Skip to content

vllm.attention.backends.flashinfer

FLASHINFER_KV_CACHE_LAYOUT module-attribute

FLASHINFER_KV_CACHE_LAYOUT: str = (
    VLLM_KV_CACHE_LAYOUT or "NHD"
)

FLASHINFER_WORKSPACE_BUFFER_SIZE module-attribute

FLASHINFER_WORKSPACE_BUFFER_SIZE = 256 * 1024 * 1024

logger module-attribute

logger = init_logger(__name__)

FlashInferBackend

Bases: AttentionBackend

Source code in vllm/attention/backends/flashinfer.py
class FlashInferBackend(AttentionBackend):

    @staticmethod
    def get_name() -> str:
        return "FLASHINFER"

    @staticmethod
    def get_impl_cls() -> Type["FlashInferImpl"]:
        return FlashInferImpl

    @staticmethod
    def get_metadata_cls() -> Type["AttentionMetadata"]:
        return FlashInferMetadata

    @staticmethod
    def get_builder_cls() -> Type["FlashInferMetadataBuilder"]:
        return FlashInferMetadataBuilder

    @staticmethod
    def get_state_cls() -> Type["FlashInferState"]:
        return FlashInferState

    @staticmethod
    def get_kv_cache_shape(
        num_blocks: int,
        block_size: int,
        num_kv_heads: int,
        head_size: int,
    ) -> Tuple[int, ...]:
        return (num_blocks, 2, block_size, num_kv_heads, head_size)

    @staticmethod
    def get_kv_cache_stride_order() -> Tuple[int, ...]:
        cache_layout = FLASHINFER_KV_CACHE_LAYOUT
        assert (cache_layout in ("NHD", "HND"))
        stride_order = (0, 1, 2, 3, 4) if cache_layout == "NHD" else (0, 1, 3,
                                                                      2, 4)
        return stride_order

    @staticmethod
    def swap_blocks(
        src_kv_cache: torch.Tensor,
        dst_kv_cache: torch.Tensor,
        src_to_dst: torch.Tensor,
    ) -> None:
        PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)

    @staticmethod
    def copy_blocks(
        kv_caches: List[torch.Tensor],
        src_to_dists: torch.Tensor,
    ) -> None:
        PagedAttention.copy_blocks(kv_caches, src_to_dists)

    @staticmethod
    def get_supported_head_sizes() -> List[int]:
        return [64, 128, 256]

    @staticmethod
    def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
        if kv_cache_dtype in ("fp8", "fp8_e4m3"):
            return torch.float8_e4m3fn
        elif kv_cache_dtype == "fp8_e5m2":
            return torch.float8_e5m2
        else:
            raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")

copy_blocks staticmethod

copy_blocks(
    kv_caches: List[Tensor], src_to_dists: Tensor
) -> None
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def copy_blocks(
    kv_caches: List[torch.Tensor],
    src_to_dists: torch.Tensor,
) -> None:
    PagedAttention.copy_blocks(kv_caches, src_to_dists)

get_builder_cls staticmethod

get_builder_cls() -> Type[FlashInferMetadataBuilder]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_builder_cls() -> Type["FlashInferMetadataBuilder"]:
    return FlashInferMetadataBuilder

get_fp8_dtype_for_flashinfer staticmethod

get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> dtype
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
    if kv_cache_dtype in ("fp8", "fp8_e4m3"):
        return torch.float8_e4m3fn
    elif kv_cache_dtype == "fp8_e5m2":
        return torch.float8_e5m2
    else:
        raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")

get_impl_cls staticmethod

get_impl_cls() -> Type[FlashInferImpl]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_impl_cls() -> Type["FlashInferImpl"]:
    return FlashInferImpl

get_kv_cache_shape staticmethod

get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> Tuple[int, ...]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> Tuple[int, ...]:
    return (num_blocks, 2, block_size, num_kv_heads, head_size)

