Skip to content

vllm.inputs.preprocess

logger module-attribute

logger = init_logger(__name__)

InputPreprocessor

Source code in vllm/inputs/preprocess.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
class InputPreprocessor:

    def __init__(
        self,
        model_config: ModelConfig,
        tokenizer: Optional[TokenizerGroup],
        mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
    ) -> None:
        super().__init__()

        self.model_config = model_config
        self.tokenizer = tokenizer
        self.mm_registry = mm_registry

    def get_tokenizer_group(self) -> TokenizerGroup:
        if self.tokenizer is None:
            raise ValueError("You cannot pass text prompts when "
                             "`skip_tokenizer_init` is True")

        return self.tokenizer

    def get_bos_token_id(self,
                         lora_request: Optional[LoRARequest] = None
                         ) -> Optional[int]:
        if self.tokenizer is None:
            logger.warning("Using None for BOS token id because tokenizer "
                           "is not initialized")
            return None

        return self.tokenizer.get_lora_tokenizer(lora_request).bos_token_id

    def get_eos_token_id(self,
                         lora_request: Optional[LoRARequest] = None
                         ) -> Optional[int]:
        if self.tokenizer is None:
            logger.warning("Using None for EOS token id because tokenizer "
                           "is not initialized")
            return None

        return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id

    def get_decoder_start_token_id(self) -> Optional[int]:
        """
        Obtain the decoder start token id employed by an encoder/decoder
        model. Returns None for non-encoder/decoder models or if the
        model config is unavailable.
        """

        if not self.model_config.is_encoder_decoder:
            logger.warning_once(
                "Using None for decoder start token id because "
                "this is not an encoder/decoder model.")
            return None

        if self.model_config is None or self.model_config.hf_config is None:
            logger.warning_once(
                "Using None for decoder start token id because "
                "model config is not available.")
            return None

        dec_start_token_id = getattr(self.model_config.hf_config,
                                     "decoder_start_token_id", None)
        if dec_start_token_id is None:
            logger.warning_once(
                "Falling back on <BOS> for decoder start token "
                "id because decoder start token id is not "
                "available.")
            dec_start_token_id = self.get_bos_token_id()

        return dec_start_token_id

    def _get_default_enc_dec_decoder_prompt(self) -> list[int]:
        """
        Specifically for encoder/decoder models:
        generate a default decoder prompt for when
        the user specifies only the encoder prompt.

        Encoder/decoder models utilize the decoder
        prompt in different ways; as new models are
        added, it is intended that this function
        will be extended to produce differing
        default decoder prompts, depending on the
        model variety.

        Absent a special case, the default behavior
        of this method is to mirror the behavior of
        the HuggingFace (HF) GenerationMixin for a None
        decoder prompt, which is to employ a logit processor
        setting to force the first decoded token to be <BOS>.
        Here, this behavior is approximated by having the
        "default" decoder prompt be <BOS>.

        However, it is possible that in the future
        other models may have different or more
        complex logic for the default decoder prompt.
        This motivates having a special helper method
        for default decoder prompts.

        Returns:

        * prompt_token_ids
        """

        bos_token_id = self.get_bos_token_id()
        assert bos_token_id is not None
        return [bos_token_id]

    def _prepare_decoder_input_ids_for_generation(
        self,
        decoder_input_ids: Optional[list[int]],
    ) -> list[int]:
        """
        Prepares `decoder_input_ids` for generation with encoder-decoder models.

        Based on:
        https://github.com/huggingface/transformers/blob/4037a2b5b1278736e566aec12e169100275545ea/src/transformers/generation/utils.py
        specifically,
        `GenerationMixin._prepare_decoder_input_ids_for_generation()`.

        Arguments:

        * decoder_input_ids: input token ids to preprocess

        Returns:

        * Processed token list
        """

        decoder_start_token_id = self.get_decoder_start_token_id()
        assert decoder_start_token_id is not None

        if decoder_input_ids is None:
            # no decoder prompt input ->
            # use decoder_start_token_id as decoder_input_ids
            decoder_input_ids = self._get_default_enc_dec_decoder_prompt()

        if (len(decoder_input_ids) == 0
                or decoder_input_ids[0] != decoder_start_token_id):
            decoder_input_ids = [decoder_start_token_id] + decoder_input_ids

        return decoder_input_ids

    def _apply_prompt_adapter(
        self,
        prompt_token_ids: list[int],
        prompt_adapter_request: Optional[PromptAdapterRequest],
    ) -> list[int]:
        if prompt_adapter_request:
            prompt_token_ids = (
                [0] * prompt_adapter_request.prompt_adapter_num_virtual_tokens
                + prompt_token_ids)

        return prompt_token_ids

    def _get_tokenization_kw(
        self,
        overrides: Optional[dict[str, Any]] = None,
    ) -> dict[str, Any]:
        kwargs = dict[str, Any]()

        if self.model_config.hf_config.model_type == "whisper":
            # For Whisper, special tokens should be provided by the user based
            # on the task and language of their request. Also needed to avoid
            # appending an EOS token to the prompt which disrupts generation.
            kwargs["add_special_tokens"] = False

        if overrides:
            kwargs.update(overrides)

        return kwargs

    def _tokenize_prompt(
        self,
        prompt: str,
        lora_request: Optional[LoRARequest],
        tokenization_kwargs: Optional[dict[str, Any]] = None,
    ) -> list[int]:
        """
        Apply the model's tokenizer to a text prompt, returning the
        corresponding token IDs.
        """
        tokenizer = self.get_tokenizer_group()
        tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)

        encoder_config = self.model_config.encoder_config

        if encoder_config and encoder_config.get("do_lower_case", False):
            prompt = prompt.lower()

        return tokenizer.encode(prompt=prompt,
                                lora_request=lora_request,
                                **tokenization_kwargs)

    async def _tokenize_prompt_async(
        self,
        prompt: str,
        lora_request: Optional[LoRARequest],
        tokenization_kwargs: Optional[dict[str, Any]] = None,
    ) -> list[int]:
        """
        Async version of
        [`_tokenize_prompt`][vllm.inputs.preprocess.InputPreprocessor._tokenize_prompt].
        """
        tokenizer = self.get_tokenizer_group()
        tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)

        return await tokenizer.encode_async(prompt=prompt,
                                            lora_request=lora_request,
                                            **tokenization_kwargs)

    def _get_mm_tokenizer(
        self,
        lora_request: Optional[LoRARequest],
    ) -> AnyTokenizer:
        # PrithviGeoSpatialMAE needs to be initialized without a tokenizer
        # while using also multi-modal input
        if not self.tokenizer:
            return cast(AnyTokenizer, object())  # Dummy

        tokenizer_group = self.get_tokenizer_group()
        return tokenizer_group.get_lora_tokenizer(lora_request)

    async def _get_mm_tokenizer_async(
        self,
        lora_request: Optional[LoRARequest],
    ) -> AnyTokenizer:
        # PrithviGeoSpatialMAE needs to be initialized without a tokenizer
        # while using also multi-modal input
        if not self.tokenizer:
            return cast(AnyTokenizer, object())  # Dummy

        tokenizer_group = self.get_tokenizer_group()
        return await tokenizer_group.get_lora_tokenizer_async(lora_request)

    def _process_multimodal(
        self,
        prompt: Union[str, list[int]],
        mm_data: MultiModalDataDict,
        mm_processor_kwargs: Optional[Mapping[str, object]],
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> MultiModalInputs:
        """
        Apply the model's multi-modal processor to a multi-modal prompt,
        returning the corresponding token IDs and metadata.
        """
        tokenizer = self._get_mm_tokenizer(lora_request)

        mm_processor = self.mm_registry.create_processor(self.model_config,
                                                         tokenizer=tokenizer)

