vllm.inputs.data
DecoderOnlyInputs
module-attribute
¶
DecoderOnlyInputs = Union[
TokenInputs, EmbedsInputs, "MultiModalInputs"
]
The inputs in LLMEngine
before they are
passed to the model executor.
This specifies the data required for decoder-only models.
ProcessorInputs
module-attribute
¶
ProcessorInputs = Union[
DecoderOnlyInputs, EncoderDecoderInputs
]
The outputs from vllm.inputs.preprocess.InputPreprocessor
.
PromptType
module-attribute
¶
PromptType = Union[
SingletonPrompt, ExplicitEncoderDecoderPrompt
]
Set of possible schemas for an LLM input, including both decoder-only and encoder/decoder input types:
- A text prompt (
str
orTextPrompt
) - A tokenized prompt (
TokensPrompt
) - An embeddings prompt (
EmbedsPrompt
) - A single data structure containing both an encoder and a decoder prompt
(
ExplicitEncoderDecoderPrompt
)
SingletonInputs
module-attribute
¶
SingletonInputs = Union[
TokenInputs, EmbedsInputs, "MultiModalInputs"
]
A processed SingletonPrompt
which can be
passed to vllm.sequence.Sequence
.
SingletonPrompt
module-attribute
¶
SingletonPrompt = Union[
str, TextPrompt, TokensPrompt, EmbedsPrompt
]
Set of possible schemas for a single prompt:
- A text prompt (
str
orTextPrompt
) - A tokenized prompt (
TokensPrompt
) - An embeddings prompt (
EmbedsPrompt
)
Note that "singleton" is as opposed to a data structure
which encapsulates multiple prompts, i.e. of the sort
which may be utilized for encoder/decoder models when
the user desires to express both the encoder & decoder
prompts explicitly, i.e.
ExplicitEncoderDecoderPrompt
A prompt of type SingletonPrompt
may be
employed as (1) input to a decoder-only model, (2) input to
the encoder of an encoder/decoder model, in the scenario
where the decoder-prompt is not specified explicitly, or
(3) as a member of a larger data structure encapsulating
more than one prompt, i.e.
ExplicitEncoderDecoderPrompt
_T1_co
module-attribute
¶
_T1_co = TypeVar(
"_T1_co",
bound=SingletonPrompt,
default=SingletonPrompt,
covariant=True,
)
_T2_co
module-attribute
¶
_T2_co = TypeVar(
"_T2_co",
bound=SingletonPrompt,
default=SingletonPrompt,
covariant=True,
)
EmbedsInputs
¶
EmbedsPrompt
¶
Bases: TypedDict
Schema for a prompt provided via token embeddings.
Source code in vllm/inputs/data.py
cache_salt
instance-attribute
¶
cache_salt: NotRequired[str]
Optional cache salt to be used for prefix caching.
EncoderDecoderInputs
¶
Bases: TypedDict
The inputs in LLMEngine
before they
are passed to the model executor.
This specifies the required data for encoder-decoder models.
Source code in vllm/inputs/data.py
decoder
instance-attribute
¶
decoder: Union[TokenInputs, MultiModalInputs]
The inputs for the decoder portion.
encoder
instance-attribute
¶
encoder: Union[TokenInputs, MultiModalInputs]
The inputs for the encoder portion.
ExplicitEncoderDecoderPrompt
¶
Bases: TypedDict
, Generic[_T1_co, _T2_co]
Represents an encoder/decoder model input prompt, comprising an explicit encoder prompt and a decoder prompt.
The encoder and decoder prompts, respectively, may be formatted
according to any of the
SingletonPrompt
schemas,
and are not required to have the same schema.
Only the encoder prompt may have multi-modal data. mm_processor_kwargs should be at the top-level, and should not be set in the encoder/decoder prompts, since they are agnostic to the encoder/decoder.
Note that an
ExplicitEncoderDecoderPrompt
may not be used as an input to a decoder-only model,
and that the encoder_prompt
and decoder_prompt
fields of this data structure themselves must be
SingletonPrompt
instances.
Source code in vllm/inputs/data.py
TextPrompt
¶
Bases: TypedDict
Schema for a text prompt.