get_kv_cache_stride_order staticmethod

get_kv_cache_stride_order() -> Tuple[int, ...]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_kv_cache_stride_order() -> Tuple[int, ...]:
    cache_layout = FLASHINFER_KV_CACHE_LAYOUT
    assert (cache_layout in ("NHD", "HND"))
    stride_order = (0, 1, 2, 3, 4) if cache_layout == "NHD" else (0, 1, 3,
                                                                  2, 4)
    return stride_order

get_metadata_cls staticmethod

get_metadata_cls() -> Type[AttentionMetadata]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
    return FlashInferMetadata

get_name staticmethod

get_name() -> str
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_name() -> str:
    return "FLASHINFER"

get_state_cls staticmethod

get_state_cls() -> Type[FlashInferState]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_state_cls() -> Type["FlashInferState"]:
    return FlashInferState

get_supported_head_sizes staticmethod

get_supported_head_sizes() -> List[int]
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def get_supported_head_sizes() -> List[int]:
    return [64, 128, 256]

swap_blocks staticmethod

swap_blocks(
    src_kv_cache: Tensor,
    dst_kv_cache: Tensor,
    src_to_dst: Tensor,
) -> None
Source code in vllm/attention/backends/flashinfer.py
@staticmethod
def swap_blocks(
    src_kv_cache: torch.Tensor,
    dst_kv_cache: torch.Tensor,
    src_to_dst: torch.Tensor,
) -> None:
    PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)

FlashInferImpl

Bases: AttentionImpl

Source code in vllm/attention/backends/flashinfer.py
class FlashInferImpl(AttentionImpl):

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: Optional[List[float]],
        sliding_window: Optional[int],
        kv_cache_dtype: str,
        blocksparse_params: Optional[Dict[str, Any]] = None,
        logits_soft_cap: Optional[float] = None,
        attn_type: str = AttentionType.DECODER,
        kv_sharing_target_layer_name: Optional[str] = None,
        use_irope: bool = False,
    ) -> None:
        if kv_sharing_target_layer_name is not None:
            raise NotImplementedError("KV sharing is not supported in V0.")
        if use_irope:
            logger.warning_once(
                "Using irope in FlashInfer is not supported yet, it will fall"
                " back to global attention for long context.")
        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = float(scale)
        self.num_kv_heads = num_kv_heads
        if alibi_slopes is not None:
            alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
        self.alibi_slopes = alibi_slopes
        self.sliding_window = ((sliding_window - 1,
                                0) if sliding_window is not None else (-1, -1))
        self.kv_cache_dtype = kv_cache_dtype
        self.logits_soft_cap = logits_soft_cap

        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        if attn_type != AttentionType.DECODER:
            raise NotImplementedError("Encoder self-attention and "
                                      "encoder/decoder cross-attention "
                                      "are not implemented for "
                                      "FlashInferImpl")

    def forward(
        self,
        layer: AttentionLayer,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: FlashInferMetadata,
        output: Optional[torch.Tensor] = None,
        output_scale: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        if output_scale is not None:
            raise NotImplementedError(
                "fused output quantization is not yet supported"
                " for FlashInferImpl")

        # TODO: directly write to output tensor
        num_heads: int = self.num_heads
        head_size: int = self.head_size
        num_kv_heads: int = self.num_kv_heads
        kv_cache_dtype: str = self.kv_cache_dtype
        softmax_scale: float = self.scale
        window_size = self.sliding_window
        alibi_slopes = self.alibi_slopes
        logits_soft_cap = self.logits_soft_cap

        num_tokens, hidden_size = query.shape
        query = query.view(-1, num_heads, head_size)
        key = key.view(-1, num_kv_heads, head_size)
        value = value.view(-1, num_kv_heads, head_size)

        if kv_cache.numel() > 0:
            # Use the same reshape and cache kernel as flash attention.
            ops.reshape_and_cache_flash(
                key,
                value,
                kv_cache[:, 0],
                kv_cache[:, 1],
                attn_metadata.slot_mapping.flatten(),
                kv_cache_dtype,
                layer._k_scale,
                layer._v_scale,
            )
            # The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
            # to process the cache when the kv_cache_dtype is fp8
            if kv_cache_dtype.startswith("fp8"):
                torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                    kv_cache_dtype)
                kv_cache = kv_cache.view(torch_dtype)