        if mm_processor_kwargs is None:
            mm_processor_kwargs = {}

        return mm_processor.apply(prompt,
                                  mm_data,
                                  hf_processor_mm_kwargs=mm_processor_kwargs,
                                  tokenization_kwargs=tokenization_kwargs,
                                  return_mm_hashes=return_mm_hashes)

    async def _process_multimodal_async(
        self,
        prompt: Union[str, list[int]],
        mm_data: MultiModalDataDict,
        mm_processor_kwargs: Optional[Mapping[str, object]],
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> MultiModalInputs:
        """
        Async version of
        [`_process_multimodal`][vllm.inputs.preprocess.InputPreprocessor._process_multimodal].
        """
        tokenizer = await self._get_mm_tokenizer_async(lora_request)

        mm_processor = self.mm_registry.create_processor(self.model_config,
                                                         tokenizer=tokenizer)
        if mm_processor_kwargs is None:
            mm_processor_kwargs = {}

        return mm_processor.apply(prompt,
                                  mm_data,
                                  hf_processor_mm_kwargs=mm_processor_kwargs,
                                  tokenization_kwargs=tokenization_kwargs,
                                  return_mm_hashes=return_mm_hashes)

    def _process_embeds(
        self,
        parsed_content: EmbedsPrompt,
    ) -> EmbedsInputs:
        if not self.model_config.enable_prompt_embeds:
            raise ValueError("You must set `--enable-prompt-embeds` to input "
                             "`prompt_embeds`.")

        prompt_embeds = parsed_content["prompt_embeds"]

        # prompt_embeds must be (seq_len, hidden_size), but if the user
        # passes in a batch of size 1, i.e. (1, seq_len, hidden_size),
        # we can unambiguously process the intent by squeezing the batch
        # dimension.
        if prompt_embeds.ndim == 3:
            prompt_embeds = prompt_embeds.squeeze(dim=0)

        if prompt_embeds.ndim != 2:
            raise ValueError(
                "prompt_embeds must be of shape (seq_len, hidden_size).")

        return embeds_inputs(prompt_embeds=prompt_embeds,
                             cache_salt=parsed_content.get("cache_salt"))

    async def _process_embeds_async(
        self,
        parsed_content: EmbedsPrompt,
    ) -> EmbedsInputs:
        return self._process_embeds(parsed_content)

    def _process_tokens(
        self,
        parsed_content: TokensPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> Union[TokenInputs, MultiModalInputs]:
        prompt_token_ids = parsed_content["prompt_token_ids"]
        token_type_ids = parsed_content.get("token_type_ids")

        inputs: Union[TokenInputs, MultiModalInputs]
        if multi_modal_data := parsed_content.get("multi_modal_data"):
            inputs = self._process_multimodal(
                prompt_token_ids,
                multi_modal_data,
                parsed_content.get("mm_processor_kwargs"),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        else:
            inputs = token_inputs(
                prompt_token_ids=prompt_token_ids,
                token_type_ids=token_type_ids,
            )

        if cache_salt := parsed_content.get("cache_salt"):
            inputs["cache_salt"] = cache_salt

        return inputs

    async def _process_tokens_async(
        self,
        parsed_content: TokensPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> Union[TokenInputs, MultiModalInputs]:
        prompt_token_ids = parsed_content["prompt_token_ids"]
        token_type_ids = parsed_content.get("token_type_ids")

        inputs: Union[TokenInputs, MultiModalInputs]
        if multi_modal_data := parsed_content.get("multi_modal_data"):
            inputs = await self._process_multimodal_async(
                prompt_token_ids,
                multi_modal_data,
                parsed_content.get("mm_processor_kwargs"),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        else:
            inputs = token_inputs(
                prompt_token_ids=prompt_token_ids,
                token_type_ids=token_type_ids,
            )

        if cache_salt := parsed_content.get("cache_salt"):
            inputs["cache_salt"] = cache_salt

        return inputs

    def _process_text(
        self,
        parsed_content: TextPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> Union[TokenInputs, MultiModalInputs]:
        prompt_text = parsed_content["prompt"]

        inputs: Union[TokenInputs, MultiModalInputs]
        if multi_modal_data := parsed_content.get("multi_modal_data"):
            inputs = self._process_multimodal(
                prompt_text,
                multi_modal_data,
                parsed_content.get("mm_processor_kwargs"),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        else:
            prompt_token_ids = self._tokenize_prompt(
                prompt_text,
                lora_request=lora_request,
                tokenization_kwargs=tokenization_kwargs,
            )
            inputs = token_inputs(
                prompt=prompt_text,
                prompt_token_ids=prompt_token_ids,
            )

        if cache_salt := parsed_content.get("cache_salt"):
            inputs["cache_salt"] = cache_salt

        return inputs

    async def _process_text_async(
        self,
        parsed_content: TextPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> Union[TokenInputs, MultiModalInputs]:
        prompt_text = parsed_content["prompt"]

        inputs: Union[TokenInputs, MultiModalInputs]
        if multi_modal_data := parsed_content.get("multi_modal_data"):
            inputs = await self._process_multimodal_async(
                prompt_text,
                multi_modal_data,
                parsed_content.get("mm_processor_kwargs"),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        else:
            prompt_token_ids = await self._tokenize_prompt_async(
                prompt_text,
                lora_request=lora_request,
                tokenization_kwargs=tokenization_kwargs,
            )
            inputs = token_inputs(
                prompt=prompt_text,
                prompt_token_ids=prompt_token_ids,
            )

        if cache_salt := parsed_content.get("cache_salt"):
            inputs["cache_salt"] = cache_salt

        return inputs

    def _prompt_to_llm_inputs(
        self,
        prompt: SingletonPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> SingletonInputs:
        """
        Extract the singleton inputs from a prompt.

        Arguments:

        * prompt: single encoder or decoder input prompt
        * lora_request: this is only valid for decoder prompts
        * return_mm_hashes: whether to return multimodal hashes

        Returns:

        * [`SingletonInputs`][vllm.inputs.data.SingletonInputs] instance
        """
        parsed = parse_singleton_prompt(prompt)

        if parsed["type"] == "embeds":
            return self._process_embeds(parsed["content"])
        if parsed["type"] == "tokens":
            return self._process_tokens(
                parsed["content"],
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        if parsed["type"] == "text":
            return self._process_text(
                parsed["content"],
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        if parsed["type"] == "str":
            return self._process_text(
                TextPrompt(prompt=parsed["content"]),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )

        assert_never(parsed)

    async def _prompt_to_llm_inputs_async(
        self,
        prompt: SingletonPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        return_mm_hashes: bool = False,
    ) -> SingletonInputs:
        """
        Async version of
        [`_prompt_to_llm_inputs`][vllm.inputs.preprocess.InputPreprocessor._prompt_to_llm_inputs].
        """
        parsed = parse_singleton_prompt(prompt)

        if parsed["type"] == "embeds":
            return await self._process_embeds_async(parsed["content"])
        if parsed["type"] == "tokens":
            return await self._process_tokens_async(
                parsed["content"],
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        if parsed["type"] == "text":
            return await self._process_text_async(
                parsed["content"],
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )
        if parsed["type"] == "str":
            return await self._process_text_async(
                TextPrompt(prompt=parsed["content"]),
                tokenization_kwargs=tokenization_kwargs,
                lora_request=lora_request,
                return_mm_hashes=return_mm_hashes,
            )

        assert_never(parsed)

    def _build_enc_dec_llm_inputs(
        self,
        encoder_inputs: SingletonInputs,
        decoder_inputs: Optional[SingletonInputs],
    ) -> EncoderDecoderInputs:
        if (encoder_inputs["type"] == "embeds"
                or decoder_inputs and decoder_inputs["type"] == "embeds"):
            raise ValueError("Embedding inputs are not supported for encoder-"
                             "decoder models")

