vllm.distributed.eplb.rebalance_algo
Expert parallelism load balancer (EPLB) for vLLM.
This module implements the core rearrangement algorithm.
The rearrangement algorithm is adapted from DeepSeek EPLB.
Please find at #12 an example on how the EPLB algorithm works.
balanced_packing
¶
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs are as balanced as possible.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
Tensor
|
[X, n], the weight of each item |
required |
num_packs
|
int
|
number of packs |
required |
Returns:
Name | Type | Description |
---|---|---|
pack_index |
Tensor
|
[X, n], the pack index of each item |
rank_in_pack |
Tensor
|
[X, n], the rank of the item in the pack |
Source code in vllm/distributed/eplb/rebalance_algo.py
rebalance_experts
¶
rebalance_experts(
weight: Tensor,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> tuple[Tensor, Tensor, Tensor]
Entry point for expert-parallelism load balancer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
Tensor
|
[layers, num_logical_experts], the load statistics for all logical experts |
required |
num_replicas
|
int
|
number of physical experts, must be a multiple of
|
required |
num_groups
|
int
|
number of expert groups |
required |
num_nodes
|
int
|
number of server nodes, where the intra-node network (e.g, NVLink) is faster |
required |
num_gpus
|
int
|
number of GPUs, must be a multiple of |
required |
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map |
Tensor
|
[layers, num_replicas], the expert index of each replica |
logical_to_physical_map |
Tensor
|
[layers, num_logical_experts, X], the replica indices for each expert |
expert_count |
Tensor
|
[layers, num_logical_experts], number of physical replicas for each logical expert |
Source code in vllm/distributed/eplb/rebalance_algo.py
rebalance_experts_hierarchical
¶
rebalance_experts_hierarchical(
weight: Tensor,
num_physical_experts: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
Tensor
|
[num_moe_layers, num_logical_experts] |
required |
num_physical_experts
|
int
|
number of physical experts after replication |
required |
num_groups
|
int
|
number of expert groups |
required |
num_nodes
|
int
|
number of server nodes, where the intra-node network |
required |
num_gpus
|
int
|
number of GPUs, must be a multiple of |
required |
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map |
[num_moe_layers, num_physical_experts] |
|
logical_to_physical_map |
[num_moe_layers, num_logical_experts, X] |
|
logical_count |
[num_moe_layers, num_logical_experts] |
Source code in vllm/distributed/eplb/rebalance_algo.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
replicate_experts
¶
Replicate num_log
experts to num_phy
replicas, such that the maximum
load of all replicas is minimized.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
Tensor
|
[X, num_log] |
required |
num_phy
|
int
|
total number of experts after replication |
required |
Returns:
Name | Type | Description |
---|---|---|
phy2log |
Tensor
|
[X, num_phy], logical expert id of each physical expert |
rank |
Tensor
|
[X, num_phy], the replica rank |
logcnt |
Tensor
|
[X, num_log], number of replicas for each logical expert |