        num_prefill_tokens = attn_metadata.num_prefill_tokens
        num_decode_tokens = attn_metadata.num_decode_tokens
        assert key.shape[0] == num_prefill_tokens + num_decode_tokens, \
                    f"key : {key.shape} : #prefill tokens {num_prefill_tokens} : #decode tokens {num_decode_tokens}" # noqa
        assert value.shape[0] == num_prefill_tokens + num_decode_tokens, \
                    f"value : {value.shape} : #prefill toks {num_prefill_tokens} : #decode toks {num_decode_tokens}" # noqa
        query = query.contiguous(
        )  # Flashinfer requires query to be contiguous
        # Query for decode. KV is not needed because it is already cached.
        # QKV for prefill.
        decode_query = query[num_prefill_tokens:]
        query = query[:num_prefill_tokens]

        key = key[:num_prefill_tokens]
        value = value[:num_prefill_tokens]

        assert query.shape[0] == num_prefill_tokens
        assert decode_query.shape[0] == num_decode_tokens

        window_left = window_size[0] if window_size is not None else -1

        prefill_output: Optional[torch.Tensor] = None
        decode_output: Optional[torch.Tensor] = None
        stride_order = FlashInferBackend.get_kv_cache_stride_order()
        if prefill_meta := attn_metadata.prefill_metadata:
            # We will use flash attention for prefill
            # when kv_cache is not provided.
            # This happens when vllm runs the profiling to
            # determine the number of blocks.
            if kv_cache.numel() == 0:
                prefill_output = flash_attn_varlen_func(
                    q=query,
                    k=key,
                    v=value,
                    cu_seqlens_q=prefill_meta.seq_start_loc,
                    cu_seqlens_k=prefill_meta.seq_start_loc,
                    max_seqlen_q=prefill_meta.max_prefill_seq_len,
                    max_seqlen_k=prefill_meta.max_prefill_seq_len,
                    softmax_scale=softmax_scale,
                    causal=True,
                    window_size=window_size,
                    alibi_slopes=alibi_slopes,
                )
            else:
                assert prefill_meta is not None
                assert prefill_meta.prefill_wrapper is not None

                assert prefill_meta.prefill_wrapper._causal
                assert prefill_meta.prefill_wrapper._window_left == window_left
                assert prefill_meta.prefill_wrapper._logits_soft_cap == (
                    logits_soft_cap or 0.0)
                assert prefill_meta.prefill_wrapper._sm_scale == softmax_scale

                prefill_output = prefill_meta.prefill_wrapper.run(
                    query,
                    kv_cache.permute(*stride_order),
                    k_scale=layer._k_scale_float,
                    v_scale=layer._v_scale_float,
                )
        if decode_meta := attn_metadata.decode_metadata:
            assert decode_meta is not None
            assert decode_meta.decode_wrapper is not None

            assert decode_meta.decode_wrapper._window_left == window_left
            assert decode_meta.decode_wrapper._logits_soft_cap == (
                logits_soft_cap or 0.0)
            assert decode_meta.decode_wrapper._sm_scale == softmax_scale

            decode_output = decode_meta.decode_wrapper.run(
                decode_query,
                kv_cache.permute(*stride_order),
                k_scale=layer._k_scale_float,
                v_scale=layer._v_scale_float,
            )

        if prefill_output is None and decode_output is not None:
            # Decode only batch.
            output, num_tokens = decode_output, num_decode_tokens
        elif decode_output is None and prefill_output is not None:
            # Prefill only batch.
            output, num_tokens = prefill_output, num_prefill_tokens
        else:
            # Chunked prefill batch does not work with speculative decoding in
            # FlashInfer backend, so the query length for decode should be 1.
            assert prefill_output is not None
            assert decode_output is not None
            assert decode_meta is not None
            assert decode_meta.decode_query_len == 1
            decode_output = decode_output.squeeze(1)
            output = torch.cat([prefill_output, decode_output], dim=0)
        return output.view(num_tokens, hidden_size)

alibi_slopes instance-attribute

alibi_slopes = alibi_slopes

head_size instance-attribute

head_size = head_size

kv_cache_dtype instance-attribute

kv_cache_dtype = kv_cache_dtype

logits_soft_cap instance-attribute

logits_soft_cap = logits_soft_cap

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

num_queries_per_kv instance-attribute

num_queries_per_kv = num_heads // num_kv_heads

scale instance-attribute

scale = float(scale)

sliding_window instance-attribute

sliding_window = (
    (sliding_window - 1, 0)
    if sliding_window is not None
    else (-1, -1)
)

