class XpuCommunicator(DeviceCommunicatorBase):
def __init__(self,
cpu_group: ProcessGroup,
device: Optional[torch.device] = None,
device_group: Optional[ProcessGroup] = None,
unique_name: str = ""):
super().__init__(cpu_group, device, device_group, unique_name)
def all_reduce(self, input_) -> torch.Tensor:
dist.all_reduce(input_, group=self.device_group)
return input_
def gather(self,
input_: torch.Tensor,
dst: int = 0,
dim: int = -1) -> Optional[torch.Tensor]:
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# For xpu path, gather doesn't work properly together with ray
# cluster so we use all_gather instead for now.
input_size = input_.size()
# Allocate output tensor.
output_tensor = torch.empty((self.world_size, ) + input_size,
dtype=input_.dtype,
device=input_.device)
# All-gather.
dist.all_gather_into_tensor(output_tensor,
input_,
group=self.device_group)
if self.rank_in_group == dst:
# Reshape
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(input_size[:dim] +
(self.world_size *
input_size[dim], ) +
input_size[dim + 1:])
else:
output_tensor = None
return output_tensor