Skip to content

vllm.lora.models

_GLOBAL_LORA_ID module-attribute

_GLOBAL_LORA_ID = 0

logger module-attribute

logger = init_logger(__name__)

LRUCacheLoRAModelManager

Bases: LoRAModelManager

A model manager that manages multiple LoRAs with LRU cache.

Source code in vllm/lora/models.py
class LRUCacheLoRAModelManager(LoRAModelManager):
    """A model manager that manages multiple LoRAs with LRU cache."""

    def __init__(self, model: nn.Module, max_num_seqs: int,
                 max_num_batched_tokens: int, vocab_size: int,
                 lora_config: LoRAConfig, device: torch.device):
        super().__init__(model, max_num_seqs, max_num_batched_tokens,
                         vocab_size, lora_config, device)
        self._registered_adapters: LoRALRUCache = LoRALRUCache(
            self.capacity, self.deactivate_adapter)
        self._active_adapters: LoRALRUCache = LoRALRUCache(
            self.lora_slots, self._deactivate_adapter)

    def list_adapters(self) -> dict[int, LoRAModel]:
        """List all registered LoRAModels."""
        return dict(self._registered_adapters.cache)

    def add_adapter(self, lora: LoRAModel) -> bool:
        """Add a LoRAModel to the manager."""
        logger.debug(
            "Adding lora. Model id: %d, "
            "int id: %d, "
            "scaling factor: %s", lora.id, lora.id, lora.scaling_factor)
        if lora.id not in self._registered_adapters:
            self._add_adapter(lora)
            was_added = True
        else:
            # We always touch to update the LRU cache order
            self._registered_adapters.touch(lora.id)
            was_added = False
        return was_added

    def activate_adapter(
        self,
        lora_id: int,
    ) -> bool:
        if lora_id not in self._active_adapters and len(
                self._active_adapters) >= self.lora_slots:
            self._active_adapters.remove_oldest()
        result = super().activate_adapter(lora_id)
        # We always touch to update the LRU cache order
        self._active_adapters.touch(lora_id)
        return result

    def remove_oldest_adapter(self) -> bool:
        if len(self._registered_adapters) > 0:
            self._registered_adapters.remove_oldest()
            return True
        return False

    def pin_adapter(self, lora_id: int) -> bool:
        """Pin a LoRAModel in the manager cache."""
        self._pin_lora_in_cpu_cache(lora_id)
        self._pin_lora_in_gpu_cache(lora_id)
        return True

    def _pin_lora_in_cpu_cache(self, lora_id: int):
        try:
            self._registered_adapters.pin(lora_id)
        except ValueError as err:
            raise ValueError("Pinning failed. "
                             f"LoRA {lora_id} is not registered.") from err

    def _pin_lora_in_gpu_cache(self, lora_id: int):
        if lora_id not in self._active_adapters:
            # move lora to gpu if not already active
            self.activate_adapter(lora_id)

        self._active_adapters.pin(lora_id)

_active_adapters instance-attribute

_active_adapters: LoRALRUCache = LoRALRUCache(
    lora_slots, _deactivate_adapter
)

_registered_adapters instance-attribute

_registered_adapters: LoRALRUCache = LoRALRUCache(
    capacity, deactivate_adapter
)

__init__

__init__(
    model: Module,
    max_num_seqs: int,
    max_num_batched_tokens: int,
    vocab_size: int,
    lora_config: LoRAConfig,
    device: device,
)
Source code in vllm/lora/models.py
def __init__(self, model: nn.Module, max_num_seqs: int,
             max_num_batched_tokens: int, vocab_size: int,
             lora_config: LoRAConfig, device: torch.device):
    super().__init__(model, max_num_seqs, max_num_batched_tokens,
                     vocab_size, lora_config, device)
    self._registered_adapters: LoRALRUCache = LoRALRUCache(
        self.capacity, self.deactivate_adapter)
    self._active_adapters: LoRALRUCache = LoRALRUCache(
        self.lora_slots, self._deactivate_adapter)

_pin_lora_in_cpu_cache

_pin_lora_in_cpu_cache(lora_id: int)
Source code in vllm/lora/models.py
def _pin_lora_in_cpu_cache(self, lora_id: int):
    try:
        self._registered_adapters.pin(lora_id)
    except ValueError as err:
        raise ValueError("Pinning failed. "
                         f"LoRA {lora_id} is not registered.") from err

_pin_lora_in_gpu_cache

_pin_lora_in_gpu_cache(lora_id: int)
Source code in vllm/lora/models.py
def _pin_lora_in_gpu_cache(self, lora_id: int):
    if lora_id not in self._active_adapters:
        # move lora to gpu if not already active
        self.activate_adapter(lora_id)

    self._active_adapters.pin(lora_id)

activate_adapter

activate_adapter(lora_id: int) -> bool
Source code in vllm/lora/models.py
def activate_adapter(
    self,
    lora_id: int,
) -> bool:
    if lora_id not in self._active_adapters and len(
            self._active_adapters) >= self.lora_slots:
        self._active_adapters.remove_oldest()
    result = super().activate_adapter(lora_id)
    # We always touch to update the LRU cache order
    self._active_adapters.touch(lora_id)
    return result

add_adapter

add_adapter(lora: LoRAModel) -> bool

Add a LoRAModel to the manager.

Source code in vllm/lora/models.py
def add_adapter(self, lora: LoRAModel) -> bool:
    """Add a LoRAModel to the manager."""
    logger.debug(
        "Adding lora. Model id: %d, "
        "int id: %d, "
        "scaling factor: %s", lora.id, lora.id, lora.scaling_factor)
    if lora.id not in self._registered_adapters:
        self._add_adapter(lora)
        was_added = True
    else:
        # We always touch to update the LRU cache order
        self._registered_adapters.touch(lora.id)
        was_added = False
    return was_added

list_adapters

list_adapters() -> dict[int, LoRAModel]

List all registered LoRAModels.

Source code in vllm/lora/models.py
def list_adapters(self) -> dict[int, LoRAModel]:
    """List all registered LoRAModels."""
    return dict(self._registered_adapters.cache)

pin_adapter

pin_adapter(lora_id: int) -> bool

Pin a LoRAModel in the manager cache.

Source code in vllm/lora/models.py
def pin_adapter(self, lora_id: int) -> bool:
    """Pin a LoRAModel in the manager cache."""
    self._pin_lora_in_cpu_cache(lora_id)
    self._pin_lora_in_gpu_cache(lora_id)
    return True

remove_oldest_adapter

remove_oldest_adapter() -> bool
Source code in vllm/lora/models.py
def remove_oldest_adapter(self) -> bool:
    if len(self._registered_adapters) > 0:
        self._registered_adapters.remove_oldest()
        return True
    return False

LoRALRUCache

Bases: AdapterLRUCache[LoRAModel]

Source code in vllm/lora/models.py
class LoRALRUCache(AdapterLRUCache[LoRAModel]):

    def __init__(self, capacity: int, deactivate_lora_fn: Callable[[int],
                                                                   bool]):
        super().__init__(capacity, deactivate_lora_fn)

__init__

__init__(
    capacity: int, deactivate_lora_fn: Callable[[int], bool]
)
Source code in vllm/lora/models.py
def __init__(self, capacity: int, deactivate_lora_fn: Callable[[int],
                                                               bool]):
    super().__init__(capacity, deactivate_lora_fn)

LoRAModel

Bases: AdapterModel

A LoRA fine-tuned model.

Source code in vllm/lora/models.py
class LoRAModel(AdapterModel):
    """A LoRA fine-tuned model."""

    def __init__(
        self,
        lora_model_id: int,
        rank: int,
        loras: dict[str, LoRALayerWeights],
        scaling_factor: Optional[float] = None,
    ) -> None:
        """
        Args:
            lora_model_id: The integer id for the lora model.
            rank: lora rank.
            loras: module name -> weights for lora-replaced layers.
            scaling_factor: Scaling factor to support long context lora model.
                None if the lora is not tuned for long context support.
        """
        self.id = lora_model_id
        # Scaling factor for long context lora model. None if it is not
        # fine tuned for the long context.
        self.scaling_factor = scaling_factor
        assert (
            lora_model_id
            > 0), f"a valid lora id should be greater than 0, got {self.id}"
        self.rank = rank
        self.loras: dict[str, LoRALayerWeights] = loras

    def clone(self, lora_model_id: int) -> "LoRAModel":
        """Return a copy of the object with different ids.

