Skip to content

vllm.engine.async_llm_engine

ENGINE_ITERATION_TIMEOUT_S module-attribute

ENGINE_ITERATION_TIMEOUT_S = VLLM_ENGINE_ITERATION_TIMEOUT_S

STOP_ITERATION module-attribute

STOP_ITERATION = Exception()

logger module-attribute

logger = init_logger(__name__)

AsyncEngineDeadError

Bases: RuntimeError

Source code in vllm/engine/async_llm_engine.py
class AsyncEngineDeadError(RuntimeError):
    pass

AsyncLLMEngine

Bases: EngineClient

An asynchronous wrapper for LLMEngine.

This class is used to wrap the LLMEngine class to make it asynchronous. It uses asyncio to create a background loop that keeps processing incoming requests. The LLMEngine is kicked by the generate method when there are requests in the waiting queue. The generate method yields the outputs from the LLMEngine to the caller.

Parameters:

Name Type Description Default
log_requests bool

Whether to log the requests.

True
start_engine_loop bool

If True, the background task to run the engine will be automatically started in the generate call.

True
*args

Arguments for LLMEngine.

()
**kwargs

Arguments for LLMEngine.

{}
Source code in vllm/engine/async_llm_engine.py
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
class AsyncLLMEngine(EngineClient):
    """An asynchronous wrapper for [`LLMEngine`][vllm.LLMEngine].

    This class is used to wrap the [`LLMEngine`][vllm.LLMEngine] class to
    make it asynchronous. It uses asyncio to create a background loop that keeps
    processing incoming requests. The [`LLMEngine`][vllm.LLMEngine] is kicked
    by the generate method when there are requests in the waiting queue. The
    generate method yields the outputs from the [`LLMEngine`][vllm.LLMEngine]
    to the caller.

    Args:
        log_requests: Whether to log the requests.
        start_engine_loop: If True, the background task to run the engine
            will be automatically started in the generate call.
        *args: Arguments for [`LLMEngine`][vllm.LLMEngine].
        **kwargs: Arguments for [`LLMEngine`][vllm.LLMEngine].
    """

    _engine_class: Type[_AsyncLLMEngine] = _AsyncLLMEngine

    def __init__(self,
                 *args,
                 log_requests: bool = True,
                 start_engine_loop: bool = True,
                 **kwargs) -> None:
        if envs.VLLM_USE_V1:
            raise ValueError(
                "Using V0 AsyncLLMEngine, but envs.VLLM_USE_V1=True. "
                "This should not happen. As a workaround, try using "
                "AsyncLLMEngine.from_vllm_config(...) or explicitly set "
                "VLLM_USE_V1=0 or 1 and report this issue on Github.")

        self.log_requests = log_requests
        self.engine = self._engine_class(*args, **kwargs)

        # This ensures quick processing of request outputs
        # so the append to asyncio queues is not delayed,
        # especially for multi-step.
        self.use_process_request_outputs_callback = (
            self.engine.model_config.use_async_output_proc)

        if self.use_process_request_outputs_callback:
            self.engine.process_request_outputs_callback = \
                weak_bind(self.process_request_outputs)

        self.background_loop: Optional[asyncio.Future] = None
        # We need to keep a reference to unshielded
        # task as well to prevent it from being garbage
        # collected
        self._background_loop_unshielded: Optional[asyncio.Task] = None
        self.start_engine_loop = start_engine_loop
        self._errored_with: Optional[BaseException] = None

        # Lazy initialized fields
        self._request_tracker: RequestTracker

    def __del__(self):
        if rt := getattr(self, "request_tracker", None):
            # Wake up engine loop so that it will exit cleanly
            rt.new_requests_event.set()

    @classmethod
    def _get_executor_cls(cls,
                          engine_config: VllmConfig) -> Type[ExecutorBase]:
        return LLMEngine._get_executor_cls(engine_config)

    @classmethod
    def from_vllm_config(
        cls,
        vllm_config: VllmConfig,
        start_engine_loop: bool = True,
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
        stat_loggers: Optional[dict[str, StatLoggerBase]] = None,
        disable_log_requests: bool = False,
        disable_log_stats: bool = False,
    ) -> "AsyncLLMEngine":
        """Create an AsyncLLMEngine from the EngineArgs."""

        return cls(
            vllm_config=vllm_config,
            executor_class=cls._get_executor_cls(vllm_config),
            start_engine_loop=start_engine_loop,
            log_requests=not disable_log_requests,
            log_stats=not disable_log_stats,
            usage_context=usage_context,
            stat_loggers=stat_loggers,
        )

    @classmethod
    def from_engine_args(
        cls,
        engine_args: AsyncEngineArgs,
        start_engine_loop: bool = True,
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
        stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
    ) -> "AsyncLLMEngine":
        """Creates an async LLM engine from the engine arguments."""

        vllm_config = engine_args.create_engine_config(usage_context)

        async_engine_cls = cls
        if envs.VLLM_USE_V1:
            from vllm.v1.engine.async_llm import AsyncLLM as V1AsyncLLMEngine
            async_engine_cls = V1AsyncLLMEngine

        return async_engine_cls.from_vllm_config(
            vllm_config=vllm_config,
            start_engine_loop=start_engine_loop,
            usage_context=usage_context,
            stat_loggers=stat_loggers,
            disable_log_stats=engine_args.disable_log_stats,
            disable_log_requests=engine_args.disable_log_requests,
        )

    @property
    def is_running(self) -> bool:
        return (self.background_loop is not None
                and self._background_loop_unshielded is not None
                and not self._background_loop_unshielded.done())

    @property
    def is_stopped(self) -> bool:
        return self.errored or (self.background_loop is not None and
                                self._background_loop_unshielded is not None
                                and self._background_loop_unshielded.done())

    @property
    def errored(self) -> bool:
        return self._errored_with is not None

    @property
    def dead_error(self) -> BaseException:
        return AsyncEngineDeadError(
            "Background loop is not running. If it was running, "
            "inspect the output to find the stacktrace of the "
            "error that caused the background loop to stop "
            "(AsyncEngineDeadError).")

    def set_errored(self, exc: Exception) -> None:
        self._errored_with = exc

    def _error_callback(self, exc: Exception) -> None:
        self.set_errored(exc)
        self._request_tracker.propagate_exception(exc)

    async def get_input_preprocessor(self) -> InputPreprocessor:
        return self.engine.input_preprocessor

    async def get_tokenizer(
        self,
        lora_request: Optional[LoRARequest] = None,
    ) -> AnyTokenizer:
        return await self.engine.get_tokenizer_async(lora_request)

    def start_background_loop(self) -> None:
        """Start the background loop."""
        if self.errored:
            raise AsyncEngineDeadError(
                "Background loop has errored already.") from self._errored_with
        if self.is_running:
            raise RuntimeError("Background loop is already running.")
        # Initialize the RequestTracker here so it uses the right event loop.
        self._request_tracker = RequestTracker()

        self._background_loop_unshielded = asyncio.get_event_loop(
        ).create_task(self.run_engine_loop(weakref.ref(self)))
        self._background_loop_unshielded.add_done_callback(
            partial(_log_task_completion, error_callback=self._error_callback))
        self.background_loop = asyncio.shield(self._background_loop_unshielded)

    def shutdown_background_loop(self) -> None:
        """
        Shut down the background loop.

        This method needs to be called during cleanup to remove
        references to `self` and properly GC the resources held
        by the async LLM engine (e.g., the executors as well as
        their resources).
        """
        if self._background_loop_unshielded is not None:
            self._background_loop_unshielded.cancel()
            self._background_loop_unshielded = None
        self.background_loop = None

    async def engine_step(self, virtual_engine: int) -> bool:
        """Kick the engine to process the waiting requests.

        Returns True if there are in-progress requests."""

        new_requests, aborted_requests = (
            self._request_tracker.get_new_and_aborted_requests())

        for new_request in new_requests:
            # Add the request into the vLLM engine's waiting queue.
            try:
                await self.engine.add_request_async(**new_request)
            except ValueError as e:
                # TODO: use a vLLM specific error for failed validation
                self._request_tracker.process_exception(
                    new_request["request_id"],
                    e,
                    verbose=self.log_requests,
                )

        if aborted_requests:
            await self._engine_abort(aborted_requests)

        request_outputs = await self.engine.step_async(virtual_engine)

        # Put the outputs into the corresponding streams.
        # If used as a callback, then already invoked inside
        # LLMEngine's _process_model_outputs
        if not self.use_process_request_outputs_callback:
            all_finished = self.process_request_outputs(request_outputs)
        else:
            # For callback case, we only need to detect when all
            # requests are finished
            all_finished = all(request_output.finished
                               for request_output in request_outputs)

        return not all_finished

    def process_request_outputs(self, request_outputs) -> bool:
        # Put the outputs into the corresponding streams.
        all_finished = True
        for request_output in request_outputs:
            self._request_tracker.process_request_output(
                request_output, verbose=self.log_requests)
            all_finished = all_finished and request_output.finished

        return all_finished

    async def _engine_abort(self, request_ids: Iterable[str]):
        self.engine.abort_request(request_ids)

    @staticmethod
    async def run_engine_loop(engine_ref: ReferenceType):
        """We use a weakref to the engine so that the running loop
        doesn't prevent the engine being garbage collected."""
        engine: Optional[AsyncLLMEngine] = engine_ref()
        if not engine:
            return

        pipeline_parallel_size = \
                engine.engine.parallel_config.pipeline_parallel_size
        has_requests_in_progress = [False] * pipeline_parallel_size
        while True:
            if not any(has_requests_in_progress):
                logger.debug("Waiting for new requests...")
                # Stop the execute model loop in parallel workers until there
                # are more requests to process. This avoids waiting
                # indefinitely in torch.distributed ops which may otherwise
                # timeout, and unblocks the RPC thread in the workers so that
                # they can process any other queued control plane messages,
                # such as add/remove lora adapters.
                await engine.engine.stop_remote_worker_execution_loop_async()
                request_tracker = engine._request_tracker
                # Allow engine to be garbage collected while
                # waiting for new requests
                del engine
                await asyncio.sleep(0)
                if engine_ref() is None:
                    return
                await request_tracker.wait_for_new_requests()
                engine = engine_ref()
                if not engine:
                    return
                logger.debug("Got new requests!")
                requests_in_progress = [
                    asyncio.create_task(engine.engine_step(ve))
                    for ve in range(pipeline_parallel_size)
                ]
                has_requests_in_progress = [True] * pipeline_parallel_size

