vllm.distributed.eplb
Expert parallelism load balancer (EPLB).
Modules:
Name | Description |
---|---|
eplb_state |
Expert parallelism load balancer (EPLB) metrics and states. |
rebalance_algo |
Expert parallelism load balancer (EPLB) for vLLM. |
rebalance_execute |
The actual execution of the rearrangement. |
EplbState
dataclass
¶
EPLB metrics.
Source code in vllm/distributed/eplb/eplb_state.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
expert_load_pass
instance-attribute
¶
expert_load_pass: Tensor
Expert load during this forward pass. We use the token count each expert processes as the load.
Shape: (num_moe_layers, num_local_physical_experts)
expert_load_window
instance-attribute
¶
expert_load_window: Tensor
A sliding window of expert load.
Shape: (window_size, num_moe_layers, num_local_physical_experts)
expert_load_window_size
class-attribute
instance-attribute
¶
expert_load_window_size: int = 0
Size of the expert load sliding window. This is a constant and is taken from the config.
expert_load_window_step
class-attribute
instance-attribute
¶
expert_load_window_step: int = 0
Current step in the sliding window.
Different from expert_rearrangement_step
, each EP rank may have its own
expert_load_window_step
.
expert_rearrangement_step
class-attribute
instance-attribute
¶
expert_rearrangement_step: int = 0
Steps after last rearrangement. Will trigger a rearrangement if it exceeds the threshold.
NOTE: Keep in mind that all EP ranks need to have the same
expert_rearrangement_step
value to ensure synchronization.
Otherwise, the rearrangement will hang at collective
communication calls.
expert_rearrangement_step_interval
class-attribute
instance-attribute
¶
expert_rearrangement_step_interval: int = 0
Interval for expert rearrangement steps. This is a constant and is taken from the config.
logical_replica_count
instance-attribute
¶
logical_replica_count: Tensor
Number of replicas for each logical expert.
This is exactly the non--1
count in the logical_to_physical_map
.
Shape: (num_moe_layers, num_logical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the count could look like this:
``` [[2, 2, 1, 1], [3, 1, 1, 1]]
logical_to_physical_map
instance-attribute
¶
logical_to_physical_map: Tensor
Mapping from logical experts to physical experts.
This is a sparse matrix, where -1 indicates no mapping.
Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
physical_to_logical_map
instance-attribute
¶
physical_to_logical_map: Tensor
Mapping from physical experts to logical experts.
Shape: (num_moe_layers, num_physical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
__init__
¶
__init__(
physical_to_logical_map: Tensor,
logical_to_physical_map: Tensor,
logical_replica_count: Tensor,
expert_load_pass: Tensor,
expert_load_window: Tensor,
expert_load_window_step: int = 0,
expert_load_window_size: int = 0,
expert_rearrangement_step: int = 0,
expert_rearrangement_step_interval: int = 0,
) -> None
build
classmethod
¶
build(
model: MixtureOfExperts,
device: device,
parallel_config: ParallelConfig,
) -> EplbState
Build the initial EPLB state.
Source code in vllm/distributed/eplb/eplb_state.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
build_initial_global_physical_to_logical_map
staticmethod
¶
build_initial_global_physical_to_logical_map(
num_routed_experts: int, num_redundant_experts: int
) -> Sequence[int]
Build an initial expert arrangement using the following structure: [original routed experts, redundant experts]
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map |
Sequence[int]
|
A list of integers, where each integer is the index of the logical expert that the corresponding physical expert maps to. |
Source code in vllm/distributed/eplb/eplb_state.py
rearrange
¶
rearrange(
model: MixtureOfExperts, is_profile: bool = False
) -> None
Rearrange the experts according to the current load.
Source code in vllm/distributed/eplb/eplb_state.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
step
¶
step(
model: MixtureOfExperts,
is_dummy: bool = False,
is_profile: bool = False,
log_stats: bool = False,
) -> None
Step the EPLB state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
MixtureOfExperts
|
The MoE model. |
required |
is_dummy
|
bool
|
If |
False
|
is_profile
|
bool
|
If |
False
|
log_stats
|
bool
|
If |
False
|
Stats¶
The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
Source code in vllm/distributed/eplb/eplb_state.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
MixtureOfExperts
¶
Bases: Protocol
Check if the model is a mixture of experts (MoE) model.
Source code in vllm/model_executor/models/interfaces.py
expert_weights
instance-attribute
¶
expert_weights: MutableSequence[Iterable[Tensor]]
Expert weights saved in this rank.