        Will share the underlying tensors."""
        return self.__class__(
            lora_model_id,
            rank=self.rank,
            loras=self.loras.copy(),
        )

    @property
    def extra_vocab_size(self) -> int:
        return max(lora.extra_vocab_size
                   for lora in self.loras.values()) if self.loras else 0

    def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]:
        """Get LoRA for a given module by name"""
        return self.loras.get(module_name, None)

    def check_lora_name(self, lora_name: str) -> bool:
        return lora_name in self.loras

    # (yard1): TODO see if we can derive target_embedding_padding automatically
    @classmethod
    def from_lora_tensors(
        cls,
        lora_model_id: int,
        tensors: dict[str, torch.Tensor],
        peft_helper: PEFTHelper,
        device: str = "cuda",
        dtype: Optional[torch.dtype] = None,
        embeddings: Optional[dict[str, torch.Tensor]] = None,
        target_embedding_padding: Optional[int] = None,
        embedding_modules: Optional[dict[str, str]] = None,
        embedding_padding_modules: Optional[list[str]] = None,
        weights_mapper: Optional[WeightsMapper] = None,
    ) -> "LoRAModel":
        """Create a LoRAModel from a dictionary of tensors."""
        pin_memory = str(device) == "cpu" and is_pin_memory_available()
        loras: dict[str, LoRALayerWeights] = {}
        for tensor_name, tensor in tensors.items():
            module_name, is_lora_a, is_bias = parse_fine_tuned_lora_name(
                tensor_name, weights_mapper)
            if module_name not in loras:
                lora_embeddings_tensor = None
                if embeddings:
                    assert embedding_modules is not None
                    embeddings_module = next(
                        (k for k in embedding_modules if k in module_name),
                        None)
                    if embeddings_module:
                        lora_embeddings_tensor = embeddings[
                            embedding_modules[embeddings_module]].to(
                                device=device, dtype=dtype)
                        if pin_memory:
                            lora_embeddings_tensor = (
                                lora_embeddings_tensor.pin_memory())
                loras[module_name] = LoRALayerWeights.from_config(
                    module_name, peft_helper, lora_embeddings_tensor)

            if is_bias:
                loras[module_name].bias = tensor.to(device=device,
                                                    dtype=dtype).t()
                bias = tensor.to(device=device, dtype=dtype).t()
                if pin_memory:
                    bias = bias.pin_memory()
                loras[module_name].bias = bias
            elif is_lora_a:
                loras[module_name].lora_a = tensor.to(device=device,
                                                      dtype=dtype).t()
                if pin_memory:
                    loras[module_name].lora_a = loras[
                        module_name].lora_a.pin_memory()
            else:
                loras[module_name].lora_b = tensor.to(device=device,
                                                      dtype=dtype).t()
                assert embedding_padding_modules is not None
                if any(name in module_name
                       for name in embedding_padding_modules
                       ) and target_embedding_padding is not None:
                    lora_b = loras[module_name].lora_b
                    assert target_embedding_padding >= lora_b.shape[1]
                    addition = target_embedding_padding - lora_b.shape[1]
                    loras[module_name].lora_b = torch.nn.functional.pad(
                        lora_b, (0, addition))
                if pin_memory:
                    loras[module_name].lora_b = loras[
                        module_name].lora_b.pin_memory()

        for lora in loras.values():
            lora.optimize()

        return cls(lora_model_id,
                   peft_helper.r,
                   loras,
                   scaling_factor=peft_helper.vllm_long_context_scaling_factor)

    @classmethod
    def from_local_checkpoint(
            cls,
            lora_dir: str,
            expected_lora_modules: list[str],
            peft_helper: PEFTHelper,
            *,
            lora_model_id: Optional[int] = None,
            device: str = "cuda",
            dtype: Optional[torch.dtype] = None,
            target_embedding_padding: Optional[int] = None,
            embedding_modules: Optional[dict[str, str]] = None,
            embedding_padding_modules: Optional[list[str]] = None,
            weights_mapper: Optional[WeightsMapper] = None,
            tensorizer_config_dict: Optional[dict] = None) -> "LoRAModel":
        """Create a LoRAModel from a local checkpoint.

        Args:
            lora_dir: The local path that has lora data.
            expected_lora_modules: Name of modules that are expected to be
                replaced by lora.
            peft_helper: Loaded lora configuration information.
            lora_model_id: LoRA model id. If not given, automatically set by
                a global counter.
            device: Device where the lora model is loaded.
            dtype: dtype of the lora model weights.

        Returns:
            Loaded LoRA Model.
        """
        lora_tensor_path = os.path.join(lora_dir, "adapter_model.safetensors")
        lora_bin_file_path = os.path.join(lora_dir, "adapter_model.bin")
        new_embeddings_tensor_path = os.path.join(
            lora_dir, "new_embeddings.safetensors")
        new_embeddings_bin_file_path = os.path.join(lora_dir,
                                                    "new_embeddings.bin")
        tensors: dict[str, torch.Tensor] = {}
        unexpected_modules: list[Union[list[str], str]] = []

        def check_unexpected_modules(modules: dict):
            for lora_module in modules.keys():  # noqa
                module_name, _, _ = parse_fine_tuned_lora_name(
                    lora_module, weights_mapper)
                part_name = module_name.split(".")[-1]
                if part_name not in expected_lora_modules:
                    unexpected_modules.append(module_name)
            if unexpected_modules:
                raise ValueError(
                    f"While loading {lora_dir}, expected"
                    f" target modules in {expected_lora_modules}"
                    f" but received {unexpected_modules}."
                    f" Please verify that the loaded LoRA module is correct")

        if tensorizer_config_dict:
            from tensorizer import TensorDeserializer

            tensorizer_config = TensorizerConfig(**tensorizer_config_dict)
            lora_tensor_path = os.path.join(tensorizer_config.tensorizer_dir,
                                            "adapter_model.tensors")
            tensorizer_args = tensorizer_config._construct_tensorizer_args()
            tensors = TensorDeserializer(lora_tensor_path,
                                         dtype=tensorizer_config.dtype,
                                         **tensorizer_args.deserializer_params)
            check_unexpected_modules(tensors)

        elif os.path.isfile(lora_tensor_path):
            # Find unexpected modules.
            # Use safetensor key as a source of truth to find expected modules.
            # in peft if you have target_modules A, B, C and C does not exist
            # in the model it won’t error and model will be trained with A, B
            # loraified. C won’t exist in the safetensor but it will exist in
            # the target_modules of the adapter_config.json.
            unexpected_modules = []
            with safetensors.safe_open(lora_tensor_path,
                                       framework="pt") as f:  # type: ignore
                # Load tensors if there are only expected modules.
                check_unexpected_modules(f)
                for module in f.keys():  # noqa
                    tensors[module] = f.get_tensor(module)
        elif os.path.isfile(lora_bin_file_path):
            # When a bin file is provided, we rely on config to find unexpected
            # modules.
            unexpected_modules = []
            target_modules = peft_helper.target_modules
            if not isinstance(target_modules, list):
                target_modules = [target_modules]
            for module in target_modules:
                # Compatible with more modules,
                # such as:layers.11.self_attn.k_proj
                part_name = module.split(".")[-1]
                if part_name not in expected_lora_modules:
                    unexpected_modules.append(module)
            # loaded lora's target modules must be a subset of
            # expected_lora_modules. It is not reliable. See
            # https://github.com/vllm-project/vllm/pull/5909. But there's no
            # other better mechanism.
            if unexpected_modules and not is_regex_target_modules(
                    peft_helper.target_modules, expected_lora_modules):
                raise ValueError(
                    f"While loading {lora_dir}, expected"
                    f" target modules in {expected_lora_modules}"
                    f" but received {unexpected_modules}."
                    f" Please verify that the loaded LoRA module is correct")
            tensors = torch.load(lora_bin_file_path,
                                 map_location=device,
                                 weights_only=True)
        else:
            raise ValueError(f"{lora_dir} doesn't contain tensors")

        embeddings = None
        if os.path.isfile(new_embeddings_tensor_path):
            embeddings = safetensors.torch.load_file(
                new_embeddings_tensor_path)
        elif os.path.isfile(new_embeddings_bin_file_path):
            embeddings = torch.load(new_embeddings_bin_file_path,
                                    map_location=device,
                                    weights_only=True)

        return cls.from_lora_tensors(
            lora_model_id=get_lora_id()
            if lora_model_id is None else lora_model_id,
            tensors=tensors,
            peft_helper=peft_helper,
            device=device,
            dtype=dtype,
            embeddings=embeddings,
            target_embedding_padding=target_embedding_padding,
            embedding_modules=embedding_modules,
            embedding_padding_modules=embedding_padding_modules,
            weights_mapper=weights_mapper)

extra_vocab_size property

extra_vocab_size: int

id instance-attribute

id = lora_model_id

loras instance-attribute

loras: dict[str, LoRALayerWeights] = loras

rank instance-attribute

rank = rank

scaling_factor instance-attribute

scaling_factor = scaling_factor

__init__

__init__(
    lora_model_id: int,
    rank: int,
    loras: dict[str, LoRALayerWeights],
    scaling_factor: Optional[float] = None,
) -> None