            # Abort if iteration takes too long due to unrecoverable errors
            # (eg. NCCL timeouts).
            try:
                async with asyncio_timeout(ENGINE_ITERATION_TIMEOUT_S):
                    done, _ = await asyncio.wait(
                        requests_in_progress,
                        return_when=asyncio.FIRST_COMPLETED)
                    for _ in range(pipeline_parallel_size):
                        await asyncio.sleep(0)
                for task in done:
                    result = task.result()
                    virtual_engine = requests_in_progress.index(task)
                    has_unfinished_requests = (
                        engine.engine.
                        has_unfinished_requests_for_virtual_engine(
                            virtual_engine))
                    if result or has_unfinished_requests:
                        requests_in_progress[virtual_engine] = (
                            asyncio.create_task(
                                engine.engine_step(virtual_engine)))
                        has_requests_in_progress[virtual_engine] = True
                    else:
                        has_requests_in_progress[virtual_engine] = False
            except asyncio.TimeoutError as exc:
                logger.error(
                    "Engine iteration timed out. This should never happen!")
                engine.set_errored(exc)
                raise
            await asyncio.sleep(0)

    async def add_request(
        self,
        request_id: str,
        prompt: PromptType,
        params: Union[SamplingParams, PoolingParams],
        arrival_time: Optional[float] = None,
        lora_request: Optional[LoRARequest] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        priority: int = 0,
        data_parallel_rank: Optional[int] = None,
    ) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
        if not self.is_running:
            if self.start_engine_loop:
                self.start_background_loop()
            else:
                raise AsyncEngineDeadError(
                    "Background loop is not running. If it was running, "
                    "inspect the output to find the stacktrace of the "
                    "error that caused the background loop to stop "
                    "(AsyncEngineDeadError).")

        if (priority != 0
                and not self.engine.scheduler_config.policy == "priority"):
            raise ValueError(f"Got priority {priority} but "
                             "Priority scheduling is not enabled.")

        stream = self._request_tracker.add_request(
            request_id,
            verbose=self.log_requests,
            prompt=prompt,
            params=params,
            arrival_time=arrival_time or time.time(),
            lora_request=lora_request,
            trace_headers=trace_headers,
            prompt_adapter_request=prompt_adapter_request,
            priority=priority,
            data_parallel_rank=data_parallel_rank,
        )

        return stream.generator()

    async def generate(
        self,
        prompt: PromptType,
        sampling_params: SamplingParams,
        request_id: str,
        lora_request: Optional[LoRARequest] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        priority: int = 0,
        data_parallel_rank: Optional[int] = None,
    ) -> AsyncGenerator[RequestOutput, None]:
        """Generate outputs for a request.

        Generate outputs for a request. This method is a coroutine. It adds the
        request into the waiting queue of the LLMEngine and streams the outputs
        from the LLMEngine to the caller.

        Args:
            prompt: The prompt to the LLM. See
                [`PromptType`][vllm.inputs.PromptType] for more details about
                the format of each input.
            sampling_params: The sampling parameters of the request.
            request_id: The unique id of the request.
            lora_request: LoRA request to use for generation, if any.
            trace_headers: OpenTelemetry trace headers.
            prompt_adapter_request: Prompt Adapter request to use
                                            for generation, if any.
            priority: The priority of the request.
                Only applicable with priority scheduling.
            data_parallel_rank: The (global) data parallel rank that must
                handle this request. Only applicable if DP is enabled.
        Yields:
            The output `RequestOutput` objects from the LLMEngine
            for the request.

        Details:
            - If the engine is not running, start the background loop,
              which iteratively invokes
              [`engine_step`][vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step]
              to process the waiting requests.
            - Add the request to the engine's `RequestTracker`.
              On the next background loop, this request will be sent to
              the underlying engine.
              Also, a corresponding `AsyncStream` will be created.
            - Wait for the request outputs from `AsyncStream` and yield them.

        Example:
            >>> # Please refer to entrypoints/api_server.py for
            >>> # the complete example.
            >>>
            >>> # initialize the engine and the example input
            >>> # note that engine_args here is AsyncEngineArgs instance
            >>> engine = AsyncLLMEngine.from_engine_args(engine_args)
            >>> example_input = {
            >>>     "prompt": "What is LLM?",
            >>>     "stream": False, # assume the non-streaming case
            >>>     "temperature": 0.0,
            >>>     "request_id": 0,
            >>> }
            >>>
            >>> # start the generation
            >>> results_generator = engine.generate(
            >>>    example_input["prompt"],
            >>>    SamplingParams(temperature=example_input["temperature"]),
            >>>    example_input["request_id"])
            >>>
            >>> # get the results
            >>> final_output = None
            >>> async for request_output in results_generator:
            >>>     if await request.is_disconnected():
            >>>         # Abort the request if the client disconnects.
            >>>         await engine.abort(request_id)
            >>>         # Return or raise an error
            >>>         ...
            >>>     final_output = request_output
            >>>
            >>> # Process and return the final output
            >>> ...
        """
        try:
            async for output in await self.add_request(
                    request_id,
                    prompt,
                    sampling_params,
                    lora_request=lora_request,
                    trace_headers=trace_headers,
                    prompt_adapter_request=prompt_adapter_request,
                    priority=priority,
                    data_parallel_rank=data_parallel_rank,
            ):
                yield LLMEngine.validate_output(output, RequestOutput)
        except asyncio.CancelledError:
            await self.abort(request_id)
            raise

    async def encode(
        self,
        prompt: PromptType,
        pooling_params: PoolingParams,
        request_id: str,
        lora_request: Optional[LoRARequest] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
        priority: int = 0,
    ) -> AsyncGenerator[PoolingRequestOutput, None]:
        """Generate outputs for a request from a pooling model.

        Generate outputs for a request. This method is a coroutine. It adds the
        request into the waiting queue of the LLMEngine and streams the outputs
        from the LLMEngine to the caller.

        Args:
            prompt: The prompt to the LLM. See
                [`PromptType`][vllm.inputs.PromptType] for more details about
                the format of each input.
            pooling_params: The pooling parameters of the request.
            request_id: The unique id of the request.
            lora_request: LoRA request to use for generation, if any.
            trace_headers: OpenTelemetry trace headers.
            priority: The priority of the request.
                Only applicable with priority scheduling.

        Yields:
            The output `PoolingRequestOutput` objects from the LLMEngine
            for the request.

        Details:
            - If the engine is not running, start the background loop,
                which iteratively invokes
                [`vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`][]
                to process the waiting requests.
            - Add the request to the engine's `RequestTracker`.
                On the next background loop, this request will be sent to
                the underlying engine.
                Also, a corresponding `AsyncStream` will be created.
            - Wait for the request outputs from `AsyncStream` and yield them.

        Example:
        ```
        # Please refer to entrypoints/api_server.py for
        # the complete example.

        # initialize the engine and the example input
        # note that engine_args here is AsyncEngineArgs instance
        engine = AsyncLLMEngine.from_engine_args(engine_args)
        example_input = {
            "input": "What is LLM?",
            "request_id": 0,
        }

        # start the generation
        results_generator = engine.encode(
        example_input["input"],
        PoolingParams(),
        example_input["request_id"])

        # get the results
        final_output = None
        async for request_output in results_generator:
            if await request.is_disconnected():
                # Abort the request if the client disconnects.
                await engine.abort(request_id)
                # Return or raise an error
                ...
            final_output = request_output

        # Process and return the final output
        ...
        ```
        """
        try:
            async for output in await self.add_request(
                    request_id,
                    prompt,
                    pooling_params,
                    lora_request=lora_request,
                    trace_headers=trace_headers,
                    priority=priority,
            ):
                yield LLMEngine.validate_output(output, PoolingRequestOutput)
        except asyncio.CancelledError:
            await self.abort(request_id)
            raise

    async def abort(self, request_id: str) -> None:
        """Abort a request.

        Abort a submitted request. If the request is finished or not found,
        this method will be a no-op.

        Args:
            request_id: The unique id of the request.
        """
        if not self.is_running:
            raise AsyncEngineDeadError(
                "Background loop is not running. If it was running, "
                "inspect the output to find the stacktrace of the "
                "error that caused the background loop to stop "
                "(AsyncEngineDeadError).")

        return self._abort(request_id)

    def _abort(self, request_id: str) -> None:
        """Abort a request.

        Abort a submitted request. If the request is finished or not found,
        this method will be a no-op.

        Args:
            request_id: The unique id of the request.
        """
        self._request_tracker.abort_request(request_id,
                                            exception=asyncio.CancelledError,
                                            verbose=self.log_requests)

    async def get_vllm_config(self) -> VllmConfig:
        """Get the vllm configuration of the vLLM engine."""
        return self.engine.get_vllm_config()

    async def get_model_config(self) -> ModelConfig:
        """Get the model configuration of the vLLM engine."""
        return self.engine.get_model_config()

    async def get_parallel_config(self) -> ParallelConfig:
        """Get the parallel configuration of the vLLM engine."""
        return self.engine.get_parallel_config()

    async def get_decoding_config(self) -> DecodingConfig:
        """Get the decoding configuration of the vLLM engine."""
        return self.engine.get_decoding_config()

    async def get_scheduler_config(self) -> SchedulerConfig:
        """Get the scheduling configuration of the vLLM engine."""
        return self.engine.get_scheduler_config()

    async def get_lora_config(self) -> LoRAConfig:
        """Get the lora configuration of the vLLM engine."""
        return self.engine.get_lora_config()

    async def do_log_stats(
            self,
            scheduler_outputs: Optional[SchedulerOutputs] = None,
            model_output: Optional[List[SamplerOutput]] = None) -> None:
        self.engine.do_log_stats()

    async def check_health(self) -> None:
        """Raises an error if engine is unhealthy."""
        t = time.perf_counter()
        logger.debug("Starting health check...")
        if self.is_stopped:
            raise AsyncEngineDeadError("Background loop is stopped.")

        await self.engine.check_health_async()
        logger.debug("Health check took %fs", time.perf_counter() - t)

    async def is_tracing_enabled(self) -> bool:
        return self.engine.is_tracing_enabled()

    def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None:
        self.engine.add_logger(logger_name=logger_name, logger=logger)

    def remove_logger(self, logger_name: str) -> None:
        self.engine.remove_logger(logger_name=logger_name)

    async def start_profile(self) -> None:
        self.engine.start_profile()

    async def stop_profile(self) -> None:
        self.engine.stop_profile()

    async def reset_mm_cache(self) -> None:
        self.engine.reset_mm_cache()

    async def reset_prefix_cache(self,
                                 device: Optional[Device] = None) -> None:
        self.engine.reset_prefix_cache(device)

    async def sleep(self, level: int = 1) -> None:
        self.engine.sleep(level)

    async def wake_up(self, tags: Optional[list[str]] = None) -> None:
        self.engine.wake_up(tags)

    async def is_sleeping(self) -> bool:
        return self.engine.is_sleeping()

    async def add_lora(self, lora_request: LoRARequest) -> None:
        self.engine.add_lora(lora_request)

    async def collective_rpc(self,
                             method: str,
                             timeout: Optional[float] = None,
                             args: tuple = (),
                             kwargs: Optional[dict] = None):
        """
        Perform a collective RPC call to the given path.
        """
        return await self.engine.collective_rpc_async(method, timeout, args,
                                                      kwargs)