The first dimension is the layer, and the second dimension is different parameters in the layer, e.g. up/down projection weights.
num_expert_groups
instance-attribute
¶
num_expert_groups: int
Number of expert groups in this model.
num_local_physical_experts
instance-attribute
¶
num_local_physical_experts: int
Number of local physical experts in this model.
num_logical_experts
instance-attribute
¶
num_logical_experts: int
Number of logical experts in this model.
num_physical_experts
instance-attribute
¶
num_physical_experts: int
Number of physical experts in this model.
num_redundant_experts
instance-attribute
¶
num_redundant_experts: int
Number of redundant experts in this model.
num_routed_experts
instance-attribute
¶
num_routed_experts: int
Number of routed experts in this model.
num_shared_experts
instance-attribute
¶
num_shared_experts: int
Number of shared experts in this model.
set_eplb_state
¶
set_eplb_state(
expert_load_view: Tensor,
logical_to_physical_map: Tensor,
logical_replica_count: Tensor,
) -> None
Register the EPLB state in the MoE model.
Since these are views of the actual EPLB state, any changes made by the EPLB algorithm are automatically reflected in the model's behavior without requiring additional method calls to set new states.
You should also collect model's expert_weights
here instead of in
the weight loader, since after initial weight loading, further
processing like quantization may be applied to the weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expert_load_view
|
Tensor
|
A view of the expert load metrics tensor. |
required |
logical_to_physical_map
|
Tensor
|
Mapping from logical to physical experts. |
required |
logical_replica_count
|
Tensor
|
Count of replicas for each logical expert. |
required |
Source code in vllm/model_executor/models/interfaces.py
ParallelConfig
¶
Configuration for the distributed execution.
Source code in vllm/config.py
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 |
|
data_parallel_backend
class-attribute
instance-attribute
¶
data_parallel_backend: str = 'mp'
Backend to use for data parallel, either "mp" or "ray".
data_parallel_external_lb
class-attribute
instance-attribute
¶
data_parallel_external_lb: bool = False
Whether to use "external" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Set implicitly when data_parallel_rank is provided explicitly to vllm serve.
data_parallel_master_ip
class-attribute
instance-attribute
¶
data_parallel_master_ip: str = '127.0.0.1'
IP of the data parallel master.
data_parallel_master_port
class-attribute
instance-attribute
¶
data_parallel_master_port: int = 29500
Port of the data parallel master.
data_parallel_rank
class-attribute
instance-attribute
¶
data_parallel_rank: int = 0
Rank of the data parallel group.
data_parallel_rank_local
class-attribute
instance-attribute
¶
Local rank of the data parallel group, set only in SPMD mode.
data_parallel_rpc_port
class-attribute
instance-attribute
¶
data_parallel_rpc_port: int = 29550
Port for data parallel messaging.
data_parallel_size
class-attribute
instance-attribute
¶
data_parallel_size: int = 1
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
data_parallel_size_local
class-attribute
instance-attribute
¶
data_parallel_size_local: int = 1
Number of local data parallel groups.
disable_custom_all_reduce
class-attribute
instance-attribute
¶
disable_custom_all_reduce: bool = False
Disable the custom all-reduce kernel and fall back to NCCL.
distributed_executor_backend
class-attribute
instance-attribute
¶
distributed_executor_backend: Optional[
Union[DistributedExecutorBackend, type[ExecutorBase]]
] = None
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu and hpu only support Ray for distributed inference.
enable_eplb
class-attribute
instance-attribute
¶
enable_eplb: bool = False
Enable expert parallelism load balancing for MoE layers.
enable_expert_parallel
class-attribute
instance-attribute
¶
enable_expert_parallel: bool = False
Use expert parallelism instead of tensor parallelism for MoE layers.
enable_multimodal_encoder_data_parallel
class-attribute
instance-attribute
¶
enable_multimodal_encoder_data_parallel: bool = False
Use data parallelism instead of tensor parallelism for vision encoder. Only support LLama4 for now
eplb_log_balancedness
class-attribute
instance-attribute
¶
eplb_log_balancedness: bool = False
Log the balancedness each step of expert parallelism. This is turned off by default since it will cause communication overhead.
eplb_step_interval
class-attribute
instance-attribute
¶
eplb_step_interval: int = 3000
Interval for rearranging experts in expert parallelism.