        # Needed for mypy
        encoder_inputs = cast(Union[TokenInputs, MultiModalInputs],
                              encoder_inputs)
        decoder_inputs = cast(Optional[Union[TokenInputs, MultiModalInputs]],
                              decoder_inputs)

        if decoder_inputs is None:
            if self.model_config.hf_config.model_type == "whisper":
                # For Whisper models, the text prompt should go to the decoder.
                # If no explicit encoder/decoder inputs, then copy the prompt
                # from the encoder to the decoder. The encoder tokens are later
                # overridden by the audio features.
                dec_token_ids = encoder_inputs["prompt_token_ids"].copy()
            else:
                dec_token_ids = self._prepare_decoder_input_ids_for_generation(
                    None)
            decoder_inputs = token_inputs(dec_token_ids)
        else:
            if "multi_modal_data" in decoder_inputs:
                raise ValueError("Multi-modal decoder inputs of encoder-"
                                 "decoder models are not supported yet")

            dec_token_ids = self._prepare_decoder_input_ids_for_generation(
                decoder_inputs["prompt_token_ids"])
            decoder_inputs["prompt_token_ids"] = dec_token_ids

        return EncoderDecoderInputs(
            encoder=encoder_inputs,
            decoder=decoder_inputs,
        )

    def _split_enc_dec_mm_inputs(
        self,
        inputs: Union[SingletonInputs, MultiModalEncDecInputs],
        decoder_inputs_to_override: Optional[SingletonInputs] = None,
    ) -> tuple[SingletonInputs, SingletonInputs]:
        """
        For encoder/decoder models only:
        Separate Encoder/Decoder inputs from a MultiModalEncDecInputs
        """
        if (inputs["type"] == "embeds" or decoder_inputs_to_override
                and decoder_inputs_to_override["type"] == "embeds"):
            raise ValueError("Embedding inputs are not supported for encoder-"
                             "decoder models")

        # Needed for mypy
        inputs = cast(
            Union[TokenInputs, MultiModalInputs, MultiModalEncDecInputs],
            inputs,
        )
        decoder_inputs_to_override = cast(
            Optional[Union[TokenInputs, MultiModalInputs]],
            decoder_inputs_to_override,
        )

        encoder_inputs: SingletonInputs
        decoder_inputs: SingletonInputs

        if inputs["type"] == "multimodal":  # Multimodal data inputs
            if not ("encoder_prompt" in inputs
                    and "encoder_prompt_token_ids" in inputs):
                raise RuntimeError("You should register an encoder-decoder "
                                   "multi-modal processor for encoder-decoder "
                                   "models.")
            inputs = cast(MultiModalEncDecInputs, inputs)

            encoder_inputs = token_inputs(
                prompt=inputs["encoder_prompt"],
                prompt_token_ids=inputs["encoder_prompt_token_ids"],
            )

            decoder_prompt_inputs = decoder_inputs_to_override or inputs
            decoder_inputs = MultiModalInputs(
                type="multimodal",
                prompt=decoder_prompt_inputs.get("prompt", ""),
                prompt_token_ids=decoder_prompt_inputs["prompt_token_ids"],
                mm_kwargs=inputs["mm_kwargs"],
                mm_hashes=inputs["mm_hashes"],
                mm_placeholders=inputs["mm_placeholders"],
            )
            if cache_salt := inputs.get("cache_salt"):
                decoder_inputs["cache_salt"] = cache_salt

        elif inputs["type"] == "token":  # Text-only inputs
            encoder_inputs = token_inputs(prompt="", prompt_token_ids=[])
            decoder_inputs = decoder_inputs_to_override or inputs
        else:
            assert_never(inputs)  # type: ignore[arg-type]

        return encoder_inputs, decoder_inputs

    def _process_encoder_decoder_prompt(
        self,
        prompt: PromptType,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
    ) -> EncoderDecoderInputs:
        """
        For encoder/decoder models only:
        Process an input prompt into an
        [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
        instance.

        There are two types of input prompts:
        singleton prompts which carry only the
        encoder prompt, and explicit encoder/decoder
        prompts which carry both the encoder and the
        decoder prompts as member variables.

        This function handles the following scenarios:
        * Singleton encoder prompt: extract encoder prompt
          token ids & infer default decoder prompt token ids
        * Explicit encoder/decoder prompt: extract encoder
          and decoder prompt token ids

        Note that for Explicit encoder/decoder prompts,
        each sub-prompt (encoder or decoder prompt) can
        have any possible singleton type; thus this
        method relies on helper functions to obtain
        token ids for the sub-prompts.

        Arguments:

        * prompt: an input prompt

        Returns:

        * [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
          instance
        """
        encoder_inputs: SingletonInputs
        decoder_inputs: Optional[SingletonInputs]

        if is_explicit_encoder_decoder_prompt(prompt):
            encoder_inputs = self._prompt_to_llm_inputs(
                prompt["encoder_prompt"],
                tokenization_kwargs=tokenization_kwargs,
            )
            if (decoder_input := prompt["decoder_prompt"]) is None:
                decoder_inputs = None
            else:
                decoder_inputs = self._prompt_to_llm_inputs(decoder_input)
            # For multimodal model, override decoder prompt from processor
            # with explicit decoder prompt.
            if self.model_config.is_multimodal_model:
                encoder_inputs, decoder_inputs = (
                    self._split_enc_dec_mm_inputs(encoder_inputs,
                                                  decoder_inputs))
        else:
            inputs = self._prompt_to_llm_inputs(
                prompt,
                tokenization_kwargs=tokenization_kwargs,
            )
            if self.model_config.is_multimodal_model:
                # Encoder-Decoder Multimodal model
                encoder_inputs, decoder_inputs = (
                    self._split_enc_dec_mm_inputs(inputs))
            else:
                encoder_inputs = inputs
                decoder_inputs = None

        return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)

    async def _process_encoder_decoder_prompt_async(
        self,
        prompt: PromptType,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
    ) -> EncoderDecoderInputs:
        """
        Async version of
        [`_process_encoder_decoder_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_encoder_decoder_prompt].
        """
        encoder_inputs: SingletonInputs
        decoder_inputs: Optional[SingletonInputs]

        if is_explicit_encoder_decoder_prompt(prompt):
            encoder_task = self._prompt_to_llm_inputs_async(
                prompt["encoder_prompt"],
                tokenization_kwargs=tokenization_kwargs,
            )

            if (decoder_input := prompt["decoder_prompt"]) is None:
                encoder_inputs = await encoder_task
                decoder_inputs = None
            else:
                decoder_task = self._prompt_to_llm_inputs_async(
                    decoder_input,
                    tokenization_kwargs=tokenization_kwargs,
                )

                encoder_inputs, decoder_inputs = await asyncio.gather(
                    encoder_task, decoder_task)

            # For multimodal model, override decoder prompt from processor
            # with explicit decoder prompt.
            if self.model_config.is_multimodal_model:
                encoder_inputs, decoder_inputs = (
                    self._split_enc_dec_mm_inputs(encoder_inputs,
                                                  decoder_inputs))
        else:
            inputs = await self._prompt_to_llm_inputs_async(
                prompt,
                tokenization_kwargs=tokenization_kwargs,
            )
            if self.model_config.is_multimodal_model:
                # Encoder-Decoder Multimodal model
                encoder_inputs, decoder_inputs = (
                    self._split_enc_dec_mm_inputs(inputs))
            else:
                encoder_inputs = inputs
                decoder_inputs = None

        return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)

    def _build_decoder_only_llm_inputs(
        self,
        prompt_inputs: DecoderOnlyInputs,
        prompt_adapter_request: Optional[PromptAdapterRequest],
    ) -> DecoderOnlyInputs:
        if "prompt_token_ids" in prompt_inputs:
            prompt_inputs = cast(Union[TokenInputs, MultiModalInputs],
                                 prompt_inputs)  # Needed for mypy
            prompt_inputs["prompt_token_ids"] = self._apply_prompt_adapter(
                prompt_inputs["prompt_token_ids"],
                prompt_adapter_request=prompt_adapter_request,
            )

        return prompt_inputs

    def _process_decoder_only_prompt(
        self,
        prompt: SingletonPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        return_mm_hashes: bool = False,
    ) -> DecoderOnlyInputs:
        """
        For decoder-only models:
        Process an input prompt into a
        [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance.