_background_loop_unshielded instance-attribute

_background_loop_unshielded: Optional[Task] = None

_engine_class class-attribute instance-attribute

_errored_with instance-attribute

_errored_with: Optional[BaseException] = None

_request_tracker instance-attribute

_request_tracker: RequestTracker

background_loop instance-attribute

background_loop: Optional[Future] = None

dead_error property

dead_error: BaseException

engine instance-attribute

engine = _engine_class(*args, **kwargs)

errored property

errored: bool

is_running property

is_running: bool

is_stopped property

is_stopped: bool

log_requests instance-attribute

log_requests = log_requests

start_engine_loop instance-attribute

start_engine_loop = start_engine_loop

use_process_request_outputs_callback instance-attribute

use_process_request_outputs_callback = use_async_output_proc

__del__

__del__()
Source code in vllm/engine/async_llm_engine.py
def __del__(self):
    if rt := getattr(self, "request_tracker", None):
        # Wake up engine loop so that it will exit cleanly
        rt.new_requests_event.set()

__init__

__init__(
    *args,
    log_requests: bool = True,
    start_engine_loop: bool = True,
    **kwargs,
) -> None
Source code in vllm/engine/async_llm_engine.py
def __init__(self,
             *args,
             log_requests: bool = True,
             start_engine_loop: bool = True,
             **kwargs) -> None:
    if envs.VLLM_USE_V1:
        raise ValueError(
            "Using V0 AsyncLLMEngine, but envs.VLLM_USE_V1=True. "
            "This should not happen. As a workaround, try using "
            "AsyncLLMEngine.from_vllm_config(...) or explicitly set "
            "VLLM_USE_V1=0 or 1 and report this issue on Github.")

    self.log_requests = log_requests
    self.engine = self._engine_class(*args, **kwargs)

    # This ensures quick processing of request outputs
    # so the append to asyncio queues is not delayed,
    # especially for multi-step.
    self.use_process_request_outputs_callback = (
        self.engine.model_config.use_async_output_proc)

    if self.use_process_request_outputs_callback:
        self.engine.process_request_outputs_callback = \
            weak_bind(self.process_request_outputs)

    self.background_loop: Optional[asyncio.Future] = None
    # We need to keep a reference to unshielded
    # task as well to prevent it from being garbage
    # collected
    self._background_loop_unshielded: Optional[asyncio.Task] = None
    self.start_engine_loop = start_engine_loop
    self._errored_with: Optional[BaseException] = None

    # Lazy initialized fields
    self._request_tracker: RequestTracker

_abort

_abort(request_id: str) -> None

Abort a request.

Abort a submitted request. If the request is finished or not found, this method will be a no-op.

Parameters:

Name Type Description Default
request_id str

The unique id of the request.

required
Source code in vllm/engine/async_llm_engine.py
def _abort(self, request_id: str) -> None:
    """Abort a request.

    Abort a submitted request. If the request is finished or not found,
    this method will be a no-op.

    Args:
        request_id: The unique id of the request.
    """
    self._request_tracker.abort_request(request_id,
                                        exception=asyncio.CancelledError,
                                        verbose=self.log_requests)

_engine_abort async

_engine_abort(request_ids: Iterable[str])
Source code in vllm/engine/async_llm_engine.py
async def _engine_abort(self, request_ids: Iterable[str]):
    self.engine.abort_request(request_ids)

_error_callback

_error_callback(exc: Exception) -> None
Source code in vllm/engine/async_llm_engine.py
def _error_callback(self, exc: Exception) -> None:
    self.set_errored(exc)
    self._request_tracker.propagate_exception(exc)

_get_executor_cls classmethod

_get_executor_cls(
    engine_config: VllmConfig,
) -> Type[ExecutorBase]
Source code in vllm/engine/async_llm_engine.py
@classmethod
def _get_executor_cls(cls,
                      engine_config: VllmConfig) -> Type[ExecutorBase]:
    return LLMEngine._get_executor_cls(engine_config)

abort async

abort(request_id: str) -> None

Abort a request.

Abort a submitted request. If the request is finished or not found, this method will be a no-op.

Parameters:

Name Type Description Default
request_id str

The unique id of the request.

required
Source code in vllm/engine/async_llm_engine.py
async def abort(self, request_id: str) -> None:
    """Abort a request.

    Abort a submitted request. If the request is finished or not found,
    this method will be a no-op.

    Args:
        request_id: The unique id of the request.
    """
    if not self.is_running:
        raise AsyncEngineDeadError(
            "Background loop is not running. If it was running, "
            "inspect the output to find the stacktrace of the "
            "error that caused the background loop to stop "
            "(AsyncEngineDeadError).")

    return self._abort(request_id)

add_logger

add_logger(
    logger_name: str, logger: StatLoggerBase
) -> None
Source code in vllm/engine/async_llm_engine.py
def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None:
    self.engine.add_logger(logger_name=logger_name, logger=logger)

add_lora async

add_lora(lora_request: LoRARequest) -> None
Source code in vllm/engine/async_llm_engine.py
async def add_lora(self, lora_request: LoRARequest) -> None:
    self.engine.add_lora(lora_request)

add_request async

add_request(
    request_id: str,
    prompt: PromptType,
    params: Union[SamplingParams, PoolingParams],
    arrival_time: Optional[float] = None,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> AsyncGenerator[
    Union[RequestOutput, PoolingRequestOutput], None
]
Source code in vllm/engine/async_llm_engine.py
async def add_request(
    self,
    request_id: str,
    prompt: PromptType,
    params: Union[SamplingParams, PoolingParams],
    arrival_time: Optional[float] = None,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
    if not self.is_running:
        if self.start_engine_loop:
            self.start_background_loop()
        else:
            raise AsyncEngineDeadError(
                "Background loop is not running. If it was running, "
                "inspect the output to find the stacktrace of the "
                "error that caused the background loop to stop "
                "(AsyncEngineDeadError).")

    if (priority != 0
            and not self.engine.scheduler_config.policy == "priority"):
        raise ValueError(f"Got priority {priority} but "
                         "Priority scheduling is not enabled.")

    stream = self._request_tracker.add_request(
        request_id,
        verbose=self.log_requests,
        prompt=prompt,
        params=params,
        arrival_time=arrival_time or time.time(),
        lora_request=lora_request,
        trace_headers=trace_headers,
        prompt_adapter_request=prompt_adapter_request,
        priority=priority,
        data_parallel_rank=data_parallel_rank,
    )

    return stream.generator()

check_health async

check_health() -> None

Raises an error if engine is unhealthy.

Source code in vllm/engine/async_llm_engine.py
async def check_health(self) -> None:
    """Raises an error if engine is unhealthy."""
    t = time.perf_counter()
    logger.debug("Starting health check...")
    if self.is_stopped:
        raise AsyncEngineDeadError("Background loop is stopped.")

    await self.engine.check_health_async()
    logger.debug("Health check took %fs", time.perf_counter() - t)

collective_rpc async

collective_rpc(
    method: str,
    timeout: Optional[float] = None,
    args: tuple = (),
    kwargs: Optional[dict] = None,
)

Perform a collective RPC call to the given path.

Source code in vllm/engine/async_llm_engine.py
async def collective_rpc(self,
                         method: str,
                         timeout: Optional[float] = None,
                         args: tuple = (),
                         kwargs: Optional[dict] = None):
    """
    Perform a collective RPC call to the given path.
    """
    return await self.engine.collective_rpc_async(method, timeout, args,
                                                  kwargs)

do_log_stats async

do_log_stats(
    scheduler_outputs: Optional[SchedulerOutputs] = None,
    model_output: Optional[List[SamplerOutput]] = None,
) -> None
Source code in vllm/engine/async_llm_engine.py
async def do_log_stats(
        self,
        scheduler_outputs: Optional[SchedulerOutputs] = None,
        model_output: Optional[List[SamplerOutput]] = None) -> None:
    self.engine.do_log_stats()

encode async

encode(
    prompt: PromptType,
    pooling_params: PoolingParams,
    request_id: str,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    priority: int = 0,
) -> AsyncGenerator[PoolingRequestOutput, None]

Generate outputs for a request from a pooling model.

Generate outputs for a request. This method is a coroutine. It adds the request into the waiting queue of the LLMEngine and streams the outputs from the LLMEngine to the caller.

Parameters:

Name Type Description Default
prompt PromptType

The prompt to the LLM. See PromptType for more details about the format of each input.

required
pooling_params PoolingParams

The pooling parameters of the request.

required
request_id str

The unique id of the request.

required
lora_request Optional[LoRARequest]

LoRA request to use for generation, if any.

None
trace_headers Optional[Mapping[str, str]]

OpenTelemetry trace headers.

None
priority int

The priority of the request. Only applicable with priority scheduling.

0

Yields:

Type Description
AsyncGenerator[PoolingRequestOutput, None]

The output PoolingRequestOutput objects from the LLMEngine

AsyncGenerator[PoolingRequestOutput, None]

for the request.

Details
  • If the engine is not running, start the background loop, which iteratively invokes vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step to process the waiting requests.
  • Add the request to the engine's RequestTracker. On the next background loop, this request will be sent to the underlying engine. Also, a corresponding AsyncStream will be created.
  • Wait for the request outputs from AsyncStream and yield them.

Example:

# Please refer to entrypoints/api_server.py for
# the complete example.

# initialize the engine and the example input
# note that engine_args here is AsyncEngineArgs instance
engine = AsyncLLMEngine.from_engine_args(engine_args)
example_input = {
    "input": "What is LLM?",
    "request_id": 0,
}

# start the generation
results_generator = engine.encode(
example_input["input"],
PoolingParams(),
example_input["request_id"])

# get the results
final_output = None
async for request_output in results_generator:
    if await request.is_disconnected():
        # Abort the request if the client disconnects.
        await engine.abort(request_id)
        # Return or raise an error
        ...
    final_output = request_output

# Process and return the final output
...

Source code in vllm/engine/async_llm_engine.py
async def encode(
    self,
    prompt: PromptType,
    pooling_params: PoolingParams,
    request_id: str,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    priority: int = 0,
) -> AsyncGenerator[PoolingRequestOutput, None]:
    """Generate outputs for a request from a pooling model.

    Generate outputs for a request. This method is a coroutine. It adds the
    request into the waiting queue of the LLMEngine and streams the outputs
    from the LLMEngine to the caller.

    Args:
        prompt: The prompt to the LLM. See
            [`PromptType`][vllm.inputs.PromptType] for more details about
            the format of each input.
        pooling_params: The pooling parameters of the request.
        request_id: The unique id of the request.
        lora_request: LoRA request to use for generation, if any.
        trace_headers: OpenTelemetry trace headers.
        priority: The priority of the request.
            Only applicable with priority scheduling.