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[List[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[Dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: str = DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
    use_irope: bool = False,
) -> None
Source code in vllm/attention/backends/flashinfer.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[List[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[Dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: str = AttentionType.DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
    use_irope: bool = False,
) -> None:
    if kv_sharing_target_layer_name is not None:
        raise NotImplementedError("KV sharing is not supported in V0.")
    if use_irope:
        logger.warning_once(
            "Using irope in FlashInfer is not supported yet, it will fall"
            " back to global attention for long context.")
    self.num_heads = num_heads
    self.head_size = head_size
    self.scale = float(scale)
    self.num_kv_heads = num_kv_heads
    if alibi_slopes is not None:
        alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
    self.alibi_slopes = alibi_slopes
    self.sliding_window = ((sliding_window - 1,
                            0) if sliding_window is not None else (-1, -1))
    self.kv_cache_dtype = kv_cache_dtype
    self.logits_soft_cap = logits_soft_cap

    self.num_queries_per_kv = self.num_heads // self.num_kv_heads

    if attn_type != AttentionType.DECODER:
        raise NotImplementedError("Encoder self-attention and "
                                  "encoder/decoder cross-attention "
                                  "are not implemented for "
                                  "FlashInferImpl")

forward

forward(
    layer: AttentionLayer,
    query: Tensor,
    key: Tensor,
    value: Tensor,
    kv_cache: Tensor,
    attn_metadata: FlashInferMetadata,
    output: Optional[Tensor] = None,
    output_scale: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/attention/backends/flashinfer.py
def forward(
    self,
    layer: AttentionLayer,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata: FlashInferMetadata,
    output: Optional[torch.Tensor] = None,
    output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:

    if output_scale is not None:
        raise NotImplementedError(
            "fused output quantization is not yet supported"
            " for FlashInferImpl")

    # TODO: directly write to output tensor
    num_heads: int = self.num_heads
    head_size: int = self.head_size
    num_kv_heads: int = self.num_kv_heads
    kv_cache_dtype: str = self.kv_cache_dtype
    softmax_scale: float = self.scale
    window_size = self.sliding_window
    alibi_slopes = self.alibi_slopes
    logits_soft_cap = self.logits_soft_cap

    num_tokens, hidden_size = query.shape
    query = query.view(-1, num_heads, head_size)
    key = key.view(-1, num_kv_heads, head_size)
    value = value.view(-1, num_kv_heads, head_size)

    if kv_cache.numel() > 0:
        # Use the same reshape and cache kernel as flash attention.
        ops.reshape_and_cache_flash(
            key,
            value,
            kv_cache[:, 0],
            kv_cache[:, 1],
            attn_metadata.slot_mapping.flatten(),
            kv_cache_dtype,
            layer._k_scale,
            layer._v_scale,
        )
        # The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
        # to process the cache when the kv_cache_dtype is fp8
        if kv_cache_dtype.startswith("fp8"):
            torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                kv_cache_dtype)
            kv_cache = kv_cache.view(torch_dtype)

    num_prefill_tokens = attn_metadata.num_prefill_tokens
    num_decode_tokens = attn_metadata.num_decode_tokens
    assert key.shape[0] == num_prefill_tokens + num_decode_tokens, \
                f"key : {key.shape} : #prefill tokens {num_prefill_tokens} : #decode tokens {num_decode_tokens}" # noqa
    assert value.shape[0] == num_prefill_tokens + num_decode_tokens, \
                f"value : {value.shape} : #prefill toks {num_prefill_tokens} : #decode toks {num_decode_tokens}" # noqa
    query = query.contiguous(
    )  # Flashinfer requires query to be contiguous
    # Query for decode. KV is not needed because it is already cached.
    # QKV for prefill.
    decode_query = query[num_prefill_tokens:]
    query = query[:num_prefill_tokens]