        Arguments:

        * prompt: input prompt
        * lora_request
        * prompt_adapter_request
        * return_mm_hashes

        Returns:

        * [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance
        """

        prompt_comps = self._prompt_to_llm_inputs(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )

        return self._build_decoder_only_llm_inputs(
            prompt_comps,
            prompt_adapter_request=prompt_adapter_request,
        )

    async def _process_decoder_only_prompt_async(
        self,
        prompt: SingletonPrompt,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        return_mm_hashes: bool = False,
    ) -> DecoderOnlyInputs:
        """
        Async version of
        [`_process_decoder_only_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_decoder_only_prompt].
        """
        prompt_comps = await self._prompt_to_llm_inputs_async(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )

        return self._build_decoder_only_llm_inputs(
            prompt_comps,
            prompt_adapter_request=prompt_adapter_request,
        )

    def preprocess(
        self,
        prompt: PromptType,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        return_mm_hashes: bool = False,
    ) -> ProcessorInputs:
        """Preprocess the input prompt."""
        if self.model_config.is_encoder_decoder:
            assert not return_mm_hashes, (
                "Multimodal hashes for encoder-decoder models should not be ",
                "returned until they are supported on vLLM V1.")
            # Encoder-decoder model requires special mapping of
            # input prompts to encoder & decoder
            return self._process_encoder_decoder_prompt(
                prompt, tokenization_kwargs)

        if is_explicit_encoder_decoder_prompt(prompt):
            raise ValueError("Cannot pass encoder-decoder prompt "
                             "to decoder-only models")

        # Decoder-only operation
        return self._process_decoder_only_prompt(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
            return_mm_hashes=return_mm_hashes,
        )

    async def preprocess_async(
        self,
        prompt: PromptType,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        lora_request: Optional[LoRARequest] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        return_mm_hashes: bool = False,
    ) -> ProcessorInputs:
        """
        Async version of
        [`preprocess`][vllm.inputs.preprocess.InputPreprocessor.preprocess].
        """
        if self.model_config.is_encoder_decoder:
            assert not return_mm_hashes, (
                "Multimodal hashes for encoder-decoder models should not be ",
                "returned until they are supported on vLLM V1.")
            # Encoder-decoder model requires special mapping of
            # input prompts to encoder & decoder
            return await self._process_encoder_decoder_prompt_async(prompt)

        if is_explicit_encoder_decoder_prompt(prompt):
            raise ValueError("Cannot pass encoder-decoder prompt "
                             "to decoder-only models")

        # Decoder-only operation
        return await self._process_decoder_only_prompt_async(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
            return_mm_hashes=return_mm_hashes,
        )

mm_registry instance-attribute

mm_registry = mm_registry

model_config instance-attribute

model_config = model_config

tokenizer instance-attribute

tokenizer = tokenizer

__init__

__init__(
    model_config: ModelConfig,
    tokenizer: Optional[TokenizerGroup],
    mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
) -> None
Source code in vllm/inputs/preprocess.py
def __init__(
    self,
    model_config: ModelConfig,
    tokenizer: Optional[TokenizerGroup],
    mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
) -> None:
    super().__init__()

    self.model_config = model_config
    self.tokenizer = tokenizer
    self.mm_registry = mm_registry

_apply_prompt_adapter

_apply_prompt_adapter(
    prompt_token_ids: list[int],
    prompt_adapter_request: Optional[PromptAdapterRequest],
) -> list[int]
Source code in vllm/inputs/preprocess.py
def _apply_prompt_adapter(
    self,
    prompt_token_ids: list[int],
    prompt_adapter_request: Optional[PromptAdapterRequest],
) -> list[int]:
    if prompt_adapter_request:
        prompt_token_ids = (
            [0] * prompt_adapter_request.prompt_adapter_num_virtual_tokens
            + prompt_token_ids)

    return prompt_token_ids

_build_decoder_only_llm_inputs

_build_decoder_only_llm_inputs(
    prompt_inputs: DecoderOnlyInputs,
    prompt_adapter_request: Optional[PromptAdapterRequest],
) -> DecoderOnlyInputs
Source code in vllm/inputs/preprocess.py
def _build_decoder_only_llm_inputs(
    self,
    prompt_inputs: DecoderOnlyInputs,
    prompt_adapter_request: Optional[PromptAdapterRequest],
) -> DecoderOnlyInputs:
    if "prompt_token_ids" in prompt_inputs:
        prompt_inputs = cast(Union[TokenInputs, MultiModalInputs],
                             prompt_inputs)  # Needed for mypy
        prompt_inputs["prompt_token_ids"] = self._apply_prompt_adapter(
            prompt_inputs["prompt_token_ids"],
            prompt_adapter_request=prompt_adapter_request,
        )

    return prompt_inputs

_build_enc_dec_llm_inputs

_build_enc_dec_llm_inputs(
    encoder_inputs: SingletonInputs,
    decoder_inputs: Optional[SingletonInputs],
) -> EncoderDecoderInputs
Source code in vllm/inputs/preprocess.py
def _build_enc_dec_llm_inputs(
    self,
    encoder_inputs: SingletonInputs,
    decoder_inputs: Optional[SingletonInputs],
) -> EncoderDecoderInputs:
    if (encoder_inputs["type"] == "embeds"
            or decoder_inputs and decoder_inputs["type"] == "embeds"):
        raise ValueError("Embedding inputs are not supported for encoder-"
                         "decoder models")

    # Needed for mypy
    encoder_inputs = cast(Union[TokenInputs, MultiModalInputs],
                          encoder_inputs)
    decoder_inputs = cast(Optional[Union[TokenInputs, MultiModalInputs]],
                          decoder_inputs)

    if decoder_inputs is None:
        if self.model_config.hf_config.model_type == "whisper":
            # For Whisper models, the text prompt should go to the decoder.
            # If no explicit encoder/decoder inputs, then copy the prompt
            # from the encoder to the decoder. The encoder tokens are later
            # overridden by the audio features.
            dec_token_ids = encoder_inputs["prompt_token_ids"].copy()
        else:
            dec_token_ids = self._prepare_decoder_input_ids_for_generation(
                None)
        decoder_inputs = token_inputs(dec_token_ids)
    else:
        if "multi_modal_data" in decoder_inputs:
            raise ValueError("Multi-modal decoder inputs of encoder-"
                             "decoder models are not supported yet")

        dec_token_ids = self._prepare_decoder_input_ids_for_generation(
            decoder_inputs["prompt_token_ids"])
        decoder_inputs["prompt_token_ids"] = dec_token_ids

    return EncoderDecoderInputs(
        encoder=encoder_inputs,
        decoder=decoder_inputs,
    )

_get_default_enc_dec_decoder_prompt

_get_default_enc_dec_decoder_prompt() -> list[int]

Specifically for encoder/decoder models: generate a default decoder prompt for when the user specifies only the encoder prompt.

