class Processor:
def __init__(
self,
vllm_config: VllmConfig,
tokenizer: TokenizerGroup,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.decoding_config = vllm_config.decoding_config
self.tokenizer = tokenizer
self.generation_config_fields = (
self.model_config.try_get_generation_config())
self.input_preprocessor = InputPreprocessor(self.model_config,
self.tokenizer,
mm_registry)
self.mm_input_cache_client = MirroredProcessingCache(self.model_config)
# Multi-modal hasher (for images)
self.use_hash = self.mm_input_cache_client.use_cache or \
self.cache_config.enable_prefix_caching
@property
def mm_registry(self):
return self.input_preprocessor.mm_registry
def _validate_logprobs(
self,
params: SamplingParams,
) -> None:
max_logprobs = self.model_config.max_logprobs
# Validate sample logprobs.
if params.logprobs and params.logprobs > max_logprobs:
raise ValueError(
f"Requested sample logprobs of {params.logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
# Validate prompt logprobs.
if params.prompt_logprobs and params.prompt_logprobs > max_logprobs:
raise ValueError(
f"Requested prompt logprobs of {params.prompt_logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
def _validate_sampling_params(
self,
params: SamplingParams,
lora_request: Optional[LoRARequest],
) -> None:
self._validate_structured_output(params)
self._validate_logit_bias(params)
if params.allowed_token_ids is None:
return
if not params.allowed_token_ids:
raise ValueError("allowed_token_ids is not None and empty!")
tokenizer = self.tokenizer.get_lora_tokenizer(lora_request)
vocab_size = len(tokenizer)
if not all(0 <= tid < vocab_size for tid in params.allowed_token_ids):
raise ValueError(
"allowed_token_ids contains out-of-vocab token id!")
def _validate_logit_bias(
self,
params: SamplingParams,
) -> None:
"""Validate logit_bias token IDs are within vocabulary range."""
if not params.logit_bias:
return
vocab_size = self.model_config.get_vocab_size()
invalid_token_ids = []
for token_id in params.logit_bias:
if token_id < 0 or token_id >= vocab_size:
invalid_token_ids.append(token_id)
if invalid_token_ids:
raise ValueError(
f"token_id(s) {invalid_token_ids} in logit_bias contain "
f"out-of-vocab token ids. Vocabulary size: {vocab_size}")
def _validate_supported_sampling_params(
self,
params: SamplingParams,
) -> None:
# Best of not yet supported.
if params.best_of is not None and params.best_of > 1:
raise ValueError("vLLM V1 does not yet support best_of.")
# Logits processors not supported.
if params.logits_processors:
raise ValueError("vLLM V1 does not support per request "
"user provided logits processors.")
def _validate_params(
self,
params: Union[SamplingParams, PoolingParams],
lora_request: Optional[LoRARequest],
):
"""
Validate supported SamplingParam.
Should raise ValueError if unsupported for API Server.
"""
if isinstance(params, PoolingParams):
return
self._validate_logprobs(params)
self._validate_sampling_params(params, lora_request)
self._validate_supported_sampling_params(params)
def _validate_lora(self, lora_request: Optional[LoRARequest]) -> None:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
def _validate_structured_output(self, params: SamplingParams) -> None:
if not params.guided_decoding or not self.decoding_config:
return
if self.model_config.skip_tokenizer_init and params.guided_decoding:
raise ValueError(
"Structured outputs requires a tokenizer so it can't be used with 'skip_tokenizer_init'" # noqa: E501
)
engine_level_backend = self.decoding_config.backend
if params.guided_decoding.backend:
# Request-level backend selection is not supported in V1.
# The values may differ if `params` is reused and was set
# to a specific backend based on `auto` behavior in a previous
# request. We remember that it was set as a result of `auto`
# using the `_auto` option set on the backend in the params.
if (params.guided_decoding.backend != engine_level_backend
and not (engine_level_backend == "auto"
and params.guided_decoding.backend_was_auto)):
raise ValueError(
"Request-level structured output backend selection is no "
"longer supported. The request specified "
f"'{params.guided_decoding.backend}', but vLLM was "
f"initialised with '{engine_level_backend}'. This error "
"can be resolved by removing backend selection from the "
"request.")