Parameters:

Name Type Description Default
lora_model_id int

The integer id for the lora model.

required
rank int

lora rank.

required
loras dict[str, LoRALayerWeights]

module name -> weights for lora-replaced layers.

required
scaling_factor Optional[float]

Scaling factor to support long context lora model. None if the lora is not tuned for long context support.

None
Source code in vllm/lora/models.py
def __init__(
    self,
    lora_model_id: int,
    rank: int,
    loras: dict[str, LoRALayerWeights],
    scaling_factor: Optional[float] = None,
) -> None:
    """
    Args:
        lora_model_id: The integer id for the lora model.
        rank: lora rank.
        loras: module name -> weights for lora-replaced layers.
        scaling_factor: Scaling factor to support long context lora model.
            None if the lora is not tuned for long context support.
    """
    self.id = lora_model_id
    # Scaling factor for long context lora model. None if it is not
    # fine tuned for the long context.
    self.scaling_factor = scaling_factor
    assert (
        lora_model_id
        > 0), f"a valid lora id should be greater than 0, got {self.id}"
    self.rank = rank
    self.loras: dict[str, LoRALayerWeights] = loras

check_lora_name

check_lora_name(lora_name: str) -> bool
Source code in vllm/lora/models.py
def check_lora_name(self, lora_name: str) -> bool:
    return lora_name in self.loras

clone

clone(lora_model_id: int) -> LoRAModel

Return a copy of the object with different ids.

Will share the underlying tensors.

Source code in vllm/lora/models.py
def clone(self, lora_model_id: int) -> "LoRAModel":
    """Return a copy of the object with different ids.

    Will share the underlying tensors."""
    return self.__class__(
        lora_model_id,
        rank=self.rank,
        loras=self.loras.copy(),
    )

from_local_checkpoint classmethod

from_local_checkpoint(
    lora_dir: str,
    expected_lora_modules: list[str],
    peft_helper: PEFTHelper,
    *,
    lora_model_id: Optional[int] = None,
    device: str = "cuda",
    dtype: Optional[dtype] = None,
    target_embedding_padding: Optional[int] = None,
    embedding_modules: Optional[dict[str, str]] = None,
    embedding_padding_modules: Optional[list[str]] = None,
    weights_mapper: Optional[WeightsMapper] = None,
    tensorizer_config_dict: Optional[dict] = None,
) -> LoRAModel

Create a LoRAModel from a local checkpoint.

Parameters:

Name Type Description Default
lora_dir str

The local path that has lora data.

required
expected_lora_modules list[str]

Name of modules that are expected to be replaced by lora.

required
peft_helper PEFTHelper

Loaded lora configuration information.

required
lora_model_id Optional[int]

LoRA model id. If not given, automatically set by a global counter.

None
device str

Device where the lora model is loaded.

'cuda'
dtype Optional[dtype]

dtype of the lora model weights.

None

Returns:

Type Description
LoRAModel

Loaded LoRA Model.

Source code in vllm/lora/models.py
@classmethod
def from_local_checkpoint(
        cls,
        lora_dir: str,
        expected_lora_modules: list[str],
        peft_helper: PEFTHelper,
        *,
        lora_model_id: Optional[int] = None,
        device: str = "cuda",
        dtype: Optional[torch.dtype] = None,
        target_embedding_padding: Optional[int] = None,
        embedding_modules: Optional[dict[str, str]] = None,
        embedding_padding_modules: Optional[list[str]] = None,
        weights_mapper: Optional[WeightsMapper] = None,
        tensorizer_config_dict: Optional[dict] = None) -> "LoRAModel":
    """Create a LoRAModel from a local checkpoint.

    Args:
        lora_dir: The local path that has lora data.
        expected_lora_modules: Name of modules that are expected to be
            replaced by lora.
        peft_helper: Loaded lora configuration information.
        lora_model_id: LoRA model id. If not given, automatically set by
            a global counter.
        device: Device where the lora model is loaded.
        dtype: dtype of the lora model weights.

    Returns:
        Loaded LoRA Model.
    """
    lora_tensor_path = os.path.join(lora_dir, "adapter_model.safetensors")
    lora_bin_file_path = os.path.join(lora_dir, "adapter_model.bin")
    new_embeddings_tensor_path = os.path.join(
        lora_dir, "new_embeddings.safetensors")
    new_embeddings_bin_file_path = os.path.join(lora_dir,
                                                "new_embeddings.bin")
    tensors: dict[str, torch.Tensor] = {}
    unexpected_modules: list[Union[list[str], str]] = []

    def check_unexpected_modules(modules: dict):
        for lora_module in modules.keys():  # noqa
            module_name, _, _ = parse_fine_tuned_lora_name(
                lora_module, weights_mapper)
            part_name = module_name.split(".")[-1]
            if part_name not in expected_lora_modules:
                unexpected_modules.append(module_name)
        if unexpected_modules:
            raise ValueError(
                f"While loading {lora_dir}, expected"
                f" target modules in {expected_lora_modules}"
                f" but received {unexpected_modules}."
                f" Please verify that the loaded LoRA module is correct")

    if tensorizer_config_dict:
        from tensorizer import TensorDeserializer

        tensorizer_config = TensorizerConfig(**tensorizer_config_dict)
        lora_tensor_path = os.path.join(tensorizer_config.tensorizer_dir,
                                        "adapter_model.tensors")
        tensorizer_args = tensorizer_config._construct_tensorizer_args()
        tensors = TensorDeserializer(lora_tensor_path,
                                     dtype=tensorizer_config.dtype,
                                     **tensorizer_args.deserializer_params)
        check_unexpected_modules(tensors)

    elif os.path.isfile(lora_tensor_path):
        # Find unexpected modules.
        # Use safetensor key as a source of truth to find expected modules.
        # in peft if you have target_modules A, B, C and C does not exist
        # in the model it won’t error and model will be trained with A, B
        # loraified. C won’t exist in the safetensor but it will exist in
        # the target_modules of the adapter_config.json.
        unexpected_modules = []
        with safetensors.safe_open(lora_tensor_path,
                                   framework="pt") as f:  # type: ignore
            # Load tensors if there are only expected modules.
            check_unexpected_modules(f)
            for module in f.keys():  # noqa
                tensors[module] = f.get_tensor(module)
    elif os.path.isfile(lora_bin_file_path):
        # When a bin file is provided, we rely on config to find unexpected
        # modules.
        unexpected_modules = []
        target_modules = peft_helper.target_modules
        if not isinstance(target_modules, list):
            target_modules = [target_modules]
        for module in target_modules:
            # Compatible with more modules,
            # such as:layers.11.self_attn.k_proj
            part_name = module.split(".")[-1]
            if part_name not in expected_lora_modules:
                unexpected_modules.append(module)
        # loaded lora's target modules must be a subset of
        # expected_lora_modules. It is not reliable. See
        # https://github.com/vllm-project/vllm/pull/5909. But there's no
        # other better mechanism.
        if unexpected_modules and not is_regex_target_modules(
                peft_helper.target_modules, expected_lora_modules):
            raise ValueError(
                f"While loading {lora_dir}, expected"
                f" target modules in {expected_lora_modules}"
                f" but received {unexpected_modules}."
                f" Please verify that the loaded LoRA module is correct")
        tensors = torch.load(lora_bin_file_path,
                             map_location=device,
                             weights_only=True)
    else:
        raise ValueError(f"{lora_dir} doesn't contain tensors")