    key = key[:num_prefill_tokens]
    value = value[:num_prefill_tokens]

    assert query.shape[0] == num_prefill_tokens
    assert decode_query.shape[0] == num_decode_tokens

    window_left = window_size[0] if window_size is not None else -1

    prefill_output: Optional[torch.Tensor] = None
    decode_output: Optional[torch.Tensor] = None
    stride_order = FlashInferBackend.get_kv_cache_stride_order()
    if prefill_meta := attn_metadata.prefill_metadata:
        # We will use flash attention for prefill
        # when kv_cache is not provided.
        # This happens when vllm runs the profiling to
        # determine the number of blocks.
        if kv_cache.numel() == 0:
            prefill_output = flash_attn_varlen_func(
                q=query,
                k=key,
                v=value,
                cu_seqlens_q=prefill_meta.seq_start_loc,
                cu_seqlens_k=prefill_meta.seq_start_loc,
                max_seqlen_q=prefill_meta.max_prefill_seq_len,
                max_seqlen_k=prefill_meta.max_prefill_seq_len,
                softmax_scale=softmax_scale,
                causal=True,
                window_size=window_size,
                alibi_slopes=alibi_slopes,
            )
        else:
            assert prefill_meta is not None
            assert prefill_meta.prefill_wrapper is not None

            assert prefill_meta.prefill_wrapper._causal
            assert prefill_meta.prefill_wrapper._window_left == window_left
            assert prefill_meta.prefill_wrapper._logits_soft_cap == (
                logits_soft_cap or 0.0)
            assert prefill_meta.prefill_wrapper._sm_scale == softmax_scale

            prefill_output = prefill_meta.prefill_wrapper.run(
                query,
                kv_cache.permute(*stride_order),
                k_scale=layer._k_scale_float,
                v_scale=layer._v_scale_float,
            )
    if decode_meta := attn_metadata.decode_metadata:
        assert decode_meta is not None
        assert decode_meta.decode_wrapper is not None

        assert decode_meta.decode_wrapper._window_left == window_left
        assert decode_meta.decode_wrapper._logits_soft_cap == (
            logits_soft_cap or 0.0)
        assert decode_meta.decode_wrapper._sm_scale == softmax_scale

        decode_output = decode_meta.decode_wrapper.run(
            decode_query,
            kv_cache.permute(*stride_order),
            k_scale=layer._k_scale_float,
            v_scale=layer._v_scale_float,
        )

    if prefill_output is None and decode_output is not None:
        # Decode only batch.
        output, num_tokens = decode_output, num_decode_tokens
    elif decode_output is None and prefill_output is not None:
        # Prefill only batch.
        output, num_tokens = prefill_output, num_prefill_tokens
    else:
        # Chunked prefill batch does not work with speculative decoding in
        # FlashInfer backend, so the query length for decode should be 1.
        assert prefill_output is not None
        assert decode_output is not None
        assert decode_meta is not None
        assert decode_meta.decode_query_len == 1
        decode_output = decode_output.squeeze(1)
        output = torch.cat([prefill_output, decode_output], dim=0)
    return output.view(num_tokens, hidden_size)

FlashInferMetadata dataclass

Bases: AttentionMetadata

Source code in vllm/attention/backends/flashinfer.py
@dataclass
class FlashInferMetadata(AttentionMetadata):
    # Maximum sequence length among prefill batch. 0 if there are decoding
    # requests only.
    max_prefill_seq_len: int
    # Number of query tokens for each request in the batch.
    # Currently, we require that all requests have the same number of query
    # tokens during the decoding phase. When speculavie decoding is enabled,
    # decode_query_len might be greater than 1. In all other cases, it is 1.
    decode_query_len: Optional[int] = 1

    use_cuda_graph: bool = True

    prefill_wrapper: Optional[BatchPrefillWithPagedKVCacheWrapper] = None
    decode_wrapper: Optional[BatchDecodeWithPagedKVCacheWrapper] = None