    Yields:
        The output `PoolingRequestOutput` objects from the LLMEngine
        for the request.

    Details:
        - If the engine is not running, start the background loop,
            which iteratively invokes
            [`vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`][]
            to process the waiting requests.
        - Add the request to the engine's `RequestTracker`.
            On the next background loop, this request will be sent to
            the underlying engine.
            Also, a corresponding `AsyncStream` will be created.
        - Wait for the request outputs from `AsyncStream` and yield them.

    Example:
    ```
    # Please refer to entrypoints/api_server.py for
    # the complete example.

    # initialize the engine and the example input
    # note that engine_args here is AsyncEngineArgs instance
    engine = AsyncLLMEngine.from_engine_args(engine_args)
    example_input = {
        "input": "What is LLM?",
        "request_id": 0,
    }

    # start the generation
    results_generator = engine.encode(
    example_input["input"],
    PoolingParams(),
    example_input["request_id"])

    # get the results
    final_output = None
    async for request_output in results_generator:
        if await request.is_disconnected():
            # Abort the request if the client disconnects.
            await engine.abort(request_id)
            # Return or raise an error
            ...
        final_output = request_output

    # Process and return the final output
    ...
    ```
    """
    try:
        async for output in await self.add_request(
                request_id,
                prompt,
                pooling_params,
                lora_request=lora_request,
                trace_headers=trace_headers,
                priority=priority,
        ):
            yield LLMEngine.validate_output(output, PoolingRequestOutput)
    except asyncio.CancelledError:
        await self.abort(request_id)
        raise

engine_step async

engine_step(virtual_engine: int) -> bool

Kick the engine to process the waiting requests.

Returns True if there are in-progress requests.

Source code in vllm/engine/async_llm_engine.py
async def engine_step(self, virtual_engine: int) -> bool:
    """Kick the engine to process the waiting requests.

    Returns True if there are in-progress requests."""

    new_requests, aborted_requests = (
        self._request_tracker.get_new_and_aborted_requests())

    for new_request in new_requests:
        # Add the request into the vLLM engine's waiting queue.
        try:
            await self.engine.add_request_async(**new_request)
        except ValueError as e:
            # TODO: use a vLLM specific error for failed validation
            self._request_tracker.process_exception(
                new_request["request_id"],
                e,
                verbose=self.log_requests,
            )

    if aborted_requests:
        await self._engine_abort(aborted_requests)

    request_outputs = await self.engine.step_async(virtual_engine)

    # Put the outputs into the corresponding streams.
    # If used as a callback, then already invoked inside
    # LLMEngine's _process_model_outputs
    if not self.use_process_request_outputs_callback:
        all_finished = self.process_request_outputs(request_outputs)
    else:
        # For callback case, we only need to detect when all
        # requests are finished
        all_finished = all(request_output.finished
                           for request_output in request_outputs)

    return not all_finished

from_engine_args classmethod

from_engine_args(
    engine_args: AsyncEngineArgs,
    start_engine_loop: bool = True,
    usage_context: UsageContext = ENGINE_CONTEXT,
    stat_loggers: Optional[
        Dict[str, StatLoggerBase]
    ] = None,
) -> AsyncLLMEngine

Creates an async LLM engine from the engine arguments.

Source code in vllm/engine/async_llm_engine.py
@classmethod
def from_engine_args(
    cls,
    engine_args: AsyncEngineArgs,
    start_engine_loop: bool = True,
    usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
    stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
) -> "AsyncLLMEngine":
    """Creates an async LLM engine from the engine arguments."""

    vllm_config = engine_args.create_engine_config(usage_context)

    async_engine_cls = cls
    if envs.VLLM_USE_V1:
        from vllm.v1.engine.async_llm import AsyncLLM as V1AsyncLLMEngine
        async_engine_cls = V1AsyncLLMEngine

    return async_engine_cls.from_vllm_config(
        vllm_config=vllm_config,
        start_engine_loop=start_engine_loop,
        usage_context=usage_context,
        stat_loggers=stat_loggers,
        disable_log_stats=engine_args.disable_log_stats,
        disable_log_requests=engine_args.disable_log_requests,
    )

from_vllm_config classmethod

from_vllm_config(
    vllm_config: VllmConfig,
    start_engine_loop: bool = True,
    usage_context: UsageContext = ENGINE_CONTEXT,
    stat_loggers: Optional[
        dict[str, StatLoggerBase]
    ] = None,
    disable_log_requests: bool = False,
    disable_log_stats: bool = False,
) -> AsyncLLMEngine

Create an AsyncLLMEngine from the EngineArgs.

Source code in vllm/engine/async_llm_engine.py
@classmethod
def from_vllm_config(
    cls,
    vllm_config: VllmConfig,
    start_engine_loop: bool = True,
    usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
    stat_loggers: Optional[dict[str, StatLoggerBase]] = None,
    disable_log_requests: bool = False,
    disable_log_stats: bool = False,
) -> "AsyncLLMEngine":
    """Create an AsyncLLMEngine from the EngineArgs."""

    return cls(
        vllm_config=vllm_config,
        executor_class=cls._get_executor_cls(vllm_config),
        start_engine_loop=start_engine_loop,
        log_requests=not disable_log_requests,
        log_stats=not disable_log_stats,
        usage_context=usage_context,
        stat_loggers=stat_loggers,
    )

generate async

generate(
    prompt: PromptType,
    sampling_params: SamplingParams,
    request_id: str,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> AsyncGenerator[RequestOutput, None]

Generate outputs for a request.

Generate outputs for a request. This method is a coroutine. It adds the request into the waiting queue of the LLMEngine and streams the outputs from the LLMEngine to the caller.

Parameters:

Name Type Description Default
prompt PromptType

The prompt to the LLM. See PromptType for more details about the format of each input.

required
sampling_params SamplingParams

The sampling parameters of the request.

required
request_id str

The unique id of the request.

required
lora_request Optional[LoRARequest]

LoRA request to use for generation, if any.

None
trace_headers Optional[Mapping[str, str]]

OpenTelemetry trace headers.

None
prompt_adapter_request Optional[PromptAdapterRequest]

Prompt Adapter request to use for generation, if any.

None
priority int

The priority of the request. Only applicable with priority scheduling.

0
data_parallel_rank Optional[int]

The (global) data parallel rank that must handle this request. Only applicable if DP is enabled.

None

Yields: The output RequestOutput objects from the LLMEngine for the request.

Details
  • If the engine is not running, start the background loop, which iteratively invokes engine_step to process the waiting requests.
  • Add the request to the engine's RequestTracker. On the next background loop, this request will be sent to the underlying engine. Also, a corresponding AsyncStream will be created.
  • Wait for the request outputs from AsyncStream and yield them.
Example

Please refer to entrypoints/api_server.py for

the complete example.

initialize the engine and the example input

note that engine_args here is AsyncEngineArgs instance

engine = AsyncLLMEngine.from_engine_args(engine_args) example_input = { "prompt": "What is LLM?", "stream": False, # assume the non-streaming case "temperature": 0.0, "request_id": 0, }

start the generation

results_generator = engine.generate( example_input["prompt"], SamplingParams(temperature=example_input["temperature"]), example_input["request_id"])

get the results

final_output = None async for request_output in results_generator: if await request.is_disconnected(): # Abort the request if the client disconnects. await engine.abort(request_id) # Return or raise an error ... final_output = request_output

Process and return the final output

...

Source code in vllm/engine/async_llm_engine.py
async def generate(
    self,
    prompt: PromptType,
    sampling_params: SamplingParams,
    request_id: str,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> AsyncGenerator[RequestOutput, None]:
    """Generate outputs for a request.

    Generate outputs for a request. This method is a coroutine. It adds the
    request into the waiting queue of the LLMEngine and streams the outputs
    from the LLMEngine to the caller.

    Args:
        prompt: The prompt to the LLM. See
            [`PromptType`][vllm.inputs.PromptType] for more details about
            the format of each input.
        sampling_params: The sampling parameters of the request.
        request_id: The unique id of the request.
        lora_request: LoRA request to use for generation, if any.
        trace_headers: OpenTelemetry trace headers.
        prompt_adapter_request: Prompt Adapter request to use
                                        for generation, if any.
        priority: The priority of the request.
            Only applicable with priority scheduling.
        data_parallel_rank: The (global) data parallel rank that must
            handle this request. Only applicable if DP is enabled.
    Yields:
        The output `RequestOutput` objects from the LLMEngine
        for the request.

    Details:
        - If the engine is not running, start the background loop,
          which iteratively invokes
          [`engine_step`][vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step]
          to process the waiting requests.
        - Add the request to the engine's `RequestTracker`.
          On the next background loop, this request will be sent to
          the underlying engine.
          Also, a corresponding `AsyncStream` will be created.
        - Wait for the request outputs from `AsyncStream` and yield them.

    Example:
        >>> # Please refer to entrypoints/api_server.py for
        >>> # the complete example.
        >>>
        >>> # initialize the engine and the example input
        >>> # note that engine_args here is AsyncEngineArgs instance
        >>> engine = AsyncLLMEngine.from_engine_args(engine_args)
        >>> example_input = {
        >>>     "prompt": "What is LLM?",
        >>>     "stream": False, # assume the non-streaming case
        >>>     "temperature": 0.0,
        >>>     "request_id": 0,
        >>> }
        >>>
        >>> # start the generation
        >>> results_generator = engine.generate(
        >>>    example_input["prompt"],
        >>>    SamplingParams(temperature=example_input["temperature"]),
        >>>    example_input["request_id"])
        >>>
        >>> # get the results
        >>> final_output = None
        >>> async for request_output in results_generator:
        >>>     if await request.is_disconnected():
        >>>         # Abort the request if the client disconnects.
        >>>         await engine.abort(request_id)
        >>>         # Return or raise an error
        >>>         ...
        >>>     final_output = request_output
        >>>
        >>> # Process and return the final output
        >>> ...
    """
    try:
        async for output in await self.add_request(
                request_id,
                prompt,
                sampling_params,
                lora_request=lora_request,
                trace_headers=trace_headers,
                prompt_adapter_request=prompt_adapter_request,
                priority=priority,
                data_parallel_rank=data_parallel_rank,
        ):
            yield LLMEngine.validate_output(output, RequestOutput)
    except asyncio.CancelledError:
        await self.abort(request_id)
        raise

get_decoding_config async

get_decoding_config() -> DecodingConfig

Get the decoding configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_decoding_config(self) -> DecodingConfig:
    """Get the decoding configuration of the vLLM engine."""
    return self.engine.get_decoding_config()

get_input_preprocessor async

get_input_preprocessor() -> InputPreprocessor
Source code in vllm/engine/async_llm_engine.py
async def get_input_preprocessor(self) -> InputPreprocessor:
    return self.engine.input_preprocessor

get_lora_config async

get_lora_config() -> LoRAConfig

Get the lora configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_lora_config(self) -> LoRAConfig:
    """Get the lora configuration of the vLLM engine."""
    return self.engine.get_lora_config()

get_model_config async

get_model_config() -> ModelConfig

Get the model configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_model_config(self) -> ModelConfig:
    """Get the model configuration of the vLLM engine."""
    return self.engine.get_model_config()

get_parallel_config async

get_parallel_config() -> ParallelConfig

Get the parallel configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_parallel_config(self) -> ParallelConfig:
    """Get the parallel configuration of the vLLM engine."""
    return self.engine.get_parallel_config()

get_scheduler_config async

get_scheduler_config() -> SchedulerConfig

Get the scheduling configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_scheduler_config(self) -> SchedulerConfig:
    """Get the scheduling configuration of the vLLM engine."""
    return self.engine.get_scheduler_config()

get_tokenizer async

get_tokenizer(
    lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer
Source code in vllm/engine/async_llm_engine.py
async def get_tokenizer(
    self,
    lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer:
    return await self.engine.get_tokenizer_async(lora_request)

get_vllm_config async

get_vllm_config() -> VllmConfig

Get the vllm configuration of the vLLM engine.