    embeddings = None
    if os.path.isfile(new_embeddings_tensor_path):
        embeddings = safetensors.torch.load_file(
            new_embeddings_tensor_path)
    elif os.path.isfile(new_embeddings_bin_file_path):
        embeddings = torch.load(new_embeddings_bin_file_path,
                                map_location=device,
                                weights_only=True)

    return cls.from_lora_tensors(
        lora_model_id=get_lora_id()
        if lora_model_id is None else lora_model_id,
        tensors=tensors,
        peft_helper=peft_helper,
        device=device,
        dtype=dtype,
        embeddings=embeddings,
        target_embedding_padding=target_embedding_padding,
        embedding_modules=embedding_modules,
        embedding_padding_modules=embedding_padding_modules,
        weights_mapper=weights_mapper)

from_lora_tensors classmethod

from_lora_tensors(
    lora_model_id: int,
    tensors: dict[str, Tensor],
    peft_helper: PEFTHelper,
    device: str = "cuda",
    dtype: Optional[dtype] = None,
    embeddings: Optional[dict[str, Tensor]] = None,
    target_embedding_padding: Optional[int] = None,
    embedding_modules: Optional[dict[str, str]] = None,
    embedding_padding_modules: Optional[list[str]] = None,
    weights_mapper: Optional[WeightsMapper] = None,
) -> LoRAModel

Create a LoRAModel from a dictionary of tensors.

Source code in vllm/lora/models.py
@classmethod
def from_lora_tensors(
    cls,
    lora_model_id: int,
    tensors: dict[str, torch.Tensor],
    peft_helper: PEFTHelper,
    device: str = "cuda",
    dtype: Optional[torch.dtype] = None,
    embeddings: Optional[dict[str, torch.Tensor]] = None,
    target_embedding_padding: Optional[int] = None,
    embedding_modules: Optional[dict[str, str]] = None,
    embedding_padding_modules: Optional[list[str]] = None,
    weights_mapper: Optional[WeightsMapper] = None,
) -> "LoRAModel":
    """Create a LoRAModel from a dictionary of tensors."""
    pin_memory = str(device) == "cpu" and is_pin_memory_available()
    loras: dict[str, LoRALayerWeights] = {}
    for tensor_name, tensor in tensors.items():
        module_name, is_lora_a, is_bias = parse_fine_tuned_lora_name(
            tensor_name, weights_mapper)
        if module_name not in loras:
            lora_embeddings_tensor = None
            if embeddings:
                assert embedding_modules is not None
                embeddings_module = next(
                    (k for k in embedding_modules if k in module_name),
                    None)
                if embeddings_module:
                    lora_embeddings_tensor = embeddings[
                        embedding_modules[embeddings_module]].to(
                            device=device, dtype=dtype)
                    if pin_memory:
                        lora_embeddings_tensor = (
                            lora_embeddings_tensor.pin_memory())
            loras[module_name] = LoRALayerWeights.from_config(
                module_name, peft_helper, lora_embeddings_tensor)

        if is_bias:
            loras[module_name].bias = tensor.to(device=device,
                                                dtype=dtype).t()
            bias = tensor.to(device=device, dtype=dtype).t()
            if pin_memory:
                bias = bias.pin_memory()
            loras[module_name].bias = bias
        elif is_lora_a:
            loras[module_name].lora_a = tensor.to(device=device,
                                                  dtype=dtype).t()
            if pin_memory:
                loras[module_name].lora_a = loras[
                    module_name].lora_a.pin_memory()
        else:
            loras[module_name].lora_b = tensor.to(device=device,
                                                  dtype=dtype).t()
            assert embedding_padding_modules is not None
            if any(name in module_name
                   for name in embedding_padding_modules
                   ) and target_embedding_padding is not None:
                lora_b = loras[module_name].lora_b
                assert target_embedding_padding >= lora_b.shape[1]
                addition = target_embedding_padding - lora_b.shape[1]
                loras[module_name].lora_b = torch.nn.functional.pad(
                    lora_b, (0, addition))
            if pin_memory:
                loras[module_name].lora_b = loras[
                    module_name].lora_b.pin_memory()

    for lora in loras.values():
        lora.optimize()

    return cls(lora_model_id,
               peft_helper.r,
               loras,
               scaling_factor=peft_helper.vllm_long_context_scaling_factor)

get_lora

get_lora(module_name: str) -> Optional[LoRALayerWeights]

Get LoRA for a given module by name

Source code in vllm/lora/models.py
def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]:
    """Get LoRA for a given module by name"""
    return self.loras.get(module_name, None)

LoRAModelManager

Bases: AdapterModelManager

A manager that manages multiple LoRA-fine-tuned models.

Source code in vllm/lora/models.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
class LoRAModelManager(AdapterModelManager):
    """A manager that manages multiple LoRA-fine-tuned models."""

    def __init__(
        self,
        model: SupportsLoRA,
        max_num_seqs: int,
        max_num_batched_tokens: int,
        vocab_size: int,
        lora_config: LoRAConfig,
        device: torch.device,
    ):
        """Create a LoRAModelManager and adapter for a given model.

        Args:
            model: the model to be adapted.
            max_num_seqs: the maximum number of sequences model can run in a
                single batch.
            max_num_batched_tokens: the maximum number of tokens model can run
                in a single batch.
            vocab_size: the vocab size of the model.
            lora_config: the LoRA configuration.
        """
        self.lora_config = lora_config
        self.device = device
        self.max_num_seqs = max_num_seqs
        assert self.capacity >= self.lora_slots
        self.max_num_batched_tokens = math.ceil(max_num_batched_tokens / 8) * 8
        self.lora_index_to_id: list[Optional[int]] = [None] * self.lora_slots
        self.vocab_size = vocab_size
        self.long_lora_context: Optional[LongContextLoRAContext] = None
        self.punica_wrapper = get_punica_wrapper(
            max_num_batched_tokens,
            max_batches=self.max_num_seqs,
            device=self.device,
            max_loras=self.lora_config.max_loras)
        # Scaling factor -> offset to the sin_cos_cache to it.
        # Used for long context lora.
        self.scaling_factor_to_offset: dict[float, int] = {}
        super().__init__(model)

        self.supported_lora_modules = get_supported_lora_modules(self.model)
        assert self.supported_lora_modules, "No supported LoRA modules found in"
        f" {self.model.__class__.__name__}."
        if lora_config.long_lora_scaling_factors:
            # We need to replace rotary emb layer to do batch computation
            # for long lora.
            self.supported_lora_modules.append("rotary_emb")

        self.packed_modules_mapping = get_packed_modules_mapping(self.model)
        # Used to indicate whether the model is a multimodal model
        self.supports_mm: bool = (
            supports_multimodal(self.model)
            # In case the model only supports LoRA for
            # text modules (e.g. ChatGLM)
            and hasattr(self.model, "get_mm_mapping"))
        self.is_pooling_model = is_pooling_model(self.model)
        self.packed_modules: dict[str, list[str]] = {}
        self.modules: dict[str, BaseLayerWithLoRA] = {}
        # Dict instead of a set for compatibility with LRUCache.
        self._last_mapping: Optional[LoRAMapping] = None
        self._create_lora_modules()
        self.model.lora_manager = self
        self.adapter_type = 'LoRA'

    @property
    def capacity(self) -> int:
        return self.lora_config.max_cpu_loras

    @property
    def lora_slots(self) -> int:
        return self.lora_config.max_loras