Encoder/decoder models utilize the decoder prompt in different ways; as new models are added, it is intended that this function will be extended to produce differing default decoder prompts, depending on the model variety.

Absent a special case, the default behavior of this method is to mirror the behavior of the HuggingFace (HF) GenerationMixin for a None decoder prompt, which is to employ a logit processor setting to force the first decoded token to be . Here, this behavior is approximated by having the "default" decoder prompt be .

However, it is possible that in the future other models may have different or more complex logic for the default decoder prompt. This motivates having a special helper method for default decoder prompts.

Returns:

  • prompt_token_ids
Source code in vllm/inputs/preprocess.py
def _get_default_enc_dec_decoder_prompt(self) -> list[int]:
    """
    Specifically for encoder/decoder models:
    generate a default decoder prompt for when
    the user specifies only the encoder prompt.

    Encoder/decoder models utilize the decoder
    prompt in different ways; as new models are
    added, it is intended that this function
    will be extended to produce differing
    default decoder prompts, depending on the
    model variety.

    Absent a special case, the default behavior
    of this method is to mirror the behavior of
    the HuggingFace (HF) GenerationMixin for a None
    decoder prompt, which is to employ a logit processor
    setting to force the first decoded token to be <BOS>.
    Here, this behavior is approximated by having the
    "default" decoder prompt be <BOS>.

    However, it is possible that in the future
    other models may have different or more
    complex logic for the default decoder prompt.
    This motivates having a special helper method
    for default decoder prompts.

    Returns:

    * prompt_token_ids
    """

    bos_token_id = self.get_bos_token_id()
    assert bos_token_id is not None
    return [bos_token_id]

_get_mm_tokenizer

_get_mm_tokenizer(
    lora_request: Optional[LoRARequest],
) -> AnyTokenizer
Source code in vllm/inputs/preprocess.py
def _get_mm_tokenizer(
    self,
    lora_request: Optional[LoRARequest],
) -> AnyTokenizer:
    # PrithviGeoSpatialMAE needs to be initialized without a tokenizer
    # while using also multi-modal input
    if not self.tokenizer:
        return cast(AnyTokenizer, object())  # Dummy

    tokenizer_group = self.get_tokenizer_group()
    return tokenizer_group.get_lora_tokenizer(lora_request)

_get_mm_tokenizer_async async

_get_mm_tokenizer_async(
    lora_request: Optional[LoRARequest],
) -> AnyTokenizer
Source code in vllm/inputs/preprocess.py
async def _get_mm_tokenizer_async(
    self,
    lora_request: Optional[LoRARequest],
) -> AnyTokenizer:
    # PrithviGeoSpatialMAE needs to be initialized without a tokenizer
    # while using also multi-modal input
    if not self.tokenizer:
        return cast(AnyTokenizer, object())  # Dummy

    tokenizer_group = self.get_tokenizer_group()
    return await tokenizer_group.get_lora_tokenizer_async(lora_request)

_get_tokenization_kw

_get_tokenization_kw(
    overrides: Optional[dict[str, Any]] = None,
) -> dict[str, Any]
Source code in vllm/inputs/preprocess.py
def _get_tokenization_kw(
    self,
    overrides: Optional[dict[str, Any]] = None,
) -> dict[str, Any]:
    kwargs = dict[str, Any]()

    if self.model_config.hf_config.model_type == "whisper":
        # For Whisper, special tokens should be provided by the user based
        # on the task and language of their request. Also needed to avoid
        # appending an EOS token to the prompt which disrupts generation.
        kwargs["add_special_tokens"] = False

    if overrides:
        kwargs.update(overrides)

    return kwargs

_prepare_decoder_input_ids_for_generation

_prepare_decoder_input_ids_for_generation(
    decoder_input_ids: Optional[list[int]],
) -> list[int]

Prepares decoder_input_ids for generation with encoder-decoder models.

Based on: https://github.com/huggingface/transformers/blob/4037a2b5b1278736e566aec12e169100275545ea/src/transformers/generation/utils.py specifically, GenerationMixin._prepare_decoder_input_ids_for_generation().

Arguments:

  • decoder_input_ids: input token ids to preprocess

Returns:

  • Processed token list
Source code in vllm/inputs/preprocess.py
def _prepare_decoder_input_ids_for_generation(
    self,
    decoder_input_ids: Optional[list[int]],
) -> list[int]:
    """
    Prepares `decoder_input_ids` for generation with encoder-decoder models.

    Based on:
    https://github.com/huggingface/transformers/blob/4037a2b5b1278736e566aec12e169100275545ea/src/transformers/generation/utils.py
    specifically,
    `GenerationMixin._prepare_decoder_input_ids_for_generation()`.

    Arguments:

    * decoder_input_ids: input token ids to preprocess

    Returns:

    * Processed token list
    """

    decoder_start_token_id = self.get_decoder_start_token_id()
    assert decoder_start_token_id is not None

    if decoder_input_ids is None:
        # no decoder prompt input ->
        # use decoder_start_token_id as decoder_input_ids
        decoder_input_ids = self._get_default_enc_dec_decoder_prompt()

    if (len(decoder_input_ids) == 0
            or decoder_input_ids[0] != decoder_start_token_id):
        decoder_input_ids = [decoder_start_token_id] + decoder_input_ids

    return decoder_input_ids

_process_decoder_only_prompt

_process_decoder_only_prompt(
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    return_mm_hashes: bool = False,
) -> DecoderOnlyInputs

For decoder-only models: Process an input prompt into a DecoderOnlyInputs instance.

Arguments:

  • prompt: input prompt
  • lora_request
  • prompt_adapter_request
  • return_mm_hashes

Returns:

Source code in vllm/inputs/preprocess.py
def _process_decoder_only_prompt(
    self,
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    return_mm_hashes: bool = False,
) -> DecoderOnlyInputs:
    """
    For decoder-only models:
    Process an input prompt into a
    [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance.

    Arguments:

    * prompt: input prompt
    * lora_request
    * prompt_adapter_request
    * return_mm_hashes

    Returns:

    * [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance
    """

    prompt_comps = self._prompt_to_llm_inputs(
        prompt,
        tokenization_kwargs=tokenization_kwargs,
        lora_request=lora_request,
        return_mm_hashes=return_mm_hashes,
    )

    return self._build_decoder_only_llm_inputs(
        prompt_comps,
        prompt_adapter_request=prompt_adapter_request,
    )

_process_decoder_only_prompt_async async

_process_decoder_only_prompt_async(
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    return_mm_hashes: bool = False,
) -> DecoderOnlyInputs

Async version of _process_decoder_only_prompt.

Source code in vllm/inputs/preprocess.py
async def _process_decoder_only_prompt_async(
    self,
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    return_mm_hashes: bool = False,
) -> DecoderOnlyInputs:
    """
    Async version of
    [`_process_decoder_only_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_decoder_only_prompt].
    """
    prompt_comps = await self._prompt_to_llm_inputs_async(
        prompt,
        tokenization_kwargs=tokenization_kwargs,
        lora_request=lora_request,
        return_mm_hashes=return_mm_hashes,
    )

    return self._build_decoder_only_llm_inputs(
        prompt_comps,
        prompt_adapter_request=prompt_adapter_request,
    )

_process_embeds

_process_embeds(
    parsed_content: EmbedsPrompt,
) -> EmbedsInputs
Source code in vllm/inputs/preprocess.py
def _process_embeds(
    self,
    parsed_content: EmbedsPrompt,
) -> EmbedsInputs:
    if not self.model_config.enable_prompt_embeds:
        raise ValueError("You must set `--enable-prompt-embeds` to input "
                         "`prompt_embeds`.")

    prompt_embeds = parsed_content["prompt_embeds"]

    # prompt_embeds must be (seq_len, hidden_size), but if the user
    # passes in a batch of size 1, i.e. (1, seq_len, hidden_size),
    # we can unambiguously process the intent by squeezing the batch
    # dimension.
    if prompt_embeds.ndim == 3:
        prompt_embeds = prompt_embeds.squeeze(dim=0)

    if prompt_embeds.ndim != 2:
        raise ValueError(
            "prompt_embeds must be of shape (seq_len, hidden_size).")

    return embeds_inputs(prompt_embeds=prompt_embeds,
                         cache_salt=parsed_content.get("cache_salt"))

_process_embeds_async async

_process_embeds_async(
    parsed_content: EmbedsPrompt,
) -> EmbedsInputs
Source code in vllm/inputs/preprocess.py
async def _process_embeds_async(
    self,
    parsed_content: EmbedsPrompt,
) -> EmbedsInputs:
    return self._process_embeds(parsed_content)

_process_encoder_decoder_prompt

_process_encoder_decoder_prompt(
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> EncoderDecoderInputs

For encoder/decoder models only: Process an input prompt into an EncoderDecoderInputs instance.

