampler.py
def gather_logprobs(
    self,
    logprobs: torch.Tensor,
    num_logprobs: int,
    token_ids: torch.Tensor,
) -> LogprobsTensors:
    """
    Gather logprobs for topk and sampled/prompt token.

    Args:
      logprobs: (num tokens) x (vocab) tensor
      num_logprobs: minimum number of logprobs to
                    retain per token
      token_ids: prompt tokens (if prompt logprobs)
                 or sampled tokens (if sampled
                 logprobs); 1D token ID tensor
                 with (num tokens) elements
                 Must be int64.

    Returns:
      Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
      Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
      Sampled token rank tensor, (num tokens)
    """
    assert token_ids.dtype == torch.int64
    # Find the topK values.
    topk_logprobs, topk_indices = torch.topk(logprobs,
                                             num_logprobs,
                                             dim=-1)

    # Get with the logprob of the prompt or sampled token.
    token_ids = token_ids.unsqueeze(-1)
    token_logprobs = logprobs.gather(-1, token_ids)

    # Compute the ranks of the actual token.
    token_ranks = (logprobs >= token_logprobs).sum(-1)

    # Concatenate together with the topk.
    indices = torch.cat((token_ids, topk_indices), dim=1)
    logprobs = torch.cat((token_logprobs, topk_logprobs), dim=1)

    # Use int32 to reduce the tensor size.
    indices = indices.to(torch.int32)

    return LogprobsTensors(indices, logprobs, token_ranks)

greedy_sample

greedy_sample(logits: Tensor) -> Tensor
Source code in vllm/v1/sample/sampler.py
def greedy_sample(self, logits: torch.Tensor) -> torch.Tensor:
    return logits.argmax(dim=-1).view(-1)

sample

sample(
    logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor

Sample logits based on sampling metadata.

The various logits processing functions called in this method may update the logits tensor in-place.

Source code in vllm/v1/sample/sampler.py
def sample(
    self,
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    """Sample logits based on sampling metadata.

    The various logits processing functions called in this method
    may update the logits tensor in-place.
    """

    assert not (sampling_metadata.all_greedy
                and sampling_metadata.all_random)
    if sampling_metadata.all_random:
        greedy_sampled = None
    else:
        greedy_sampled = self.greedy_sample(logits)
        if sampling_metadata.all_greedy:
            return greedy_sampled

    assert sampling_metadata.temperature is not None

    # Apply temperature.
    logits = self.apply_temperature(logits, sampling_metadata.temperature)

    # Apply logits processors that only apply to random sampling
    # (argmax invariant)
    for processor in sampling_metadata.logitsprocs.argmax_invariant:
        logits = processor.apply(logits)

    # Apply top_k and/or top_p.
    random_sampled = self.topk_topp_sampler(
        logits,
        sampling_metadata.generators,
        sampling_metadata.top_k,
        sampling_metadata.top_p,
    )

    if greedy_sampled is None:
        return random_sampled

    sampled = torch.where(
        sampling_metadata.temperature < _SAMPLING_EPS,
        greedy_sampled,
        random_sampled,
        out=greedy_sampled,  # Reuse tensor
    )
    return sampled