    @property
    def adapter_slots(self) -> int:
        return self.lora_slots

    def activate_adapter(
        self,
        lora_id: int,
    ) -> bool:
        """Move LoRA into a GPU buffer to be used in the forward pass."""
        if lora_id in self._active_adapters:
            return False
        first_free_slot = next(
            ((i, lora_id) for i, lora_id in enumerate(self.lora_index_to_id)
             if lora_id is None), None)
        if first_free_slot is None:
            raise ValueError("No free lora slots")
        index, _ = first_free_slot
        self._active_adapters[lora_id] = None
        lora_model = self._registered_adapters[lora_id]
        logger.debug("Activating LoRA. int id: %d, slot index: %d",
                     lora_model.id, index)
        self.lora_index_to_id[index] = lora_model.id
        for module_name, module in self.modules.items():
            module_lora = self._get_lora_layer_weights(lora_model, module_name)
            if module_lora:
                module_lora.optimize()
                # Bias is not explicitly enabled with the flag enable_lora_bias.
                bias = module_lora.bias
                if ((torch.is_tensor(bias) or
                     (isinstance(bias, Sequence) and any(b is not None
                                                         for b in bias)))
                        and not self.lora_config.bias_enabled):
                    module_lora.bias = None
                    raise ValueError(
                        f"Adapter bias cannot be used for {module_name}"
                        " without --enable-lora-bias.")
                module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
                                module_lora.embeddings_tensor,
                                module_lora.bias)
            else:
                module.reset_lora(index)
        return True

    def _deactivate_adapter(self, lora_id: int):
        try:
            index = self.lora_index_to_id.index(lora_id)
            self.lora_index_to_id[index] = None
        except ValueError:
            pass

    def _set_long_lora_context(self, lora: LoRAModel):
        if self.long_lora_context is None:
            return

        if lora.scaling_factor is None:
            return

        if (lora.scaling_factor not in self.scaling_factor_to_offset):
            raise ValueError(f"Long LoRA scaling factor {lora.scaling_factor}"
                             " has not been initialized.")

        offsets = self.scaling_factor_to_offset.get(lora.scaling_factor)
        if offsets:
            self.long_lora_context.offsets_by_lora_id[lora.id] = offsets

    def _add_adapter(self, lora: LoRAModel):
        self._create_merged_loras_inplace(lora)
        self._registered_adapters[lora.id] = lora
        self._set_long_lora_context(lora)

    def pin_adapter(self, lora_id: int) -> bool:
        """Pin a LoRAModel in the manager cache."""
        raise NotImplementedError(
            "Pinning is not supported in LoRAModelManager. "
            "Use LRUCacheLoRAModelManager for pinning")  # type: ignore

    def _set_adapter_mapping(self, mapping: LoRAMapping) -> None:
        # update lora states
        self.punica_wrapper.update_metadata(
            mapping,
            self.lora_index_to_id,
            self.lora_slots + 1,
            self.vocab_size,
            self.lora_config.lora_extra_vocab_size,
            self.long_lora_context,
        )

    def remove_all_adapters(self):
        """Remove all LoRAModels from the manager."""
        self._registered_adapters.clear()
        self.lora_index_to_id = [None] * self.lora_slots
        self._active_adapters.clear()

    def _create_lora_modules(self):
        for module_name, module in self.model.named_modules(
                remove_duplicate=False):
            if isinstance(module, PPMissingLayer):
                continue
            if not self._match_target_modules(module_name):
                continue
            # A temporary approach for multimodal models to support LoRA
            # TODO: Remove this restriction
            if self._filter_unsupported_mm_module(module_name):
                logger.warning(
                    "Regarding multimodal models, vLLM currently only supports "
                    "adding LoRA to language model, %s will be ignored.",
                    module_name,
                )
                continue
            parts = module_name.split(".")[-1]
            packed_moduled_lst = self.packed_modules_mapping.get(parts, [])
            new_module = replace_submodule(
                self.model, module_name,
                from_layer(module, self.lora_slots, self.lora_config,
                           packed_moduled_lst, self.model.config))

            # LinearScalingRotaryEmbeddingWithLoRA is used to handle
            # long context lora. Register relevant metadata.
            if isinstance(new_module, LinearScalingRotaryEmbeddingWithLoRA):
                self.long_lora_context = LongContextLoRAContext(
                    new_module.scaling_factors, new_module.rotary_dim)
                self.scaling_factor_to_offset = \
                    new_module.scaling_factor_to_offset
            # (yard1): TODO make this more robust
            if "lm_head" in module_name:
                logits_processor_module = self.model.get_submodule(
                    "logits_processor")
                new_module = replace_submodule(
                    self.model, "logits_processor",
                    from_layer_logits_processor(logits_processor_module,
                                                module, self.lora_slots,
                                                self.lora_config,
                                                self.model.config))

            # In some models, especially multimodal ones, layers with the same
            # name may have different types, such as nn.Linear and
            # ReplicatedLinear. The nn.Linear layers cannot be replaced with
            # LoRA layers, leading to assertion error. The following check
            # aims to prevent this error
            if self.supports_mm and not isinstance(new_module,
                                                   BaseLayerWithLoRA):
                continue
            self.register_module(module_name, new_module)
            self._register_packed_modules(module_name)
            # All lora layers share the same punica_wrapper based on reference.
            new_module.set_mapping(self.punica_wrapper)

    def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
        assert isinstance(module, BaseLayerWithLoRA)
        self.modules[module_name] = module

    def create_dummy_lora(
            self,
            lora_id: int,
            rank: int,
            scaling_factor: Optional[float],
            embedding_modules: Optional[dict[str, str]] = None) -> LoRAModel:
        """Create zero-initialized LoRAModel for warmup."""
        model = LoRAModel(lora_id, rank, {}, scaling_factor)
        for module_name, module in self.model.named_modules():
            bias_enabled = self.lora_config.bias_enabled
            if (not self._match_target_modules(module_name)
                    or not isinstance(module, BaseLayerWithLoRA)
                    or isinstance(module, LinearScalingRotaryEmbeddingWithLoRA)
                    or self._filter_unsupported_mm_module(module_name)):
                continue
            parts = module_name.split(".")
            if module_name not in self.packed_modules:
                assert embedding_modules is not None
                if parts[-1] in embedding_modules:
                    input_dim = (module.base_layer.org_vocab_size +
                                 self.lora_config.lora_extra_vocab_size if
                                 hasattr(module.base_layer, "org_vocab_size")
                                 else module.base_layer.weight.shape[1])
                    output_dim = module.base_layer.embedding_dim if hasattr(
                        module.base_layer,
                        "embedding_dim") else module.base_layer.weight.shape[0]
                    embeddings_tensor_dim = (module.base_layer.embedding_dim if
                                             hasattr(module.base_layer,
                                                     "embedding_dim") else
                                             module.base_layer.weight.shape[1])
                    lora = LoRALayerWeights.create_dummy_lora_weights(
                        module_name,
                        input_dim,
                        output_dim,
                        rank,
                        module.lora_a_stacked[0].dtype,
                        "cpu",
                        embeddings_tensor_dim=embeddings_tensor_dim,
                        bias_enabled=bias_enabled)
                else:
                    lora = LoRALayerWeights.create_dummy_lora_weights(
                        module_name,
                        module.lora_a_stacked[0].shape[-1],
                        module.lora_b_stacked[0].shape[-2],
                        rank,
                        module.lora_a_stacked[0].dtype,
                        "cpu",
                        bias_enabled=bias_enabled,
                    )
                lora.optimize()
            else:
                parts = module_name.split(".")
                replacements = self.packed_modules_mapping[parts[-1]]
                subloras: list[Optional[LoRALayerWeights]] = []
                for i, r in enumerate(replacements):
                    lora = LoRALayerWeights.create_dummy_lora_weights(
                        module_name + "." + r,
                        module.lora_a_stacked[i].shape[-1],
                        module.lora_b_stacked[i].shape[-2],
                        rank,
                        module.lora_a_stacked[i].dtype,
                        "cpu",
                        bias_enabled=bias_enabled,
                    )
                    lora.optimize()
                    subloras.append(lora)
                lora = PackedLoRALayerWeights.pack(subloras)
            model.loras[module_name] = lora
        return model

    def _match_target_modules(self, module_name: str):
        return any(
            re.match(
                r".*\.{target_module}$".format(target_module=target_module),
                module_name) or target_module == module_name
            for target_module in self.supported_lora_modules)

    def _filter_unsupported_mm_module(self, module_name: str) -> bool:
        """
        Regarding multimodal models, vLLM currently only supports adding LoRA to
        language model. LoRA for other modules, such as the vision tower, will
        be filtered out.
        """
        if self.supports_mm:
            module_mapping: MultiModelKeys = self.model.get_mm_mapping()
            prefix_lst = module_mapping.connector + module_mapping.tower_model
            return any(
                [module_name.startswith(prefix) for prefix in prefix_lst])
        return False

    def _register_packed_modules(self, module_full_name: str) -> None:
        parts = module_full_name.split(".")
        module_name = parts[-1]
        replacements = self.packed_modules_mapping.get(module_name, [])
        # When replacements is less than or equal to 1, it indicates that this
        # module is not a packed module.
        if len(replacements) <= 1:
            return
        prefix = ".".join(parts[:-1])
        self.packed_modules[module_full_name] = [
            prefix + "." + r if prefix else r for r in replacements
        ]