There are two types of input prompts: singleton prompts which carry only the encoder prompt, and explicit encoder/decoder prompts which carry both the encoder and the decoder prompts as member variables.

This function handles the following scenarios: * Singleton encoder prompt: extract encoder prompt token ids & infer default decoder prompt token ids * Explicit encoder/decoder prompt: extract encoder and decoder prompt token ids

Note that for Explicit encoder/decoder prompts, each sub-prompt (encoder or decoder prompt) can have any possible singleton type; thus this method relies on helper functions to obtain token ids for the sub-prompts.

Arguments:

  • prompt: an input prompt

Returns:

Source code in vllm/inputs/preprocess.py
def _process_encoder_decoder_prompt(
    self,
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> EncoderDecoderInputs:
    """
    For encoder/decoder models only:
    Process an input prompt into an
    [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
    instance.

    There are two types of input prompts:
    singleton prompts which carry only the
    encoder prompt, and explicit encoder/decoder
    prompts which carry both the encoder and the
    decoder prompts as member variables.

    This function handles the following scenarios:
    * Singleton encoder prompt: extract encoder prompt
      token ids & infer default decoder prompt token ids
    * Explicit encoder/decoder prompt: extract encoder
      and decoder prompt token ids

    Note that for Explicit encoder/decoder prompts,
    each sub-prompt (encoder or decoder prompt) can
    have any possible singleton type; thus this
    method relies on helper functions to obtain
    token ids for the sub-prompts.

    Arguments:

    * prompt: an input prompt

    Returns:

    * [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
      instance
    """
    encoder_inputs: SingletonInputs
    decoder_inputs: Optional[SingletonInputs]

    if is_explicit_encoder_decoder_prompt(prompt):
        encoder_inputs = self._prompt_to_llm_inputs(
            prompt["encoder_prompt"],
            tokenization_kwargs=tokenization_kwargs,
        )
        if (decoder_input := prompt["decoder_prompt"]) is None:
            decoder_inputs = None
        else:
            decoder_inputs = self._prompt_to_llm_inputs(decoder_input)
        # For multimodal model, override decoder prompt from processor
        # with explicit decoder prompt.
        if self.model_config.is_multimodal_model:
            encoder_inputs, decoder_inputs = (
                self._split_enc_dec_mm_inputs(encoder_inputs,
                                              decoder_inputs))
    else:
        inputs = self._prompt_to_llm_inputs(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
        )
        if self.model_config.is_multimodal_model:
            # Encoder-Decoder Multimodal model
            encoder_inputs, decoder_inputs = (
                self._split_enc_dec_mm_inputs(inputs))
        else:
            encoder_inputs = inputs
            decoder_inputs = None

    return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)

_process_encoder_decoder_prompt_async async

_process_encoder_decoder_prompt_async(
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> EncoderDecoderInputs

Async version of _process_encoder_decoder_prompt.

Source code in vllm/inputs/preprocess.py
async def _process_encoder_decoder_prompt_async(
    self,
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> EncoderDecoderInputs:
    """
    Async version of
    [`_process_encoder_decoder_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_encoder_decoder_prompt].
    """
    encoder_inputs: SingletonInputs
    decoder_inputs: Optional[SingletonInputs]

    if is_explicit_encoder_decoder_prompt(prompt):
        encoder_task = self._prompt_to_llm_inputs_async(
            prompt["encoder_prompt"],
            tokenization_kwargs=tokenization_kwargs,
        )

        if (decoder_input := prompt["decoder_prompt"]) is None:
            encoder_inputs = await encoder_task
            decoder_inputs = None
        else:
            decoder_task = self._prompt_to_llm_inputs_async(
                decoder_input,
                tokenization_kwargs=tokenization_kwargs,
            )

            encoder_inputs, decoder_inputs = await asyncio.gather(
                encoder_task, decoder_task)

        # For multimodal model, override decoder prompt from processor
        # with explicit decoder prompt.
        if self.model_config.is_multimodal_model:
            encoder_inputs, decoder_inputs = (
                self._split_enc_dec_mm_inputs(encoder_inputs,
                                              decoder_inputs))
    else:
        inputs = await self._prompt_to_llm_inputs_async(
            prompt,
            tokenization_kwargs=tokenization_kwargs,
        )
        if self.model_config.is_multimodal_model:
            # Encoder-Decoder Multimodal model
            encoder_inputs, decoder_inputs = (
                self._split_enc_dec_mm_inputs(inputs))
        else:
            encoder_inputs = inputs
            decoder_inputs = None

    return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)

_process_multimodal

_process_multimodal(
    prompt: Union[str, list[int]],
    mm_data: MultiModalDataDict,
    mm_processor_kwargs: Optional[Mapping[str, object]],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> MultiModalInputs

Apply the model's multi-modal processor to a multi-modal prompt, returning the corresponding token IDs and metadata.

Source code in vllm/inputs/preprocess.py
def _process_multimodal(
    self,
    prompt: Union[str, list[int]],
    mm_data: MultiModalDataDict,
    mm_processor_kwargs: Optional[Mapping[str, object]],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> MultiModalInputs:
    """
    Apply the model's multi-modal processor to a multi-modal prompt,
    returning the corresponding token IDs and metadata.
    """
    tokenizer = self._get_mm_tokenizer(lora_request)

    mm_processor = self.mm_registry.create_processor(self.model_config,
                                                     tokenizer=tokenizer)

    if mm_processor_kwargs is None:
        mm_processor_kwargs = {}

    return mm_processor.apply(prompt,
                              mm_data,
                              hf_processor_mm_kwargs=mm_processor_kwargs,
                              tokenization_kwargs=tokenization_kwargs,
                              return_mm_hashes=return_mm_hashes)

_process_multimodal_async async

_process_multimodal_async(
    prompt: Union[str, list[int]],
    mm_data: MultiModalDataDict,
    mm_processor_kwargs: Optional[Mapping[str, object]],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> MultiModalInputs

Async version of _process_multimodal.