else:
params.guided_decoding.backend = engine_level_backend
# Request content validation
if (isinstance(params.guided_decoding.choice, list)
and not params.guided_decoding.choice):
# It is invalid for choice to be an empty list
raise ValueError(f"Choice '{params.guided_decoding.choice}' "
"cannot be an empty list")
if engine_level_backend.startswith("xgrammar"):
# xgrammar with no fallback
validate_xgrammar_grammar(params)
elif engine_level_backend.startswith("guidance"):
# TODO: ideally we would have the LLTokenizer here as Lark syntax
# allows <|special_token|> and similar, see
# https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#special-tokens
# Without tokenizer these are disallowed in grammars.
validate_guidance_grammar(params, tokenizer=None)
else:
# NOTE: engine_level_backend must be "auto" here, because we have
# checked supported_backends above.
# "auto" is an opt-in to opinionated behavior where we try to
# choose a backend based on request contents. This is not the
# default as it is less predictable and subject to change
# between releases as feature support changes.
try:
validate_xgrammar_grammar(params)
params.guided_decoding.backend = "xgrammar"
except ValueError:
# The request either failed validation
# or includes some jsonschema feature(s) that
# are not supported in xgrammar. Fall back to guidance.
validate_guidance_grammar(params, tokenizer=None)
params.guided_decoding.backend = "guidance"
# Remember that this backend was set automatically
params.guided_decoding.backend_was_auto = True
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
tokenization_kwargs: Optional[dict[str, Any]] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
data_parallel_rank: Optional[int] = None,
) -> tuple[Optional[str], EngineCoreRequest]:
# TODO(woosuk): Support pooling models.
# TODO(woosuk): Support encoder-decoder models.
self._validate_lora(lora_request)
self._validate_params(params, lora_request)
if trace_headers is not None:
raise ValueError("V1 does not support tracing yet.")
if prompt_adapter_request is not None:
raise ValueError("V1 does not support prompt_adapter_request.")
data_parallel_size = self.vllm_config.parallel_config.data_parallel_size
if data_parallel_rank is not None and not (0 <= data_parallel_rank <
data_parallel_size):
raise ValueError(f"data_parallel_rank {data_parallel_rank} "
f"is out of range [0, {data_parallel_size}).")
if arrival_time is None:
arrival_time = time.time()
# Process inputs, which includes:
# 1. Tokenize text prompt, with LoRA request if one exists.
# 2. For multimodal models with a merged preprocessor, preprocess
# multimodal data and expand prompt token ids accordingly.
# 3. Apply prompt adapter to prompt token ids if one exists.
processed_inputs: ProcessorInputs = self.input_preprocessor.preprocess(
prompt,
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
return_mm_hashes=self.use_hash,
)
from vllm.platforms import current_platform
current_platform.validate_request(
prompt=prompt,
params=params,
processed_inputs=processed_inputs,
)
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
self._validate_model_inputs(processed_inputs, lora_request)
encoder_inputs, decoder_inputs = split_enc_dec_inputs(processed_inputs)
# TODO: Impl encoder-decoder
if encoder_inputs is not None:
raise NotImplementedError
sampling_params = None
pooling_params = None
if isinstance(params, SamplingParams):
# TODO: can we avoid cloning here in multiproc case?
sampling_params = params.clone()
# If unset max tokens, then generate up to the max_model_len.
if sampling_params.max_tokens is None:
sampling_params.max_tokens = (
self.model_config.max_model_len -
len(decoder_inputs["prompt_token_ids"]))
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id)
sampling_params.update_from_tokenizer(
self.tokenizer.get_lora_tokenizer(lora_request))
else:
pooling_params = params.clone()
# Multimodal related.
sorted_mm_inputs: Optional[Sequence[Optional[MultiModalKwargs]]] = None
sorted_mm_positions: Optional[list[PlaceholderRange]] = None
sorted_mm_hashes: Optional[list[str]] = None
if decoder_inputs["type"] == "multimodal":
decoder_mm_inputs = decoder_inputs["mm_kwargs"]