    def _create_merged_loras_inplace(self, lora_model: LoRAModel) -> None:
        for module_name, new_module_names in self.packed_modules.items():
            replacement_loras: list[Optional[LoRALayerWeights]] = []
            replaced_module: set[str] = set()
            has_replacement = False
            for r in new_module_names:
                lora = self._get_lora_layer_weights(lora_model, r)
                replacement_loras.append(lora)
                if lora:
                    has_replacement = True
                    replaced_module.add(r)
            if not has_replacement:
                continue
            for i in range(len(replacement_loras)):
                if replacement_loras[i]:
                    continue
                replacement_loras[i] = None
            # HACK Temporary solution for the pool model.
            if self.is_pooling_model and not lora_model.check_lora_name(
                    module_name):
                replaced_module_name = module_name.replace("model.", "")
                if lora_model.check_lora_name(module_name):
                    module_name = replaced_module_name
            lora_model.loras[module_name] = PackedLoRALayerWeights.pack(
                replacement_loras)
            # Remove the modules that have been replaced.
            for module in replaced_module:
                lora_model.loras.pop(module, None)

    def _get_lora_layer_weights(
            self, lora_model: LoRAModel,
            module_name: str) -> Optional[LoRALayerWeights]:
        org_module_name = module_name
        if self.is_pooling_model and not lora_model.check_lora_name(
                module_name):
            # If it's a pool model, and the layer name is not found,
            # remove the prefix 'model.' and search again.
            module_name = module_name.replace("model.", "")
            if lora_model.check_lora_name(module_name):
                org_module_name = module_name
                logger.info_once(
                    "For the pool model, successfully loaded the LoRA weights "
                    "after removing the prefix 'model.'.")
        return lora_model.get_lora(org_module_name)

    def deactivate_adapter(self, adapter_id: int) -> bool:
        return deactivate_adapter(adapter_id, self._active_adapters,
                                  self._deactivate_adapter)

    def add_adapter(self, adapter: LoRAModel) -> bool:
        logger.debug(
            "Adding lora. Model id: %d, "
            "int id: %d, "
            "scaling factor: %s", adapter.id, adapter.id,
            adapter.scaling_factor)
        return add_adapter(adapter, self._registered_adapters, self.capacity,
                           self._add_adapter)

    def set_adapter_mapping(self, mapping: LoRAMapping) -> None:
        self._last_mapping = set_adapter_mapping(mapping, self._last_mapping,
                                                 self._set_adapter_mapping)

    def remove_adapter(self, adapter_id: int) -> bool:
        return remove_adapter(adapter_id, self._registered_adapters,
                              self.deactivate_adapter)

    def list_adapters(self) -> dict[int, Any]:
        return list_adapters(self._registered_adapters)

    def get_adapter(self, adapter_id: int) -> Optional[Any]:
        return get_adapter(adapter_id, self._registered_adapters)

_last_mapping instance-attribute

_last_mapping: Optional[LoRAMapping] = None

adapter_slots property

adapter_slots: int

adapter_type instance-attribute

adapter_type = 'LoRA'

capacity property

capacity: int

device instance-attribute

device = device

is_pooling_model instance-attribute

is_pooling_model = is_pooling_model(model)

long_lora_context instance-attribute

long_lora_context: Optional[LongContextLoRAContext] = None

lora_config instance-attribute

lora_config = lora_config

lora_index_to_id instance-attribute

lora_index_to_id: list[Optional[int]] = [None] * lora_slots

lora_slots property

lora_slots: int

max_num_batched_tokens instance-attribute

max_num_batched_tokens = (
    ceil(max_num_batched_tokens / 8) * 8
)

max_num_seqs instance-attribute

max_num_seqs = max_num_seqs

modules instance-attribute

modules: dict[str, BaseLayerWithLoRA] = {}

packed_modules instance-attribute

packed_modules: dict[str, list[str]] = {}

packed_modules_mapping instance-attribute

packed_modules_mapping = get_packed_modules_mapping(model)

punica_wrapper instance-attribute

punica_wrapper = get_punica_wrapper(
    max_num_batched_tokens,
    max_batches=max_num_seqs,
    device=device,
    max_loras=max_loras,
)

scaling_factor_to_offset instance-attribute

scaling_factor_to_offset: dict[float, int] = {}

supported_lora_modules instance-attribute

supported_lora_modules = get_supported_lora_modules(model)

supports_mm instance-attribute

supports_mm: bool = supports_multimodal(model) and hasattr(
    model, "get_mm_mapping"
)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    model: SupportsLoRA,
    max_num_seqs: int,
    max_num_batched_tokens: int,
    vocab_size: int,
    lora_config: LoRAConfig,
    device: device,
)

Create a LoRAModelManager and adapter for a given model.

Parameters:

Name Type Description Default
model SupportsLoRA

the model to be adapted.

required
max_num_seqs int

the maximum number of sequences model can run in a single batch.

required
max_num_batched_tokens int

the maximum number of tokens model can run in a single batch.

required
vocab_size int

the vocab size of the model.

required
lora_config LoRAConfig

the LoRA configuration.

required
Source code in vllm/lora/models.py
def __init__(
    self,
    model: SupportsLoRA,
    max_num_seqs: int,
    max_num_batched_tokens: int,
    vocab_size: int,
    lora_config: LoRAConfig,
    device: torch.device,
):
    """Create a LoRAModelManager and adapter for a given model.

    Args:
        model: the model to be adapted.
        max_num_seqs: the maximum number of sequences model can run in a
            single batch.
        max_num_batched_tokens: the maximum number of tokens model can run
            in a single batch.
        vocab_size: the vocab size of the model.
        lora_config: the LoRA configuration.
    """
    self.lora_config = lora_config
    self.device = device
    self.max_num_seqs = max_num_seqs
    assert self.capacity >= self.lora_slots
    self.max_num_batched_tokens = math.ceil(max_num_batched_tokens / 8) * 8
    self.lora_index_to_id: list[Optional[int]] = [None] * self.lora_slots
    self.vocab_size = vocab_size
    self.long_lora_context: Optional[LongContextLoRAContext] = None
    self.punica_wrapper = get_punica_wrapper(
        max_num_batched_tokens,
        max_batches=self.max_num_seqs,
        device=self.device,
        max_loras=self.lora_config.max_loras)
    # Scaling factor -> offset to the sin_cos_cache to it.
    # Used for long context lora.
    self.scaling_factor_to_offset: dict[float, int] = {}
    super().__init__(model)

    self.supported_lora_modules = get_supported_lora_modules(self.model)
    assert self.supported_lora_modules, "No supported LoRA modules found in"
    f" {self.model.__class__.__name__}."
    if lora_config.long_lora_scaling_factors:
        # We need to replace rotary emb layer to do batch computation
        # for long lora.
        self.supported_lora_modules.append("rotary_emb")

    self.packed_modules_mapping = get_packed_modules_mapping(self.model)
    # Used to indicate whether the model is a multimodal model
    self.supports_mm: bool = (
        supports_multimodal(self.model)
        # In case the model only supports LoRA for
        # text modules (e.g. ChatGLM)
        and hasattr(self.model, "get_mm_mapping"))
    self.is_pooling_model = is_pooling_model(self.model)
    self.packed_modules: dict[str, list[str]] = {}
    self.modules: dict[str, BaseLayerWithLoRA] = {}
    # Dict instead of a set for compatibility with LRUCache.
    self._last_mapping: Optional[LoRAMapping] = None
    self._create_lora_modules()
    self.model.lora_manager = self
    self.adapter_type = 'LoRA'

_add_adapter

_add_adapter(lora: LoRAModel)
Source code in vllm/lora/models.py
def _add_adapter(self, lora: LoRAModel):
    self._create_merged_loras_inplace(lora)
    self._registered_adapters[lora.id] = lora
    self._set_long_lora_context(lora)