Source code in vllm/inputs/preprocess.py
async def _process_multimodal_async(
    self,
    prompt: Union[str, list[int]],
    mm_data: MultiModalDataDict,
    mm_processor_kwargs: Optional[Mapping[str, object]],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> MultiModalInputs:
    """
    Async version of
    [`_process_multimodal`][vllm.inputs.preprocess.InputPreprocessor._process_multimodal].
    """
    tokenizer = await self._get_mm_tokenizer_async(lora_request)

    mm_processor = self.mm_registry.create_processor(self.model_config,
                                                     tokenizer=tokenizer)
    if mm_processor_kwargs is None:
        mm_processor_kwargs = {}

    return mm_processor.apply(prompt,
                              mm_data,
                              hf_processor_mm_kwargs=mm_processor_kwargs,
                              tokenization_kwargs=tokenization_kwargs,
                              return_mm_hashes=return_mm_hashes)

_process_text

_process_text(
    parsed_content: TextPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]
Source code in vllm/inputs/preprocess.py
def _process_text(
    self,
    parsed_content: TextPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]:
    prompt_text = parsed_content["prompt"]

    inputs: Union[TokenInputs, MultiModalInputs]
    if multi_modal_data := parsed_content.get("multi_modal_data"):
        inputs = self._process_multimodal(
            prompt_text,
            multi_modal_data,
            parsed_content.get("mm_processor_kwargs"),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    else:
        prompt_token_ids = self._tokenize_prompt(
            prompt_text,
            lora_request=lora_request,
            tokenization_kwargs=tokenization_kwargs,
        )
        inputs = token_inputs(
            prompt=prompt_text,
            prompt_token_ids=prompt_token_ids,
        )

    if cache_salt := parsed_content.get("cache_salt"):
        inputs["cache_salt"] = cache_salt

    return inputs

_process_text_async async

_process_text_async(
    parsed_content: TextPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]
Source code in vllm/inputs/preprocess.py
async def _process_text_async(
    self,
    parsed_content: TextPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]:
    prompt_text = parsed_content["prompt"]

    inputs: Union[TokenInputs, MultiModalInputs]
    if multi_modal_data := parsed_content.get("multi_modal_data"):
        inputs = await self._process_multimodal_async(
            prompt_text,
            multi_modal_data,
            parsed_content.get("mm_processor_kwargs"),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    else:
        prompt_token_ids = await self._tokenize_prompt_async(
            prompt_text,
            lora_request=lora_request,
            tokenization_kwargs=tokenization_kwargs,
        )
        inputs = token_inputs(
            prompt=prompt_text,
            prompt_token_ids=prompt_token_ids,
        )

    if cache_salt := parsed_content.get("cache_salt"):
        inputs["cache_salt"] = cache_salt

    return inputs

_process_tokens

_process_tokens(
    parsed_content: TokensPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]
Source code in vllm/inputs/preprocess.py
def _process_tokens(
    self,
    parsed_content: TokensPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]:
    prompt_token_ids = parsed_content["prompt_token_ids"]
    token_type_ids = parsed_content.get("token_type_ids")

    inputs: Union[TokenInputs, MultiModalInputs]
    if multi_modal_data := parsed_content.get("multi_modal_data"):
        inputs = self._process_multimodal(
            prompt_token_ids,
            multi_modal_data,
            parsed_content.get("mm_processor_kwargs"),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    else:
        inputs = token_inputs(
            prompt_token_ids=prompt_token_ids,
            token_type_ids=token_type_ids,
        )

    if cache_salt := parsed_content.get("cache_salt"):
        inputs["cache_salt"] = cache_salt

    return inputs

_process_tokens_async async

_process_tokens_async(
    parsed_content: TokensPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]
Source code in vllm/inputs/preprocess.py
async def _process_tokens_async(
    self,
    parsed_content: TokensPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> Union[TokenInputs, MultiModalInputs]:
    prompt_token_ids = parsed_content["prompt_token_ids"]
    token_type_ids = parsed_content.get("token_type_ids")

    inputs: Union[TokenInputs, MultiModalInputs]
    if multi_modal_data := parsed_content.get("multi_modal_data"):
        inputs = await self._process_multimodal_async(
            prompt_token_ids,
            multi_modal_data,
            parsed_content.get("mm_processor_kwargs"),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    else:
        inputs = token_inputs(
            prompt_token_ids=prompt_token_ids,
            token_type_ids=token_type_ids,
        )

    if cache_salt := parsed_content.get("cache_salt"):
        inputs["cache_salt"] = cache_salt

    return inputs

_prompt_to_llm_inputs

_prompt_to_llm_inputs(
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> SingletonInputs

Extract the singleton inputs from a prompt.

Arguments:

  • prompt: single encoder or decoder input prompt
  • lora_request: this is only valid for decoder prompts
  • return_mm_hashes: whether to return multimodal hashes

Returns:

Source code in vllm/inputs/preprocess.py
def _prompt_to_llm_inputs(
    self,
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> SingletonInputs:
    """
    Extract the singleton inputs from a prompt.

    Arguments:

    * prompt: single encoder or decoder input prompt
    * lora_request: this is only valid for decoder prompts
    * return_mm_hashes: whether to return multimodal hashes

    Returns:

    * [`SingletonInputs`][vllm.inputs.data.SingletonInputs] instance
    """
    parsed = parse_singleton_prompt(prompt)

    if parsed["type"] == "embeds":
        return self._process_embeds(parsed["content"])
    if parsed["type"] == "tokens":
        return self._process_tokens(
            parsed["content"],
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    if parsed["type"] == "text":
        return self._process_text(
            parsed["content"],
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    if parsed["type"] == "str":
        return self._process_text(
            TextPrompt(prompt=parsed["content"]),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )

    assert_never(parsed)

_prompt_to_llm_inputs_async async

_prompt_to_llm_inputs_async(
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> SingletonInputs

Async version of _prompt_to_llm_inputs.

Source code in vllm/inputs/preprocess.py
async def _prompt_to_llm_inputs_async(
    self,
    prompt: SingletonPrompt,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    return_mm_hashes: bool = False,
) -> SingletonInputs:
    """
    Async version of
    [`_prompt_to_llm_inputs`][vllm.inputs.preprocess.InputPreprocessor._prompt_to_llm_inputs].
    """
    parsed = parse_singleton_prompt(prompt)

    if parsed["type"] == "embeds":
        return await self._process_embeds_async(parsed["content"])
    if parsed["type"] == "tokens":
        return await self._process_tokens_async(
            parsed["content"],
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    if parsed["type"] == "text":
        return await self._process_text_async(
            parsed["content"],
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )
    if parsed["type"] == "str":
        return await self._process_text_async(
            TextPrompt(prompt=parsed["content"]),
            tokenization_kwargs=tokenization_kwargs,
            lora_request=lora_request,
            return_mm_hashes=return_mm_hashes,
        )

    assert_never(parsed)

_split_enc_dec_mm_inputs

_split_enc_dec_mm_inputs(
    inputs: Union[SingletonInputs, MultiModalEncDecInputs],
    decoder_inputs_to_override: Optional[
        SingletonInputs
    ] = None,
) -> tuple[SingletonInputs, SingletonInputs]

For encoder/decoder models only: Separate Encoder/Decoder inputs from a MultiModalEncDecInputs

Source code in vllm/inputs/preprocess.py
def _split_enc_dec_mm_inputs(
    self,
    inputs: Union[SingletonInputs, MultiModalEncDecInputs],
    decoder_inputs_to_override: Optional[SingletonInputs] = None,
) -> tuple[SingletonInputs, SingletonInputs]:
    """
    For encoder/decoder models only:
    Separate Encoder/Decoder inputs from a MultiModalEncDecInputs
    """
    if (inputs["type"] == "embeds" or decoder_inputs_to_override
            and decoder_inputs_to_override["type"] == "embeds"):
        raise ValueError("Embedding inputs are not supported for encoder-"
                         "decoder models")