Source code in vllm/engine/async_llm_engine.py
async def get_vllm_config(self) -> VllmConfig:
    """Get the vllm configuration of the vLLM engine."""
    return self.engine.get_vllm_config()

is_sleeping async

is_sleeping() -> bool
Source code in vllm/engine/async_llm_engine.py
async def is_sleeping(self) -> bool:
    return self.engine.is_sleeping()

is_tracing_enabled async

is_tracing_enabled() -> bool
Source code in vllm/engine/async_llm_engine.py
async def is_tracing_enabled(self) -> bool:
    return self.engine.is_tracing_enabled()

process_request_outputs

process_request_outputs(request_outputs) -> bool
Source code in vllm/engine/async_llm_engine.py
def process_request_outputs(self, request_outputs) -> bool:
    # Put the outputs into the corresponding streams.
    all_finished = True
    for request_output in request_outputs:
        self._request_tracker.process_request_output(
            request_output, verbose=self.log_requests)
        all_finished = all_finished and request_output.finished

    return all_finished

remove_logger

remove_logger(logger_name: str) -> None
Source code in vllm/engine/async_llm_engine.py
def remove_logger(self, logger_name: str) -> None:
    self.engine.remove_logger(logger_name=logger_name)

reset_mm_cache async

reset_mm_cache() -> None
Source code in vllm/engine/async_llm_engine.py
async def reset_mm_cache(self) -> None:
    self.engine.reset_mm_cache()

reset_prefix_cache async

reset_prefix_cache(device: Optional[Device] = None) -> None
Source code in vllm/engine/async_llm_engine.py
async def reset_prefix_cache(self,
                             device: Optional[Device] = None) -> None:
    self.engine.reset_prefix_cache(device)

run_engine_loop async staticmethod

run_engine_loop(engine_ref: ReferenceType)

We use a weakref to the engine so that the running loop doesn't prevent the engine being garbage collected.

Source code in vllm/engine/async_llm_engine.py
@staticmethod
async def run_engine_loop(engine_ref: ReferenceType):
    """We use a weakref to the engine so that the running loop
    doesn't prevent the engine being garbage collected."""
    engine: Optional[AsyncLLMEngine] = engine_ref()
    if not engine:
        return

    pipeline_parallel_size = \
            engine.engine.parallel_config.pipeline_parallel_size
    has_requests_in_progress = [False] * pipeline_parallel_size
    while True:
        if not any(has_requests_in_progress):
            logger.debug("Waiting for new requests...")
            # Stop the execute model loop in parallel workers until there
            # are more requests to process. This avoids waiting
            # indefinitely in torch.distributed ops which may otherwise
            # timeout, and unblocks the RPC thread in the workers so that
            # they can process any other queued control plane messages,
            # such as add/remove lora adapters.
            await engine.engine.stop_remote_worker_execution_loop_async()
            request_tracker = engine._request_tracker
            # Allow engine to be garbage collected while
            # waiting for new requests
            del engine
            await asyncio.sleep(0)
            if engine_ref() is None:
                return
            await request_tracker.wait_for_new_requests()
            engine = engine_ref()
            if not engine:
                return
            logger.debug("Got new requests!")
            requests_in_progress = [
                asyncio.create_task(engine.engine_step(ve))
                for ve in range(pipeline_parallel_size)
            ]
            has_requests_in_progress = [True] * pipeline_parallel_size

        # Abort if iteration takes too long due to unrecoverable errors
        # (eg. NCCL timeouts).
        try:
            async with asyncio_timeout(ENGINE_ITERATION_TIMEOUT_S):
                done, _ = await asyncio.wait(
                    requests_in_progress,
                    return_when=asyncio.FIRST_COMPLETED)
                for _ in range(pipeline_parallel_size):
                    await asyncio.sleep(0)
            for task in done:
                result = task.result()
                virtual_engine = requests_in_progress.index(task)
                has_unfinished_requests = (
                    engine.engine.
                    has_unfinished_requests_for_virtual_engine(
                        virtual_engine))
                if result or has_unfinished_requests:
                    requests_in_progress[virtual_engine] = (
                        asyncio.create_task(
                            engine.engine_step(virtual_engine)))
                    has_requests_in_progress[virtual_engine] = True
                else:
                    has_requests_in_progress[virtual_engine] = False
        except asyncio.TimeoutError as exc:
            logger.error(
                "Engine iteration timed out. This should never happen!")
            engine.set_errored(exc)
            raise
        await asyncio.sleep(0)

set_errored

set_errored(exc: Exception) -> None
Source code in vllm/engine/async_llm_engine.py
def set_errored(self, exc: Exception) -> None:
    self._errored_with = exc

shutdown_background_loop

shutdown_background_loop() -> None

Shut down the background loop.

This method needs to be called during cleanup to remove references to self and properly GC the resources held by the async LLM engine (e.g., the executors as well as their resources).

Source code in vllm/engine/async_llm_engine.py
def shutdown_background_loop(self) -> None:
    """
    Shut down the background loop.

    This method needs to be called during cleanup to remove
    references to `self` and properly GC the resources held
    by the async LLM engine (e.g., the executors as well as
    their resources).
    """
    if self._background_loop_unshielded is not None:
        self._background_loop_unshielded.cancel()
        self._background_loop_unshielded = None
    self.background_loop = None

sleep async

sleep(level: int = 1) -> None
Source code in vllm/engine/async_llm_engine.py
async def sleep(self, level: int = 1) -> None:
    self.engine.sleep(level)

start_background_loop

start_background_loop() -> None

Start the background loop.

Source code in vllm/engine/async_llm_engine.py
def start_background_loop(self) -> None:
    """Start the background loop."""
    if self.errored:
        raise AsyncEngineDeadError(
            "Background loop has errored already.") from self._errored_with
    if self.is_running:
        raise RuntimeError("Background loop is already running.")
    # Initialize the RequestTracker here so it uses the right event loop.
    self._request_tracker = RequestTracker()

    self._background_loop_unshielded = asyncio.get_event_loop(
    ).create_task(self.run_engine_loop(weakref.ref(self)))
    self._background_loop_unshielded.add_done_callback(
        partial(_log_task_completion, error_callback=self._error_callback))
    self.background_loop = asyncio.shield(self._background_loop_unshielded)

start_profile async

start_profile() -> None
Source code in vllm/engine/async_llm_engine.py
async def start_profile(self) -> None:
    self.engine.start_profile()

stop_profile async

stop_profile() -> None
Source code in vllm/engine/async_llm_engine.py
async def stop_profile(self) -> None:
    self.engine.stop_profile()

wake_up async

wake_up(tags: Optional[list[str]] = None) -> None
Source code in vllm/engine/async_llm_engine.py
async def wake_up(self, tags: Optional[list[str]] = None) -> None:
    self.engine.wake_up(tags)

AsyncStream

A stream of RequestOutputs or PoolingRequestOutputs for a request that can be iterated over asynchronously via an async generator.

Source code in vllm/engine/async_llm_engine.py
class AsyncStream:
    """A stream of RequestOutputs or PoolingRequestOutputs for a request
    that can be iterated over asynchronously via an async generator."""

    def __init__(self, request_id: str, cancel: Callable[[str], None]) -> None:
        self.request_id = request_id
        self._cancel = cancel
        self._queue: asyncio.Queue = asyncio.Queue()
        self._finished = False

    def put(self, item: Union[RequestOutput, PoolingRequestOutput,
                              Exception]) -> None:
        if not self._finished:
            self._queue.put_nowait(item)

    def finish(
        self,
        exception: Optional[Union[BaseException, Type[BaseException]]] = None,
    ) -> None:
        if not self._finished:
            self._finished = True
            self._queue.put_nowait(
                exception if self._is_raisable(exception) else STOP_ITERATION)

    @property
    def finished(self) -> bool:
        return self._finished

    async def generator(
        self
    ) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
        try:
            while True:
                result = await self._queue.get()
                if self._is_raisable(result):
                    if result == STOP_ITERATION:
                        return
                    raise result
                yield result
        except GeneratorExit:
            self._cancel(self.request_id)
            raise asyncio.CancelledError from None

    @staticmethod
    def _is_raisable(value: Any):
        return isinstance(value, BaseException) or \
                (isinstance(value, type) and \
                 issubclass(value, BaseException))

_cancel instance-attribute

_cancel = cancel

_finished instance-attribute

_finished = False

_queue instance-attribute

_queue: Queue = Queue()

finished property

finished: bool

request_id instance-attribute

request_id = request_id

__init__

__init__(
    request_id: str, cancel: Callable[[str], None]
) -> None
Source code in vllm/engine/async_llm_engine.py
def __init__(self, request_id: str, cancel: Callable[[str], None]) -> None:
    self.request_id = request_id
    self._cancel = cancel
    self._queue: asyncio.Queue = asyncio.Queue()
    self._finished = False

_is_raisable staticmethod

_is_raisable(value: Any)
Source code in vllm/engine/async_llm_engine.py
@staticmethod
def _is_raisable(value: Any):
    return isinstance(value, BaseException) or \
            (isinstance(value, type) and \
             issubclass(value, BaseException))

finish

finish(
    exception: Optional[
        Union[BaseException, Type[BaseException]]
    ] = None,
) -> None
Source code in vllm/engine/async_llm_engine.py
def finish(
    self,
    exception: Optional[Union[BaseException, Type[BaseException]]] = None,
) -> None:
    if not self._finished:
        self._finished = True
        self._queue.put_nowait(
            exception if self._is_raisable(exception) else STOP_ITERATION)

generator async

Source code in vllm/engine/async_llm_engine.py
async def generator(
    self
) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
    try:
        while True:
            result = await self._queue.get()
            if self._is_raisable(result):
                if result == STOP_ITERATION:
                    return
                raise result
            yield result
    except GeneratorExit:
        self._cancel(self.request_id)
        raise asyncio.CancelledError from None

put

Source code in vllm/engine/async_llm_engine.py
def put(self, item: Union[RequestOutput, PoolingRequestOutput,
                          Exception]) -> None:
    if not self._finished:
        self._queue.put_nowait(item)

RequestTracker

Synchronous abstraction for tracking requests.