Source code in vllm/inputs/data.py
cache_salt
instance-attribute
¶
cache_salt: NotRequired[str]
Optional cache salt to be used for prefix caching.
mm_processor_kwargs
instance-attribute
¶
mm_processor_kwargs: NotRequired[dict[str, Any]]
Optional multi-modal processor kwargs to be forwarded to the multimodal input mapper & processor. Note that if multiple modalities have registered mappers etc for the model being considered, we attempt to pass the mm_processor_kwargs to each of them.
multi_modal_data
instance-attribute
¶
multi_modal_data: NotRequired[MultiModalDataDict]
Optional multi-modal data to pass to the model, if the model supports it.
TokenInputs
¶
Bases: TypedDict
Represents token-based inputs.
Source code in vllm/inputs/data.py
cache_salt
instance-attribute
¶
cache_salt: NotRequired[str]
Optional cache salt to be used for prefix caching.
prompt
instance-attribute
¶
prompt: NotRequired[str]
The original prompt text corresponding to the token IDs, if available.
token_type_ids
instance-attribute
¶
token_type_ids: NotRequired[list[int]]
The token type IDs of the prompt.
TokensPrompt
¶
Bases: TypedDict
Schema for a tokenized prompt.
Source code in vllm/inputs/data.py
cache_salt
instance-attribute
¶
cache_salt: NotRequired[str]
Optional cache salt to be used for prefix caching.
mm_processor_kwargs
instance-attribute
¶
mm_processor_kwargs: NotRequired[dict[str, Any]]
Optional multi-modal processor kwargs to be forwarded to the multimodal input mapper & processor. Note that if multiple modalities have registered mappers etc for the model being considered, we attempt to pass the mm_processor_kwargs to each of them.
multi_modal_data
instance-attribute
¶
multi_modal_data: NotRequired[MultiModalDataDict]
Optional multi-modal data to pass to the model, if the model supports it.
prompt_token_ids
instance-attribute
¶
A list of token IDs to pass to the model.
token_type_ids
instance-attribute
¶
token_type_ids: NotRequired[list[int]]
A list of token type IDs to pass to the cross encoder model.
build_explicit_enc_dec_prompt
¶
build_explicit_enc_dec_prompt(
encoder_prompt: _T1,
decoder_prompt: Optional[_T2],
mm_processor_kwargs: Optional[dict[str, Any]] = None,
) -> ExplicitEncoderDecoderPrompt[_T1, _T2]
Source code in vllm/inputs/data.py
embeds_inputs
¶
embeds_inputs(
prompt_embeds: Tensor, cache_salt: Optional[str] = None
) -> EmbedsInputs
Construct EmbedsInputs
from optional
values.
Source code in vllm/inputs/data.py
is_embeds_prompt
¶
is_embeds_prompt(
prompt: SingletonPrompt,
) -> TypeIs[EmbedsPrompt]
is_tokens_prompt
¶
is_tokens_prompt(
prompt: SingletonPrompt,
) -> TypeIs[TokensPrompt]
to_enc_dec_tuple_list
¶
to_enc_dec_tuple_list(
enc_dec_prompts: Iterable[
ExplicitEncoderDecoderPrompt[_T1, _T2]
],
) -> list[tuple[_T1, Optional[_T2]]]
Source code in vllm/inputs/data.py
token_inputs
¶
token_inputs(
prompt_token_ids: list[int],
token_type_ids: Optional[list[int]] = None,
prompt: Optional[str] = None,
cache_salt: Optional[str] = None,
) -> TokenInputs
Construct TokenInputs
from optional
values.
Source code in vllm/inputs/data.py
zip_enc_dec_prompts
¶
zip_enc_dec_prompts(
enc_prompts: Iterable[_T1],
dec_prompts: Iterable[Optional[_T2]],
mm_processor_kwargs: Optional[
Union[Iterable[dict[str, Any]], dict[str, Any]]
] = None,
) -> list[ExplicitEncoderDecoderPrompt[_T1, _T2]]
Zip encoder and decoder prompts together into a list of
ExplicitEncoderDecoderPrompt
instances.
mm_processor_kwargs
may also be provided; if a dict is passed, the same
dictionary will be used for every encoder/decoder prompt. If an iterable is
provided, it will be zipped with the encoder/decoder prompts.