    # Needed for mypy
    inputs = cast(
        Union[TokenInputs, MultiModalInputs, MultiModalEncDecInputs],
        inputs,
    )
    decoder_inputs_to_override = cast(
        Optional[Union[TokenInputs, MultiModalInputs]],
        decoder_inputs_to_override,
    )

    encoder_inputs: SingletonInputs
    decoder_inputs: SingletonInputs

    if inputs["type"] == "multimodal":  # Multimodal data inputs
        if not ("encoder_prompt" in inputs
                and "encoder_prompt_token_ids" in inputs):
            raise RuntimeError("You should register an encoder-decoder "
                               "multi-modal processor for encoder-decoder "
                               "models.")
        inputs = cast(MultiModalEncDecInputs, inputs)

        encoder_inputs = token_inputs(
            prompt=inputs["encoder_prompt"],
            prompt_token_ids=inputs["encoder_prompt_token_ids"],
        )

        decoder_prompt_inputs = decoder_inputs_to_override or inputs
        decoder_inputs = MultiModalInputs(
            type="multimodal",
            prompt=decoder_prompt_inputs.get("prompt", ""),
            prompt_token_ids=decoder_prompt_inputs["prompt_token_ids"],
            mm_kwargs=inputs["mm_kwargs"],
            mm_hashes=inputs["mm_hashes"],
            mm_placeholders=inputs["mm_placeholders"],
        )
        if cache_salt := inputs.get("cache_salt"):
            decoder_inputs["cache_salt"] = cache_salt

    elif inputs["type"] == "token":  # Text-only inputs
        encoder_inputs = token_inputs(prompt="", prompt_token_ids=[])
        decoder_inputs = decoder_inputs_to_override or inputs
    else:
        assert_never(inputs)  # type: ignore[arg-type]

    return encoder_inputs, decoder_inputs

_tokenize_prompt

_tokenize_prompt(
    prompt: str,
    lora_request: Optional[LoRARequest],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]

Apply the model's tokenizer to a text prompt, returning the corresponding token IDs.

Source code in vllm/inputs/preprocess.py
def _tokenize_prompt(
    self,
    prompt: str,
    lora_request: Optional[LoRARequest],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]:
    """
    Apply the model's tokenizer to a text prompt, returning the
    corresponding token IDs.
    """
    tokenizer = self.get_tokenizer_group()
    tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)

    encoder_config = self.model_config.encoder_config

    if encoder_config and encoder_config.get("do_lower_case", False):
        prompt = prompt.lower()

    return tokenizer.encode(prompt=prompt,
                            lora_request=lora_request,
                            **tokenization_kwargs)

_tokenize_prompt_async async

_tokenize_prompt_async(
    prompt: str,
    lora_request: Optional[LoRARequest],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]

Async version of _tokenize_prompt.

Source code in vllm/inputs/preprocess.py
async def _tokenize_prompt_async(
    self,
    prompt: str,
    lora_request: Optional[LoRARequest],
    tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]:
    """
    Async version of
    [`_tokenize_prompt`][vllm.inputs.preprocess.InputPreprocessor._tokenize_prompt].
    """
    tokenizer = self.get_tokenizer_group()
    tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)

    return await tokenizer.encode_async(prompt=prompt,
                                        lora_request=lora_request,
                                        **tokenization_kwargs)

get_bos_token_id

get_bos_token_id(
    lora_request: Optional[LoRARequest] = None,
) -> Optional[int]
Source code in vllm/inputs/preprocess.py
def get_bos_token_id(self,
                     lora_request: Optional[LoRARequest] = None
                     ) -> Optional[int]:
    if self.tokenizer is None:
        logger.warning("Using None for BOS token id because tokenizer "
                       "is not initialized")
        return None

    return self.tokenizer.get_lora_tokenizer(lora_request).bos_token_id

get_decoder_start_token_id

get_decoder_start_token_id() -> Optional[int]

Obtain the decoder start token id employed by an encoder/decoder model. Returns None for non-encoder/decoder models or if the model config is unavailable.

Source code in vllm/inputs/preprocess.py
def get_decoder_start_token_id(self) -> Optional[int]:
    """
    Obtain the decoder start token id employed by an encoder/decoder
    model. Returns None for non-encoder/decoder models or if the
    model config is unavailable.
    """

    if not self.model_config.is_encoder_decoder:
        logger.warning_once(
            "Using None for decoder start token id because "
            "this is not an encoder/decoder model.")
        return None

    if self.model_config is None or self.model_config.hf_config is None:
        logger.warning_once(
            "Using None for decoder start token id because "
            "model config is not available.")
        return None

    dec_start_token_id = getattr(self.model_config.hf_config,
                                 "decoder_start_token_id", None)
    if dec_start_token_id is None:
        logger.warning_once(
            "Falling back on <BOS> for decoder start token "
            "id because decoder start token id is not "
            "available.")
        dec_start_token_id = self.get_bos_token_id()

    return dec_start_token_id

get_eos_token_id

get_eos_token_id(
    lora_request: Optional[LoRARequest] = None,
) -> Optional[int]
Source code in vllm/inputs/preprocess.py
def get_eos_token_id(self,
                     lora_request: Optional[LoRARequest] = None
                     ) -> Optional[int]:
    if self.tokenizer is None:
        logger.warning("Using None for EOS token id because tokenizer "
                       "is not initialized")
        return None

    return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id

get_tokenizer_group

get_tokenizer_group() -> TokenizerGroup
Source code in vllm/inputs/preprocess.py
def get_tokenizer_group(self) -> TokenizerGroup:
    if self.tokenizer is None:
        raise ValueError("You cannot pass text prompts when "
                         "`skip_tokenizer_init` is True")

    return self.tokenizer

preprocess

preprocess(
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    return_mm_hashes: bool = False,
) -> ProcessorInputs

Preprocess the input prompt.

Source code in vllm/inputs/preprocess.py
def preprocess(
    self,
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    return_mm_hashes: bool = False,
) -> ProcessorInputs:
    """Preprocess the input prompt."""
    if self.model_config.is_encoder_decoder:
        assert not return_mm_hashes, (
            "Multimodal hashes for encoder-decoder models should not be ",
            "returned until they are supported on vLLM V1.")
        # Encoder-decoder model requires special mapping of
        # input prompts to encoder & decoder
        return self._process_encoder_decoder_prompt(
            prompt, tokenization_kwargs)

    if is_explicit_encoder_decoder_prompt(prompt):
        raise ValueError("Cannot pass encoder-decoder prompt "
                         "to decoder-only models")

    # Decoder-only operation
    return self._process_decoder_only_prompt(
        prompt,
        tokenization_kwargs=tokenization_kwargs,
        lora_request=lora_request,
        prompt_adapter_request=prompt_adapter_request,
        return_mm_hashes=return_mm_hashes,
    )

preprocess_async async

preprocess_async(
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    return_mm_hashes: bool = False,
) -> ProcessorInputs

Async version of preprocess.

Source code in vllm/inputs/preprocess.py
async def preprocess_async(
    self,
    prompt: PromptType,
    tokenization_kwargs: Optional[dict[str, Any]] = None,
    lora_request: Optional[LoRARequest] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    return_mm_hashes: bool = False,
) -> ProcessorInputs:
    """
    Async version of
    [`preprocess`][vllm.inputs.preprocess.InputPreprocessor.preprocess].
    """
    if self.model_config.is_encoder_decoder:
        assert not return_mm_hashes, (
            "Multimodal hashes for encoder-decoder models should not be ",
            "returned until they are supported on vLLM V1.")
        # Encoder-decoder model requires special mapping of
        # input prompts to encoder & decoder
        return await self._process_encoder_decoder_prompt_async(prompt)

    if is_explicit_encoder_decoder_prompt(prompt):
        raise ValueError("Cannot pass encoder-decoder prompt "
                         "to decoder-only models")

    # Decoder-only operation
    return await self._process_decoder_only_prompt_async(
        prompt,
        tokenization_kwargs=tokenization_kwargs,
        lora_request=lora_request,
        prompt_adapter_request=prompt_adapter_request,
        return_mm_hashes=return_mm_hashes,
    )