Source code in vllm/engine/async_llm_engine.py
class RequestTracker:
    """Synchronous abstraction for tracking requests."""

    def __init__(self) -> None:
        self._request_streams: Dict[str, AsyncStream] = {}
        self._aborted_requests: asyncio.Queue[str] = asyncio.Queue()
        self._new_requests: asyncio.Queue[Tuple[AsyncStream,
                                                dict]] = asyncio.Queue()
        self.new_requests_event = asyncio.Event()

    def __contains__(self, item):
        return item in self._request_streams

    def __len__(self) -> int:
        return len(self._request_streams)

    def propagate_exception(self,
                            exc: Exception,
                            request_id: Optional[str] = None) -> None:
        """Propagate an exception to request streams
        (all if request_id is None)."""
        if request_id is not None:
            self.abort_request(request_id, exception=exc)
        else:
            # NB: tuple() used here because self.abort_request pops the stream
            # out of self._request_streams, so we can't iterate on it directly
            for rid in tuple(self._request_streams.keys()):
                self.abort_request(rid, exception=exc)

    def process_request_output(self,
                               request_output: Union[RequestOutput,
                                                     PoolingRequestOutput],
                               *,
                               verbose: bool = False) -> None:
        """Process a request output from the engine."""
        request_id = request_output.request_id
        finished = request_output.finished

        if finished:
            stream = self._request_streams.pop(request_id, None)
        else:
            stream = self._request_streams.get(request_id)
        # Guard against a KeyError which can occur if the request was aborted
        # while the output was generated
        if stream is not None:
            stream.put(request_output)
            if finished:
                stream.finish()

        if verbose and finished:
            logger.info("Finished request %s.", request_id)

    def process_exception(self,
                          request_id: str,
                          exception: BaseException,
                          *,
                          verbose: bool = False) -> None:
        """Propagate an exception from the engine."""
        if verbose:
            logger.info("Finished request %s.", request_id)
        self.abort_request(request_id, exception=exception)

    def add_request(self,
                    request_id: str,
                    *,
                    verbose: bool = False,
                    **engine_add_request_kwargs) -> AsyncStream:
        """Add a request to be sent to the engine on the next background
        loop iteration."""
        if request_id in self._request_streams:
            raise KeyError(f"Request {request_id} already exists.")

        abort_request = partial(self.abort_request, verbose=verbose)
        stream = AsyncStream(request_id, abort_request)
        self._new_requests.put_nowait((stream, {
            "request_id": request_id,
            **engine_add_request_kwargs
        }))

        self.new_requests_event.set()

        if verbose:
            logger.info("Added request %s.", request_id)

        return stream

    def abort_request(self,
                      request_id: str,
                      *,
                      exception: Optional[Union[BaseException,
                                                Type[BaseException]]] = None,
                      verbose: bool = False) -> None:
        """Abort a request during next background loop iteration."""
        if verbose:
            logger.info("Aborted request %s.", request_id)

        self._aborted_requests.put_nowait(request_id)

        stream = self._request_streams.pop(request_id, None)
        if stream is not None:
            stream.finish(exception=exception)

    def get_new_and_aborted_requests(self) -> Tuple[List[Dict], Set[str]]:
        """Get the new requests and finished requests to be
        sent to the engine."""
        new_requests: List[Dict] = []
        finished_requests: Set[str] = set()

        while not self._aborted_requests.empty():
            request_id = self._aborted_requests.get_nowait()
            finished_requests.add(request_id)

        while not self._new_requests.empty():
            stream, new_request = self._new_requests.get_nowait()
            request_id = stream.request_id
            if request_id in finished_requests:
                # The request has already been aborted.
                stream.finish(asyncio.CancelledError)
                finished_requests.discard(request_id)
            else:
                self._request_streams[request_id] = stream
                new_requests.append(new_request)

        return new_requests, finished_requests

    async def wait_for_new_requests(self):
        if not self.has_new_requests():
            await self.new_requests_event.wait()
        self.new_requests_event.clear()

    def has_new_requests(self):
        return not self._new_requests.empty()

_aborted_requests instance-attribute

_aborted_requests: Queue[str] = Queue()

_new_requests instance-attribute

_new_requests: Queue[Tuple[AsyncStream, dict]] = Queue()

_request_streams instance-attribute

_request_streams: Dict[str, AsyncStream] = {}

new_requests_event instance-attribute

new_requests_event = Event()

__contains__

__contains__(item)
Source code in vllm/engine/async_llm_engine.py
def __contains__(self, item):
    return item in self._request_streams

__init__

__init__() -> None
Source code in vllm/engine/async_llm_engine.py
def __init__(self) -> None:
    self._request_streams: Dict[str, AsyncStream] = {}
    self._aborted_requests: asyncio.Queue[str] = asyncio.Queue()
    self._new_requests: asyncio.Queue[Tuple[AsyncStream,
                                            dict]] = asyncio.Queue()
    self.new_requests_event = asyncio.Event()

__len__

__len__() -> int
Source code in vllm/engine/async_llm_engine.py
def __len__(self) -> int:
    return len(self._request_streams)

abort_request

abort_request(
    request_id: str,
    *,
    exception: Optional[
        Union[BaseException, Type[BaseException]]
    ] = None,
    verbose: bool = False,
) -> None

Abort a request during next background loop iteration.

Source code in vllm/engine/async_llm_engine.py
def abort_request(self,
                  request_id: str,
                  *,
                  exception: Optional[Union[BaseException,
                                            Type[BaseException]]] = None,
                  verbose: bool = False) -> None:
    """Abort a request during next background loop iteration."""
    if verbose:
        logger.info("Aborted request %s.", request_id)

    self._aborted_requests.put_nowait(request_id)

    stream = self._request_streams.pop(request_id, None)
    if stream is not None:
        stream.finish(exception=exception)

add_request

add_request(
    request_id: str,
    *,
    verbose: bool = False,
    **engine_add_request_kwargs,
) -> AsyncStream

Add a request to be sent to the engine on the next background loop iteration.

Source code in vllm/engine/async_llm_engine.py
def add_request(self,
                request_id: str,
                *,
                verbose: bool = False,
                **engine_add_request_kwargs) -> AsyncStream:
    """Add a request to be sent to the engine on the next background
    loop iteration."""
    if request_id in self._request_streams:
        raise KeyError(f"Request {request_id} already exists.")

    abort_request = partial(self.abort_request, verbose=verbose)
    stream = AsyncStream(request_id, abort_request)
    self._new_requests.put_nowait((stream, {
        "request_id": request_id,
        **engine_add_request_kwargs
    }))

    self.new_requests_event.set()

    if verbose:
        logger.info("Added request %s.", request_id)

    return stream

get_new_and_aborted_requests

get_new_and_aborted_requests() -> Tuple[
    List[Dict], Set[str]
]

Get the new requests and finished requests to be sent to the engine.

Source code in vllm/engine/async_llm_engine.py
def get_new_and_aborted_requests(self) -> Tuple[List[Dict], Set[str]]:
    """Get the new requests and finished requests to be
    sent to the engine."""
    new_requests: List[Dict] = []
    finished_requests: Set[str] = set()

    while not self._aborted_requests.empty():
        request_id = self._aborted_requests.get_nowait()
        finished_requests.add(request_id)

    while not self._new_requests.empty():
        stream, new_request = self._new_requests.get_nowait()
        request_id = stream.request_id
        if request_id in finished_requests:
            # The request has already been aborted.
            stream.finish(asyncio.CancelledError)
            finished_requests.discard(request_id)
        else:
            self._request_streams[request_id] = stream
            new_requests.append(new_request)

    return new_requests, finished_requests

has_new_requests

has_new_requests()
Source code in vllm/engine/async_llm_engine.py
def has_new_requests(self):
    return not self._new_requests.empty()

process_exception

process_exception(
    request_id: str,
    exception: BaseException,
    *,
    verbose: bool = False,
) -> None

Propagate an exception from the engine.

Source code in vllm/engine/async_llm_engine.py
def process_exception(self,
                      request_id: str,
                      exception: BaseException,
                      *,
                      verbose: bool = False) -> None:
    """Propagate an exception from the engine."""
    if verbose:
        logger.info("Finished request %s.", request_id)
    self.abort_request(request_id, exception=exception)

process_request_output

process_request_output(
    request_output: Union[
        RequestOutput, PoolingRequestOutput
    ],
    *,
    verbose: bool = False,
) -> None

Process a request output from the engine.

Source code in vllm/engine/async_llm_engine.py
def process_request_output(self,
                           request_output: Union[RequestOutput,
                                                 PoolingRequestOutput],
                           *,
                           verbose: bool = False) -> None:
    """Process a request output from the engine."""
    request_id = request_output.request_id
    finished = request_output.finished

    if finished:
        stream = self._request_streams.pop(request_id, None)
    else:
        stream = self._request_streams.get(request_id)
    # Guard against a KeyError which can occur if the request was aborted
    # while the output was generated
    if stream is not None:
        stream.put(request_output)
        if finished:
            stream.finish()

    if verbose and finished:
        logger.info("Finished request %s.", request_id)

propagate_exception

propagate_exception(
    exc: Exception, request_id: Optional[str] = None
) -> None

Propagate an exception to request streams (all if request_id is None).

Source code in vllm/engine/async_llm_engine.py
def propagate_exception(self,
                        exc: Exception,
                        request_id: Optional[str] = None) -> None:
    """Propagate an exception to request streams
    (all if request_id is None)."""
    if request_id is not None:
        self.abort_request(request_id, exception=exc)
    else:
        # NB: tuple() used here because self.abort_request pops the stream
        # out of self._request_streams, so we can't iterate on it directly
        for rid in tuple(self._request_streams.keys()):
            self.abort_request(rid, exception=exc)

wait_for_new_requests async

wait_for_new_requests()
Source code in vllm/engine/async_llm_engine.py
async def wait_for_new_requests(self):
    if not self.has_new_requests():
        await self.new_requests_event.wait()
    self.new_requests_event.clear()

_AsyncLLMEngine

Bases: LLMEngine

Extension of LLMEngine to add async methods.

Source code in vllm/engine/async_llm_engine.py
class _AsyncLLMEngine(LLMEngine):
    """Extension of LLMEngine to add async methods."""

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    async def step_async(
        self, virtual_engine: int
    ) -> List[Union[RequestOutput, PoolingRequestOutput]]:
        """Performs one decoding iteration and returns newly generated results.
        The workers are ran asynchronously if possible.