_create_lora_modules

_create_lora_modules()
Source code in vllm/lora/models.py
def _create_lora_modules(self):
    for module_name, module in self.model.named_modules(
            remove_duplicate=False):
        if isinstance(module, PPMissingLayer):
            continue
        if not self._match_target_modules(module_name):
            continue
        # A temporary approach for multimodal models to support LoRA
        # TODO: Remove this restriction
        if self._filter_unsupported_mm_module(module_name):
            logger.warning(
                "Regarding multimodal models, vLLM currently only supports "
                "adding LoRA to language model, %s will be ignored.",
                module_name,
            )
            continue
        parts = module_name.split(".")[-1]
        packed_moduled_lst = self.packed_modules_mapping.get(parts, [])
        new_module = replace_submodule(
            self.model, module_name,
            from_layer(module, self.lora_slots, self.lora_config,
                       packed_moduled_lst, self.model.config))

        # LinearScalingRotaryEmbeddingWithLoRA is used to handle
        # long context lora. Register relevant metadata.
        if isinstance(new_module, LinearScalingRotaryEmbeddingWithLoRA):
            self.long_lora_context = LongContextLoRAContext(
                new_module.scaling_factors, new_module.rotary_dim)
            self.scaling_factor_to_offset = \
                new_module.scaling_factor_to_offset
        # (yard1): TODO make this more robust
        if "lm_head" in module_name:
            logits_processor_module = self.model.get_submodule(
                "logits_processor")
            new_module = replace_submodule(
                self.model, "logits_processor",
                from_layer_logits_processor(logits_processor_module,
                                            module, self.lora_slots,
                                            self.lora_config,
                                            self.model.config))

        # In some models, especially multimodal ones, layers with the same
        # name may have different types, such as nn.Linear and
        # ReplicatedLinear. The nn.Linear layers cannot be replaced with
        # LoRA layers, leading to assertion error. The following check
        # aims to prevent this error
        if self.supports_mm and not isinstance(new_module,
                                               BaseLayerWithLoRA):
            continue
        self.register_module(module_name, new_module)
        self._register_packed_modules(module_name)
        # All lora layers share the same punica_wrapper based on reference.
        new_module.set_mapping(self.punica_wrapper)

_create_merged_loras_inplace

_create_merged_loras_inplace(lora_model: LoRAModel) -> None
Source code in vllm/lora/models.py
def _create_merged_loras_inplace(self, lora_model: LoRAModel) -> None:
    for module_name, new_module_names in self.packed_modules.items():
        replacement_loras: list[Optional[LoRALayerWeights]] = []
        replaced_module: set[str] = set()
        has_replacement = False
        for r in new_module_names:
            lora = self._get_lora_layer_weights(lora_model, r)
            replacement_loras.append(lora)
            if lora:
                has_replacement = True
                replaced_module.add(r)
        if not has_replacement:
            continue
        for i in range(len(replacement_loras)):
            if replacement_loras[i]:
                continue
            replacement_loras[i] = None
        # HACK Temporary solution for the pool model.
        if self.is_pooling_model and not lora_model.check_lora_name(
                module_name):
            replaced_module_name = module_name.replace("model.", "")
            if lora_model.check_lora_name(module_name):
                module_name = replaced_module_name
        lora_model.loras[module_name] = PackedLoRALayerWeights.pack(
            replacement_loras)
        # Remove the modules that have been replaced.
        for module in replaced_module:
            lora_model.loras.pop(module, None)

_deactivate_adapter

_deactivate_adapter(lora_id: int)
Source code in vllm/lora/models.py
def _deactivate_adapter(self, lora_id: int):
    try:
        index = self.lora_index_to_id.index(lora_id)
        self.lora_index_to_id[index] = None
    except ValueError:
        pass

_filter_unsupported_mm_module

_filter_unsupported_mm_module(module_name: str) -> bool

Regarding multimodal models, vLLM currently only supports adding LoRA to language model. LoRA for other modules, such as the vision tower, will be filtered out.

Source code in vllm/lora/models.py
def _filter_unsupported_mm_module(self, module_name: str) -> bool:
    """
    Regarding multimodal models, vLLM currently only supports adding LoRA to
    language model. LoRA for other modules, such as the vision tower, will
    be filtered out.
    """
    if self.supports_mm:
        module_mapping: MultiModelKeys = self.model.get_mm_mapping()
        prefix_lst = module_mapping.connector + module_mapping.tower_model
        return any(
            [module_name.startswith(prefix) for prefix in prefix_lst])
    return False

_get_lora_layer_weights

_get_lora_layer_weights(
    lora_model: LoRAModel, module_name: str
) -> Optional[LoRALayerWeights]
Source code in vllm/lora/models.py
def _get_lora_layer_weights(
        self, lora_model: LoRAModel,
        module_name: str) -> Optional[LoRALayerWeights]:
    org_module_name = module_name
    if self.is_pooling_model and not lora_model.check_lora_name(
            module_name):
        # If it's a pool model, and the layer name is not found,
        # remove the prefix 'model.' and search again.
        module_name = module_name.replace("model.", "")
        if lora_model.check_lora_name(module_name):
            org_module_name = module_name
            logger.info_once(
                "For the pool model, successfully loaded the LoRA weights "
                "after removing the prefix 'model.'.")
    return lora_model.get_lora(org_module_name)

_match_target_modules

_match_target_modules(module_name: str)
Source code in vllm/lora/models.py
def _match_target_modules(self, module_name: str):
    return any(
        re.match(
            r".*\.{target_module}$".format(target_module=target_module),
            module_name) or target_module == module_name
        for target_module in self.supported_lora_modules)

_register_packed_modules

_register_packed_modules(module_full_name: str) -> None
Source code in vllm/lora/models.py
def _register_packed_modules(self, module_full_name: str) -> None:
    parts = module_full_name.split(".")
    module_name = parts[-1]
    replacements = self.packed_modules_mapping.get(module_name, [])
    # When replacements is less than or equal to 1, it indicates that this
    # module is not a packed module.
    if len(replacements) <= 1:
        return
    prefix = ".".join(parts[:-1])
    self.packed_modules[module_full_name] = [
        prefix + "." + r if prefix else r for r in replacements
    ]

_set_adapter_mapping

_set_adapter_mapping(mapping: LoRAMapping) -> None
Source code in vllm/lora/models.py
def _set_adapter_mapping(self, mapping: LoRAMapping) -> None:
    # update lora states
    self.punica_wrapper.update_metadata(
        mapping,
        self.lora_index_to_id,
        self.lora_slots + 1,
        self.vocab_size,
        self.lora_config.lora_extra_vocab_size,
        self.long_lora_context,
    )

_set_long_lora_context

_set_long_lora_context(lora: LoRAModel)
Source code in vllm/lora/models.py
def _set_long_lora_context(self, lora: LoRAModel):
    if self.long_lora_context is None:
        return

    if lora.scaling_factor is None:
        return

    if (lora.scaling_factor not in self.scaling_factor_to_offset):
        raise ValueError(f"Long LoRA scaling factor {lora.scaling_factor}"
                         " has not been initialized.")

    offsets = self.scaling_factor_to_offset.get(lora.scaling_factor)
    if offsets:
        self.long_lora_context.offsets_by_lora_id[lora.id] = offsets

activate_adapter

activate_adapter(lora_id: int) -> bool

Move LoRA into a GPU buffer to be used in the forward pass.

Source code in vllm/lora/models.py
def activate_adapter(
    self,
    lora_id: int,
) -> bool:
    """Move LoRA into a GPU buffer to be used in the forward pass."""
    if lora_id in self._active_adapters:
        return False
    first_free_slot = next(
        ((i, lora_id) for i, lora_id in enumerate(self.lora_index_to_id)
         if lora_id is None), None)
    if first_free_slot is None:
        raise ValueError("No free lora slots")
    index, _ = first_free_slot
    self._active_adapters[lora_id] = None
    lora_model = self._registered_adapters[lora_id]
    logger.debug("Activating LoRA. int id: %d, slot index: %d",
                 lora_model.id, index)
    self.lora_index_to_id[index] = lora_model.id
    for module_name, module in self.modules.items():
        module_lora = self._get_lora_layer_weights(lora_model, module_name)
        if module_lora:
            module_lora.optimize()
            # Bias is not explicitly enabled with the flag enable_lora_bias.
            bias = module_lora.bias
            if ((torch.is_tensor(bias) or
                 (isinstance(bias, Sequence) and any(b is not None
                                                     for b in bias)))
                    and not self.lora_config.bias_enabled):
                module_lora.bias = None
                raise ValueError(
                    f"Adapter bias cannot be used for {module_name}"
                    " without --enable-lora-bias.")
            module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
                            module_lora.embeddings_tensor,
                            module_lora.bias)
        else:
            module.reset_lora(index)
    return True

add_adapter

add_adapter(adapter: LoRAModel) -> bool
Source code in vllm/lora/models.py
def add_adapter(self, adapter: LoRAModel) -> bool:
    logger.debug(
        "Adding lora. Model id: %d, "
        "int id: %d, "
        "scaling factor: %s", adapter.id, adapter.id,
        adapter.scaling_factor)
    return add_adapter(adapter, self._registered_adapters, self.capacity,
                       self._add_adapter)

create_dummy_lora

create_dummy_lora(
    lora_id: int,
    rank: int,
    scaling_factor: Optional[float],
    embedding_modules: Optional[dict[str, str]] = None,
) -> LoRAModel

Create zero-initialized LoRAModel for warmup.