Note that if this is greater than the EPLB window size, only the metrics
of the last eplb_window_size
steps will be used for rearranging experts.
eplb_window_size
class-attribute
instance-attribute
¶
eplb_window_size: int = 1000
Window size for expert load recording.
max_parallel_loading_workers
class-attribute
instance-attribute
¶
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
num_redundant_experts
class-attribute
instance-attribute
¶
num_redundant_experts: int = 0
Number of redundant experts to use for expert parallelism.
pipeline_parallel_size
class-attribute
instance-attribute
¶
pipeline_parallel_size: int = 1
Number of pipeline parallel groups.
placement_group
class-attribute
instance-attribute
¶
placement_group: Optional[PlacementGroup] = None
ray distributed model workers placement group.
ray_workers_use_nsight
class-attribute
instance-attribute
¶
ray_workers_use_nsight: bool = False
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
sd_worker_cls
class-attribute
instance-attribute
¶
sd_worker_cls: str = 'auto'
The full name of the worker class to use for speculative decoding. If "auto", the worker class will be determined based on the platform.
tensor_parallel_size
class-attribute
instance-attribute
¶
tensor_parallel_size: int = 1
Number of tensor parallel groups.
tokenizer_pool_config
class-attribute
instance-attribute
¶
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None
This parameter is deprecated and will be removed in a future release. Please remove it from your configs
worker_cls
class-attribute
instance-attribute
¶
worker_cls: str = 'auto'
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
worker_extension_cls
class-attribute
instance-attribute
¶
worker_extension_cls: str = ''
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
world_size
class-attribute
instance-attribute
¶
world_size is TPxPP, it affects the number of workers we create.
world_size_across_dp
property
¶
world_size_across_dp: int
world_size_across_dp is TPxPPxDP, it is the size of the world including data parallelism.
__post_init__
¶
Source code in vllm/config.py
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 |
|
_verify_args
¶
_verify_args() -> Self
Source code in vllm/config.py
compute_hash
¶
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
get_next_dp_init_port
¶
get_next_dp_init_port() -> int
We might need to initialize process groups in multiple processes that is related to data parallelism, e.g. both in the worker and in the engine, which can live in different processes. To avoid port conflicts, we increment the port number each time we need to initialize a new process group related to data parallelism.
Source code in vllm/config.py
has_unfinished_dp
staticmethod
¶
Source code in vllm/config.py
stateless_init_dp_group
¶
Source code in vllm/config.py
get_ep_group
¶
get_ep_group() -> GroupCoordinator
get_node_count
¶
get_node_count() -> int
Return the total number of nodes in the distributed environment.
init_logger
¶
init_logger(name: str) -> _VllmLogger
The main purpose of this function is to ensure that loggers are retrieved in such a way that we can be sure the root vllm logger has already been configured.
Source code in vllm/logger.py
rearrange_expert_weights_inplace
¶
rearrange_expert_weights_inplace(
old_global_expert_indices: Tensor,
new_global_expert_indices: Tensor,
expert_weights: Sequence[Iterable[Tensor]],
ep_group: ProcessGroup,
is_profile: bool = False,
) -> None
Rearranges the expert weights in place according to the new expert indices.
The value of the indices arguments are logical indices of the experts, while keys are physical.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
old_global_expert_indices
|
Tensor
|
Shape (num_moe_layers, num_physical_experts). |
required |
new_global_expert_indices
|
Tensor
|
Shape (num_moe_layers, num_physical_experts). |
required |
expert_weights
|
Sequence[Iterable[Tensor]]
|
A sequence of shape (num_moe_layers)(weight_count) of tensors of shape (num_local_physical_experts, hidden_size_i). For example, a linear layer may have up and down projection, so weight_count = 2. Each weight's hidden size can be different. |
required |
ep_group
|
ProcessGroup
|
The device process group for expert parallelism. |
required |
is_profile
|
bool
|
If |
False
|
Source code in vllm/distributed/eplb/rebalance_execute.py
rebalance_experts
¶
rebalance_experts(
weight: Tensor,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> tuple[Tensor, Tensor, Tensor]
Entry point for expert-parallelism load balancer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
Tensor
|
[layers, num_logical_experts], the load statistics for all logical experts |
required |
num_replicas
|
int
|
number of physical experts, must be a multiple of
|
required |
num_groups
|
int
|
number of expert groups |
required |
num_nodes
|
int
|
number of server nodes, where the intra-node network (e.g, NVLink) is faster |
required |
num_gpus
|
int
|
number of GPUs, must be a multiple of |
required |
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map |
Tensor
|
[layers, num_replicas], the expert index of each replica |
logical_to_physical_map |
Tensor
|
[layers, num_logical_experts, X], the replica indices for each expert |
expert_count |
Tensor
|
[layers, num_logical_experts], number of physical replicas for each logical expert |