        This function performs one decoding iteration of the engine. It first
        schedules the sequences to be executed in the next iteration and the
        token blocks to be swapped in/out/copy. Then, it executes the model
        and updates the scheduler with the model outputs. Finally, it decodes
        the sequences and returns the newly generated results.
        """
        # these are cached outputs from previous iterations. None if on first
        # iteration
        cached_outputs = self.cached_scheduler_outputs[virtual_engine]
        seq_group_metadata_list = cached_outputs.seq_group_metadata_list
        scheduler_outputs = cached_outputs.scheduler_outputs
        allow_async_output_proc = cached_outputs.allow_async_output_proc

        ctx = self.scheduler_contexts[virtual_engine]

        # Clear outputs for each new scheduler iteration
        ctx.request_outputs.clear()

        # skip the scheduler if there are any remaining steps in the seq groups.
        # This ensures that the scheduler is only called again when the current
        # batch has completed.
        if not self._has_remaining_steps(seq_group_metadata_list):

            # Schedule iteration
            (seq_group_metadata_list, scheduler_outputs,
             allow_async_output_proc
             ) = self.scheduler[virtual_engine].schedule()

            ctx.seq_group_metadata_list = seq_group_metadata_list
            ctx.scheduler_outputs = scheduler_outputs

            if not scheduler_outputs.is_empty():
                # this will cause mamba_cache/minimax_cache failed
                # to release finished_requests_ids of the last steps
                finished_requests_ids = self.scheduler[
                    virtual_engine].get_and_reset_finished_requests_ids()

            # Maybe switch from async mode to sync mode
            if not allow_async_output_proc and len(ctx.output_queue) > 0:
                self._process_model_outputs(ctx=ctx)

            if (self.scheduler_config.is_multi_step
                    and scheduler_outputs.num_lookahead_slots > 0):
                # cache the scheduler outputs for the next iteration if we have
                # lookahead slots
                self._cache_scheduler_outputs_for_multi_step(
                    virtual_engine, seq_group_metadata_list, scheduler_outputs,
                    allow_async_output_proc)
        else:
            finished_requests_ids = list()

        assert seq_group_metadata_list is not None
        assert scheduler_outputs is not None

        if not scheduler_outputs.is_empty():

            # Check if we have a cached last_output from the previous iteration.
            # For supporting PP this is probably the best way to pass the
            # sampled_token_ids, as a separate broadcast over all the PP stages
            # will cause one virtual engine's microbatch to block the pipeline.
            last_sampled_token_ids = \
                self._get_last_sampled_token_ids(virtual_engine)

            execute_model_req = ExecuteModelRequest(
                seq_group_metadata_list=seq_group_metadata_list,
                blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
                blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
                blocks_to_copy=scheduler_outputs.blocks_to_copy,
                virtual_engine=virtual_engine,
                num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
                running_queue_size=scheduler_outputs.running_queue_size,
                finished_requests_ids=finished_requests_ids,
                # We use ExecuteModelRequest to pass the last sampled_token_ids
                # to each of the non-last PP stages for in-place prepare_input.
                last_sampled_token_ids=last_sampled_token_ids)

            if allow_async_output_proc:
                execute_model_req.async_callback = self.async_callbacks[
                    virtual_engine]

            # Execute the model.
            outputs = await self.model_executor.execute_model_async(
                execute_model_req)

            # we need to do this here so that last step's sampled_token_ids can
            # be passed to the next iteration for PP.
            if self.scheduler_config.is_multi_step:
                self._update_cached_scheduler_output(virtual_engine, outputs)
        else:
            if len(ctx.output_queue) > 0:
                self._process_model_outputs(ctx=ctx)
            outputs = []

        # Finish the current step for all the sequence groups.
        if self.scheduler_config.is_multi_step:
            for seq_group in seq_group_metadata_list:
                seq_group.finish_step()

        if not self._has_remaining_steps(seq_group_metadata_list):
            # Clear the cache if we have finished all the steps
            if self.scheduler_config.is_multi_step:
                self.cached_scheduler_outputs[
                    virtual_engine] = SchedulerOutputState()

            # is_first_step_output is True only when the num_steps of all
            # the sequences are 1. When the num_steps > 1,
            # multi_step_model_runner does the first-step output append.
            is_first_step_output: bool = False if not seq_group_metadata_list \
                else seq_group_metadata_list[0].state.num_steps == 1

            ctx.append_output(outputs=outputs,
                              seq_group_metadata_list=seq_group_metadata_list,
                              scheduler_outputs=scheduler_outputs,
                              is_async=allow_async_output_proc,
                              is_last_step=True,
                              is_first_step_output=is_first_step_output)

            if outputs and allow_async_output_proc:
                assert len(
                    outputs
                ) == 1, "Async postprocessor expects only a single output set"
                self._advance_to_next_step(
                    outputs[0], seq_group_metadata_list,
                    scheduler_outputs.scheduled_seq_groups)

            if not allow_async_output_proc:
                self._process_model_outputs(ctx=ctx)

                # Log stats.
                self.do_log_stats(scheduler_outputs, outputs)

                # Tracing
                self.do_tracing(scheduler_outputs)

        else:
            # Multi-step case
            return ctx.request_outputs

        if not self.has_unfinished_requests():
            # Drain async postprocessor (if exists)
            if len(ctx.output_queue) > 0:
                self._process_model_outputs(ctx=ctx)
            assert len(ctx.output_queue) == 0

        return ctx.request_outputs

    async def stop_remote_worker_execution_loop_async(self) -> None:
        """Stop the remote worker execution loop."""
        await self.model_executor.stop_remote_worker_execution_loop_async()

    async def get_tokenizer_async(self,
                                  lora_request: Optional[LoRARequest] = None
                                  ) -> AnyTokenizer:
        return await (
            self.get_tokenizer_group().get_lora_tokenizer_async(lora_request))

    async def add_request_async(
        self,
        request_id: str,
        prompt: PromptType,
        params: Union[SamplingParams, PoolingParams],
        arrival_time: Optional[float] = None,
        lora_request: Optional[LoRARequest] = None,
        trace_headers: Optional[Mapping[str, str]] = None,
        prompt_adapter_request: Optional[PromptAdapterRequest] = None,
        priority: int = 0,
        data_parallel_rank: Optional[int] = None,
    ) -> None:
        """
        Async version of
        [`add_request`][vllm.engine.llm_engine.LLMEngine.add_request].
        """
        if lora_request is not None and not self.lora_config:
            raise ValueError(f"Got lora_request {lora_request} but LoRA is "
                             "not enabled!")
        if priority != 0 and not self.scheduler_config.policy == "priority":
            raise ValueError(f"Got priority {priority} but "
                             "Priority scheduling is not enabled.")
        if arrival_time is None:
            arrival_time = time.time()

        if data_parallel_rank is not None:
            raise ValueError("Targeting data_parallel_rank only supported "
                             "in v1 client.")

        if (isinstance(prompt, dict)
                and prompt.get("prompt_embeds", None) is not None
                and not prompt.get("prompt_token_ids", None)):
            # We use the -2 dimension (instead of 0) in case a batched input
            # of batch size 1 is passed in.
            prompt["prompt_token_ids"] = [0
                                          ] * prompt["prompt_embeds"].shape[-2]

        processed_inputs = await self.input_preprocessor.preprocess_async(
            prompt,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
        )

        if isinstance(params, SamplingParams) and \
            params.guided_decoding is not None:
            # Guided decoding has an async implementation for building logits
            # processors in a separate threadpool.
            # We want to invoke that here instead of using the blocking
            # implementation in the LLMEngine
            params = await build_guided_decoding_logits_processor_async(
                sampling_params=params,
                tokenizer=await self.get_tokenizer_async(lora_request),
                default_guided_backend=self.decoding_config.backend,
                reasoning_backend=self.decoding_config.reasoning_backend,
                model_config=self.model_config)

        self._add_processed_request(
            request_id=request_id,
            processed_inputs=processed_inputs,
            params=params,
            arrival_time=arrival_time,
            lora_request=lora_request,
            prompt_adapter_request=prompt_adapter_request,
            trace_headers=trace_headers,
            priority=priority,
        )

    async def check_health_async(self) -> None:
        self.model_executor.check_health()

    async def collective_rpc_async(self,
                                   method: str,
                                   timeout: Optional[float] = None,
                                   args: tuple = (),
                                   kwargs: Optional[dict] = None):
        raise NotImplementedError

__init__

__init__(*args, **kwargs)
Source code in vllm/engine/async_llm_engine.py
def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)

add_request_async async

add_request_async(
    request_id: str,
    prompt: PromptType,
    params: Union[SamplingParams, PoolingParams],
    arrival_time: Optional[float] = None,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[
        PromptAdapterRequest
    ] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> None

Async version of add_request.

Source code in vllm/engine/async_llm_engine.py
async def add_request_async(
    self,
    request_id: str,
    prompt: PromptType,
    params: Union[SamplingParams, PoolingParams],
    arrival_time: Optional[float] = None,
    lora_request: Optional[LoRARequest] = None,
    trace_headers: Optional[Mapping[str, str]] = None,
    prompt_adapter_request: Optional[PromptAdapterRequest] = None,
    priority: int = 0,
    data_parallel_rank: Optional[int] = None,
) -> None:
    """
    Async version of
    [`add_request`][vllm.engine.llm_engine.LLMEngine.add_request].
    """
    if lora_request is not None and not self.lora_config:
        raise ValueError(f"Got lora_request {lora_request} but LoRA is "
                         "not enabled!")
    if priority != 0 and not self.scheduler_config.policy == "priority":
        raise ValueError(f"Got priority {priority} but "
                         "Priority scheduling is not enabled.")
    if arrival_time is None:
        arrival_time = time.time()

    if data_parallel_rank is not None:
        raise ValueError("Targeting data_parallel_rank only supported "
                         "in v1 client.")

    if (isinstance(prompt, dict)
            and prompt.get("prompt_embeds", None) is not None
            and not prompt.get("prompt_token_ids", None)):
        # We use the -2 dimension (instead of 0) in case a batched input
        # of batch size 1 is passed in.
        prompt["prompt_token_ids"] = [0
                                      ] * prompt["prompt_embeds"].shape[-2]

    processed_inputs = await self.input_preprocessor.preprocess_async(
        prompt,
        lora_request=lora_request,
        prompt_adapter_request=prompt_adapter_request,
    )

    if isinstance(params, SamplingParams) and \
        params.guided_decoding is not None:
        # Guided decoding has an async implementation for building logits
        # processors in a separate threadpool.
        # We want to invoke that here instead of using the blocking
        # implementation in the LLMEngine
        params = await build_guided_decoding_logits_processor_async(
            sampling_params=params,
            tokenizer=await self.get_tokenizer_async(lora_request),
            default_guided_backend=self.decoding_config.backend,
            reasoning_backend=self.decoding_config.reasoning_backend,
            model_config=self.model_config)

    self._add_processed_request(
        request_id=request_id,
        processed_inputs=processed_inputs,
        params=params,
        arrival_time=arrival_time,
        lora_request=lora_request,
        prompt_adapter_request=prompt_adapter_request,
        trace_headers=trace_headers,
        priority=priority,
    )

check_health_async async

check_health_async() -> None
Source code in vllm/engine/async_llm_engine.py
async def check_health_async(self) -> None:
    self.model_executor.check_health()

collective_rpc_async async

collective_rpc_async(
    method: str,
    timeout: Optional[float] = None,
    args: tuple = (),
    kwargs: Optional[dict] = None,
)
Source code in vllm/engine/async_llm_engine.py
async def collective_rpc_async(self,
                               method: str,
                               timeout: Optional[float] = None,
                               args: tuple = (),
                               kwargs: Optional[dict] = None):
    raise NotImplementedError

get_tokenizer_async async

get_tokenizer_async(
    lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer
Source code in vllm/engine/async_llm_engine.py
async def get_tokenizer_async(self,
                              lora_request: Optional[LoRARequest] = None
                              ) -> AnyTokenizer:
    return await (
        self.get_tokenizer_group().get_lora_tokenizer_async(lora_request))

step_async async

step_async(
    virtual_engine: int,
) -> List[Union[RequestOutput, PoolingRequestOutput]]

Performs one decoding iteration and returns newly generated results. The workers are ran asynchronously if possible.