Source code in vllm/lora/models.py
def create_dummy_lora(
        self,
        lora_id: int,
        rank: int,
        scaling_factor: Optional[float],
        embedding_modules: Optional[dict[str, str]] = None) -> LoRAModel:
    """Create zero-initialized LoRAModel for warmup."""
    model = LoRAModel(lora_id, rank, {}, scaling_factor)
    for module_name, module in self.model.named_modules():
        bias_enabled = self.lora_config.bias_enabled
        if (not self._match_target_modules(module_name)
                or not isinstance(module, BaseLayerWithLoRA)
                or isinstance(module, LinearScalingRotaryEmbeddingWithLoRA)
                or self._filter_unsupported_mm_module(module_name)):
            continue
        parts = module_name.split(".")
        if module_name not in self.packed_modules:
            assert embedding_modules is not None
            if parts[-1] in embedding_modules:
                input_dim = (module.base_layer.org_vocab_size +
                             self.lora_config.lora_extra_vocab_size if
                             hasattr(module.base_layer, "org_vocab_size")
                             else module.base_layer.weight.shape[1])
                output_dim = module.base_layer.embedding_dim if hasattr(
                    module.base_layer,
                    "embedding_dim") else module.base_layer.weight.shape[0]
                embeddings_tensor_dim = (module.base_layer.embedding_dim if
                                         hasattr(module.base_layer,
                                                 "embedding_dim") else
                                         module.base_layer.weight.shape[1])
                lora = LoRALayerWeights.create_dummy_lora_weights(
                    module_name,
                    input_dim,
                    output_dim,
                    rank,
                    module.lora_a_stacked[0].dtype,
                    "cpu",
                    embeddings_tensor_dim=embeddings_tensor_dim,
                    bias_enabled=bias_enabled)
            else:
                lora = LoRALayerWeights.create_dummy_lora_weights(
                    module_name,
                    module.lora_a_stacked[0].shape[-1],
                    module.lora_b_stacked[0].shape[-2],
                    rank,
                    module.lora_a_stacked[0].dtype,
                    "cpu",
                    bias_enabled=bias_enabled,
                )
            lora.optimize()
        else:
            parts = module_name.split(".")
            replacements = self.packed_modules_mapping[parts[-1]]
            subloras: list[Optional[LoRALayerWeights]] = []
            for i, r in enumerate(replacements):
                lora = LoRALayerWeights.create_dummy_lora_weights(
                    module_name + "." + r,
                    module.lora_a_stacked[i].shape[-1],
                    module.lora_b_stacked[i].shape[-2],
                    rank,
                    module.lora_a_stacked[i].dtype,
                    "cpu",
                    bias_enabled=bias_enabled,
                )
                lora.optimize()
                subloras.append(lora)
            lora = PackedLoRALayerWeights.pack(subloras)
        model.loras[module_name] = lora
    return model

deactivate_adapter

deactivate_adapter(adapter_id: int) -> bool
Source code in vllm/lora/models.py
def deactivate_adapter(self, adapter_id: int) -> bool:
    return deactivate_adapter(adapter_id, self._active_adapters,
                              self._deactivate_adapter)

get_adapter

get_adapter(adapter_id: int) -> Optional[Any]
Source code in vllm/lora/models.py
def get_adapter(self, adapter_id: int) -> Optional[Any]:
    return get_adapter(adapter_id, self._registered_adapters)

list_adapters

list_adapters() -> dict[int, Any]
Source code in vllm/lora/models.py
def list_adapters(self) -> dict[int, Any]:
    return list_adapters(self._registered_adapters)

pin_adapter

pin_adapter(lora_id: int) -> bool

Pin a LoRAModel in the manager cache.

Source code in vllm/lora/models.py
def pin_adapter(self, lora_id: int) -> bool:
    """Pin a LoRAModel in the manager cache."""
    raise NotImplementedError(
        "Pinning is not supported in LoRAModelManager. "
        "Use LRUCacheLoRAModelManager for pinning")  # type: ignore

register_module

register_module(
    module_name: str, module: BaseLayerWithLoRA
)
Source code in vllm/lora/models.py
def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
    assert isinstance(module, BaseLayerWithLoRA)
    self.modules[module_name] = module

remove_adapter

remove_adapter(adapter_id: int) -> bool
Source code in vllm/lora/models.py
def remove_adapter(self, adapter_id: int) -> bool:
    return remove_adapter(adapter_id, self._registered_adapters,
                          self.deactivate_adapter)

remove_all_adapters

remove_all_adapters()

Remove all LoRAModels from the manager.

Source code in vllm/lora/models.py
def remove_all_adapters(self):
    """Remove all LoRAModels from the manager."""
    self._registered_adapters.clear()
    self.lora_index_to_id = [None] * self.lora_slots
    self._active_adapters.clear()

set_adapter_mapping

set_adapter_mapping(mapping: LoRAMapping) -> None
Source code in vllm/lora/models.py
def set_adapter_mapping(self, mapping: LoRAMapping) -> None:
    self._last_mapping = set_adapter_mapping(mapping, self._last_mapping,
                                             self._set_adapter_mapping)

LongContextLoRAContext dataclass

Context for lora adapters that support long context.

Source code in vllm/lora/models.py
@dataclass
class LongContextLoRAContext:
    """Context for lora adapters that support long context."""
    # The scaling factors to support long context lora fine tuned models.
    scaling_factors: list[float]
    # dimension to apply rotary embedding.
    rot_dim: int
    # offsets to the sin_cos_cache for each lora_id loaded.
    # This value is dynamically modified.
    offsets_by_lora_id: dict[int, int] = field(default_factory=dict)

offsets_by_lora_id class-attribute instance-attribute

offsets_by_lora_id: dict[int, int] = field(
    default_factory=dict
)

rot_dim instance-attribute

rot_dim: int

scaling_factors instance-attribute

scaling_factors: list[float]

__init__

__init__(
    scaling_factors: list[float],
    rot_dim: int,
    offsets_by_lora_id: dict[int, int] = dict(),
) -> None

create_lora_manager

create_lora_manager(
    model: Module,
    max_num_seqs: int,
    max_num_batched_tokens: int,
    vocab_size: int,
    lora_config: LoRAConfig,
    device: device,
    lora_manager_cls: type[
        LoRAModelManager
    ] = LoRAModelManager,
    **kwargs,
) -> LoRAModelManager

Create a LoRA adapter for a given model.

Source code in vllm/lora/models.py
def create_lora_manager(
        model: nn.Module,
        max_num_seqs: int,
        max_num_batched_tokens: int,
        vocab_size: int,
        lora_config: LoRAConfig,
        device: torch.device,
        lora_manager_cls: type[LoRAModelManager] = LoRAModelManager,
        **kwargs) -> LoRAModelManager:
    """Create a LoRA adapter for a given model."""
    if not isinstance(model, SupportsLoRA):
        raise ValueError(f"Model {type(model)} is not supported for LoRA.")
    lora_manager = lora_manager_cls(
        model=model,
        max_num_seqs=max_num_seqs,
        max_num_batched_tokens=max_num_batched_tokens,
        vocab_size=vocab_size,
        lora_config=lora_config,
        device=device,
        **kwargs)
    return lora_manager

get_lora_id

get_lora_id()
Source code in vllm/lora/models.py
def get_lora_id():
    global _GLOBAL_LORA_ID
    _GLOBAL_LORA_ID += 1
    return _GLOBAL_LORA_ID