# Merge and flatten multimodal placeholders, hashes and inputs
# from dictionaries to lists, and sort them by each item's position
# in the input sequence.
(
sorted_item_modalities,
sorted_mm_positions,
sorted_mm_hashes,
) = merge_and_sort_multimodal_metadata(
decoder_inputs["mm_placeholders"],
decoder_inputs["mm_hashes"] if self.use_hash else None,
)
# The output of merged multi-modal processor (`decoder_mm_inputs`)
# is a single MultiModalKwargs for all items from all modalities.
# This code flattens kwargs for individual items in a list and
# sorts them by each item's position in the input sequence if there
# are multiple modalities.
unique_modalities = set(sorted_item_modalities)
if len(unique_modalities) > 1:
orig_sorted_mm_inputs = []
used_indices = {modality: 0 for modality in unique_modalities}
for modality in sorted_item_modalities:
items = decoder_mm_inputs.get_items(modality)
item = items[used_indices[modality]]
orig_sorted_mm_inputs.append(
MultiModalKwargs.from_items([item]))
used_indices[modality] += 1
else:
orig_sorted_mm_inputs = [
MultiModalKwargs.from_items([item]) for item in
decoder_mm_inputs.get_items(sorted_item_modalities[0])
]
if sorted_mm_hashes is not None:
sorted_mm_inputs = self.mm_input_cache_client.get_and_update_p0(
orig_sorted_mm_inputs, sorted_mm_hashes)
else:
sorted_mm_inputs = orig_sorted_mm_inputs
return decoder_inputs.get("prompt"), EngineCoreRequest(
request_id=request_id,
prompt_token_ids=decoder_inputs["prompt_token_ids"],
mm_inputs=sorted_mm_inputs,
mm_hashes=sorted_mm_hashes,
mm_placeholders=sorted_mm_positions,
sampling_params=sampling_params,
pooling_params=pooling_params,
eos_token_id=eos_token_id,
arrival_time=arrival_time,
lora_request=lora_request,
cache_salt=decoder_inputs.get("cache_salt"),
priority=priority,
data_parallel_rank=data_parallel_rank,
)
def _validate_model_inputs(self,
inputs: ProcessorInputs,
lora_request: Optional[LoRARequest] = None):
encoder_inputs, decoder_inputs = split_enc_dec_inputs(inputs)
if encoder_inputs is not None:
self._validate_model_input(encoder_inputs,
lora_request,
prompt_type="encoder")
self._validate_model_input(decoder_inputs,
lora_request,
prompt_type="decoder")
def _validate_model_input(
self,
prompt_inputs: SingletonInputs,
lora_request: Optional[LoRARequest],
*,
prompt_type: Literal["encoder", "decoder"],
):
model_config = self.model_config
tokenizer = self.tokenizer.get_lora_tokenizer(lora_request)
prompt_ids = prompt_inputs["prompt_token_ids"]
if not prompt_ids:
if prompt_type == "encoder" and model_config.is_multimodal_model:
pass # Mllama may have empty encoder inputs for text-only data
else:
raise ValueError(f"The {prompt_type} prompt cannot be empty")
max_input_id = max(prompt_ids, default=0)
if max_input_id > tokenizer.max_token_id:
raise ValueError(f"Token id {max_input_id} is out of vocabulary")
max_prompt_len = self.model_config.max_model_len
if len(prompt_ids) > max_prompt_len:
if prompt_type == "encoder" and model_config.is_multimodal_model:
mm_registry = self.input_preprocessor.mm_registry
mm_processor = mm_registry.create_processor(
model_config,
tokenizer=tokenizer,
)
assert isinstance(mm_processor, EncDecMultiModalProcessor)
if mm_processor.pad_dummy_encoder_prompt:
return # Skip encoder length check for Whisper
if model_config.is_multimodal_model:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well.")
else:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens.")
raise ValueError(
f"The {prompt_type} prompt (length {len(prompt_ids)}) is "
f"longer than the maximum model length of {max_prompt_len}. "
f"{suggestion}")