This function performs one decoding iteration of the engine. It first schedules the sequences to be executed in the next iteration and the token blocks to be swapped in/out/copy. Then, it executes the model and updates the scheduler with the model outputs. Finally, it decodes the sequences and returns the newly generated results.

Source code in vllm/engine/async_llm_engine.py
async def step_async(
    self, virtual_engine: int
) -> List[Union[RequestOutput, PoolingRequestOutput]]:
    """Performs one decoding iteration and returns newly generated results.
    The workers are ran asynchronously if possible.

    This function performs one decoding iteration of the engine. It first
    schedules the sequences to be executed in the next iteration and the
    token blocks to be swapped in/out/copy. Then, it executes the model
    and updates the scheduler with the model outputs. Finally, it decodes
    the sequences and returns the newly generated results.
    """
    # these are cached outputs from previous iterations. None if on first
    # iteration
    cached_outputs = self.cached_scheduler_outputs[virtual_engine]
    seq_group_metadata_list = cached_outputs.seq_group_metadata_list
    scheduler_outputs = cached_outputs.scheduler_outputs
    allow_async_output_proc = cached_outputs.allow_async_output_proc

    ctx = self.scheduler_contexts[virtual_engine]

    # Clear outputs for each new scheduler iteration
    ctx.request_outputs.clear()

    # skip the scheduler if there are any remaining steps in the seq groups.
    # This ensures that the scheduler is only called again when the current
    # batch has completed.
    if not self._has_remaining_steps(seq_group_metadata_list):

        # Schedule iteration
        (seq_group_metadata_list, scheduler_outputs,
         allow_async_output_proc
         ) = self.scheduler[virtual_engine].schedule()

        ctx.seq_group_metadata_list = seq_group_metadata_list
        ctx.scheduler_outputs = scheduler_outputs

        if not scheduler_outputs.is_empty():
            # this will cause mamba_cache/minimax_cache failed
            # to release finished_requests_ids of the last steps
            finished_requests_ids = self.scheduler[
                virtual_engine].get_and_reset_finished_requests_ids()

        # Maybe switch from async mode to sync mode
        if not allow_async_output_proc and len(ctx.output_queue) > 0:
            self._process_model_outputs(ctx=ctx)

        if (self.scheduler_config.is_multi_step
                and scheduler_outputs.num_lookahead_slots > 0):
            # cache the scheduler outputs for the next iteration if we have
            # lookahead slots
            self._cache_scheduler_outputs_for_multi_step(
                virtual_engine, seq_group_metadata_list, scheduler_outputs,
                allow_async_output_proc)
    else:
        finished_requests_ids = list()

    assert seq_group_metadata_list is not None
    assert scheduler_outputs is not None

    if not scheduler_outputs.is_empty():

        # Check if we have a cached last_output from the previous iteration.
        # For supporting PP this is probably the best way to pass the
        # sampled_token_ids, as a separate broadcast over all the PP stages
        # will cause one virtual engine's microbatch to block the pipeline.
        last_sampled_token_ids = \
            self._get_last_sampled_token_ids(virtual_engine)

        execute_model_req = ExecuteModelRequest(
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
            virtual_engine=virtual_engine,
            num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
            running_queue_size=scheduler_outputs.running_queue_size,
            finished_requests_ids=finished_requests_ids,
            # We use ExecuteModelRequest to pass the last sampled_token_ids
            # to each of the non-last PP stages for in-place prepare_input.
            last_sampled_token_ids=last_sampled_token_ids)

        if allow_async_output_proc:
            execute_model_req.async_callback = self.async_callbacks[
                virtual_engine]

        # Execute the model.
        outputs = await self.model_executor.execute_model_async(
            execute_model_req)

        # we need to do this here so that last step's sampled_token_ids can
        # be passed to the next iteration for PP.
        if self.scheduler_config.is_multi_step:
            self._update_cached_scheduler_output(virtual_engine, outputs)
    else:
        if len(ctx.output_queue) > 0:
            self._process_model_outputs(ctx=ctx)
        outputs = []

    # Finish the current step for all the sequence groups.
    if self.scheduler_config.is_multi_step:
        for seq_group in seq_group_metadata_list:
            seq_group.finish_step()

    if not self._has_remaining_steps(seq_group_metadata_list):
        # Clear the cache if we have finished all the steps
        if self.scheduler_config.is_multi_step:
            self.cached_scheduler_outputs[
                virtual_engine] = SchedulerOutputState()

        # is_first_step_output is True only when the num_steps of all
        # the sequences are 1. When the num_steps > 1,
        # multi_step_model_runner does the first-step output append.
        is_first_step_output: bool = False if not seq_group_metadata_list \
            else seq_group_metadata_list[0].state.num_steps == 1

        ctx.append_output(outputs=outputs,
                          seq_group_metadata_list=seq_group_metadata_list,
                          scheduler_outputs=scheduler_outputs,
                          is_async=allow_async_output_proc,
                          is_last_step=True,
                          is_first_step_output=is_first_step_output)

        if outputs and allow_async_output_proc:
            assert len(
                outputs
            ) == 1, "Async postprocessor expects only a single output set"
            self._advance_to_next_step(
                outputs[0], seq_group_metadata_list,
                scheduler_outputs.scheduled_seq_groups)

        if not allow_async_output_proc:
            self._process_model_outputs(ctx=ctx)

            # Log stats.
            self.do_log_stats(scheduler_outputs, outputs)

            # Tracing
            self.do_tracing(scheduler_outputs)

    else:
        # Multi-step case
        return ctx.request_outputs

    if not self.has_unfinished_requests():
        # Drain async postprocessor (if exists)
        if len(ctx.output_queue) > 0:
            self._process_model_outputs(ctx=ctx)
        assert len(ctx.output_queue) == 0

    return ctx.request_outputs

stop_remote_worker_execution_loop_async async

stop_remote_worker_execution_loop_async() -> None

Stop the remote worker execution loop.

Source code in vllm/engine/async_llm_engine.py
async def stop_remote_worker_execution_loop_async(self) -> None:
    """Stop the remote worker execution loop."""
    await self.model_executor.stop_remote_worker_execution_loop_async()

_log_task_completion

_log_task_completion(
    task: Task, error_callback: Callable[[Exception], None]
) -> None

This function is only intended for the engine.run_engine_loop() task.

In particular, that task runs a while True loop that can only exit if there is an exception.

Source code in vllm/engine/async_llm_engine.py
def _log_task_completion(task: asyncio.Task,
                         error_callback: Callable[[Exception], None]) -> None:
    """This function is only intended for the `engine.run_engine_loop()` task.

    In particular, that task runs a `while True` loop that can only exit if
    there is an exception.
    """

    exception = None
    try:
        return_value = task.result()
        raise AssertionError(
            f"The engine background task should never finish without an "
            f"exception. {return_value}")
    except asyncio.exceptions.CancelledError:
        # We assume that if the task is cancelled, we are gracefully shutting
        # down. This should only happen on program exit.
        logger.info("Engine is gracefully shutting down.")
    except Exception as e:
        exception = e
        logger.error("Engine background task failed", exc_info=e)
        error_callback(exception)
        raise AsyncEngineDeadError(
            "Task finished unexpectedly. This should never happen! "
            "Please open an issue on GitHub. See stack trace above for the "
            "actual cause.") from e

build_guided_decoding_logits_processor_async async

build_guided_decoding_logits_processor_async(
    sampling_params: SamplingParams,
    tokenizer: AnyTokenizer,
    default_guided_backend: str,
    reasoning_backend: Optional[str],
    model_config: ModelConfig,
) -> SamplingParams

Constructs logits processors based on the guided_decoding, logits_bias, and allowed_token_ids fields in sampling_params. Deletes those fields and adds the constructed logits processors to the logits_processors field. Modifies sampling params in-place and returns the modified sampling params.

Source code in vllm/engine/async_llm_engine.py
async def build_guided_decoding_logits_processor_async(
        sampling_params: SamplingParams, tokenizer: AnyTokenizer,
        default_guided_backend: str, reasoning_backend: Optional[str],
        model_config: ModelConfig) -> SamplingParams:
    """Constructs logits processors based on the guided_decoding,
    logits_bias, and allowed_token_ids fields in sampling_params. Deletes
    those fields and adds the constructed logits processors to the
    logits_processors field. Modifies sampling params in-place and returns
    the modified sampling params."""
    if sampling_params.guided_decoding is None:
        return sampling_params

    # Defensively copy sampling params since guided decoding logits
    # processors can have different state for each request
    sampling_params = copy.copy(sampling_params)
    guided_decoding = sampling_params.guided_decoding

    logger.debug(
        "Building guided decoding logits processor. "
        "guided_decoding: %s%s", guided_decoding,
        f", reasoning_backend: {reasoning_backend}"
        if reasoning_backend is not None else "")

    guided_decoding.backend = guided_decoding.backend or default_guided_backend

    processor = await get_guided_decoding_logits_processor(
        guided_params=guided_decoding,
        tokenizer=tokenizer,
        reasoning_backend=reasoning_backend,
        model_config=model_config)

    if processor:
        if sampling_params.logits_processors is None:
            sampling_params.logits_processors = []
        sampling_params.logits_processors.append(processor)

    # Unset guided decoding params after constructing the lp from them
    sampling_params.guided_decoding = None

    return sampling_params