vllm.lora.worker_manager
LRUCacheWorkerLoRAManager
¶
Bases: WorkerLoRAManager
WorkerLoRAManager that manages LoRA models on the worker side.
Uses an LRU Cache. Every request, the requested LoRAs will be loaded (unless they are already loaded) and least recently used LoRAs will be unloaded if the cache is above capacity.
Source code in vllm/lora/worker_manager.py
_manager_cls
class-attribute
instance-attribute
¶
_manager_cls: type[LRUCacheLoRAModelManager] = (
LRUCacheLoRAModelManager
)
_apply_adapters
¶
_apply_adapters(lora_requests: set[LoRARequest]) -> None
Source code in vllm/lora/worker_manager.py
add_adapter
¶
add_adapter(lora_request: LoRARequest) -> bool
Source code in vllm/lora/worker_manager.py
create_lora_manager
¶
Source code in vllm/lora/worker_manager.py
WorkerLoRAManager
¶
Bases: AbstractWorkerManager
WorkerLoRAManager that manages LoRA models on the worker side.
Every request, the requested LoRAs will be loaded (unless they are already loaded), and every other LoRA will be unloaded.
Source code in vllm/lora/worker_manager.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
_cached_dummy_lora
instance-attribute
¶
_manager_cls
class-attribute
instance-attribute
¶
_manager_cls: type[LoRAModelManager] = LoRAModelManager
embedding_padding_modules
instance-attribute
¶
__init__
¶
__init__(
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
device: device,
embedding_modules: dict[str, str],
embedding_padding_modules: list[str],
lora_model_cls: type[LoRAModel] = LoRAModel,
max_position_embeddings: Optional[int] = None,
)
Source code in vllm/lora/worker_manager.py
_apply_adapters
¶
_load_adapter
¶
_load_adapter(lora_request: LoRARequest) -> LoRAModel
Source code in vllm/lora/worker_manager.py
add_adapter
¶
add_dummy_lora
¶
add_dummy_lora(
lora_request: LoRARequest, rank: int
) -> bool
Source code in vllm/lora/worker_manager.py
create_lora_manager
¶
Source code in vllm/lora/worker_manager.py
dummy_lora_cache
¶
Use this context manager to reuse the dummy lora model to avoid creating it repeatedly.