    # Metadata for the prefill stage
    seq_start_loc: Optional[torch.Tensor] = None
    query_start_loc: Optional[torch.Tensor] = None
    block_tables: Optional[torch.Tensor] = None

    # used for GPU in-place advance_step
    seq_lens_tensor: Optional[torch.Tensor] = None
    block_table_bound: Optional[torch.Tensor] = None

    # An example for paged_kv_indices, paged_kv_indptr:
    # request 1, page indices [0, 5, 8]
    # request 2, page indices [1, 6, 7]
    # request 3, page indices [3, 4]
    # paged_kv_indices is a concatenation of page indices of all requests:
    # [0, 5, 8, 1, 6, 7, 3, 4]
    # paged_kv_indptr is used to index into paged_kv_indices:
    # [0, 3, 6, 8]
    # The indptr of the paged kv cache, shape: [batch_size + 1]
    paged_kv_indptr: Optional[torch.Tensor] = None
    # The page indices of the paged kv cache
    paged_kv_indices: Optional[torch.Tensor] = None
    # The number of entries in the last page of each request in
    # the paged kv cache, shape: [batch_size]
    paged_kv_last_page_len: Optional[torch.Tensor] = None
    # The number of query/output heads
    num_qo_heads: Optional[int] = None
    # The number of key/value heads
    num_kv_heads: Optional[int] = None
    # The dimension of the attention heads
    head_dim: Optional[int] = None
    # Block size of vllm
    page_size: Optional[int] = None
    # The data type of the paged kv cache
    data_type: torch.dtype = None
    # The data type of the query
    q_data_type: torch.dtype = None
    # FlashInfer 0.2 encourages passing host tensors
    device: torch.device = torch.device("cpu")
    is_profile_run: bool = False

    # The FlashInfer backend currently supports only models in which all layers
    # share the same following hyperparameters:

    # The left (inclusive) window size for the attention window, when
    # set to `-1`, the window size will be set to the full length of
    # the sequence. Defaults to `-1`.
    window_left: int = -1
    # The attention logits soft capping value (used in Gemini, Grok and
    # Gemma-2, etc.), if not provided, will be set to `0`. If greater
    # than 0, the logits will be capped according to formula:
    # $$\texttt{logits\_soft\_cap} \times
    # \mathrm{tanh}(x / \texttt{logits\_soft\_cap})$$,
    # where $x$ is the input logits.
    logits_soft_cap: Optional[float] = None
    # The scale used in softmax, if not provided, will be set to
    # `1.0 / sqrt(head_dim)`.
    sm_scale: Optional[float] = None

    def __post_init__(self):
        # Refer to
        # https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
        supported_head_sizes = FlashInferBackend.get_supported_head_sizes()
        if self.head_dim is not None and self.head_dim \
                not in supported_head_sizes:
            raise ValueError(
                f"Only {supported_head_sizes} are supported for head_dim,",
                f" received {self.head_dim}.")

    def begin_forward(self):
        if self.num_prefill_tokens > 0:
            if self.paged_kv_indices is None:
                return

            assert self.prefill_wrapper is not None
            assert self.query_start_loc is not None
            assert self.paged_kv_indices is not None
            assert self.paged_kv_indptr is not None
            assert self.paged_kv_last_page_len is not None
            assert self.block_table_bound is not None
            assert self.seq_lens_tensor is not None
            self.query_start_loc = self.query_start_loc[:self.num_prefills + 1]
            batch_size = self.query_start_loc.shape[0] - 1
            assert batch_size >= 0
            # We will use flash attention for profiling to
            # determine the number of blocks. Therefore,
            # we don't need to prepare the input for flashinfer for profile run.
            if not self.is_profile_run:
                self.paged_kv_indptr = self.paged_kv_indptr.to(self.device)
                self.paged_kv_last_page_len = self.paged_kv_last_page_len.to(
                    self.device)
                self.block_table_bound = self.block_table_bound.to(self.device)
                self.seq_lens_tensor = self.seq_lens_tensor.to(self.device)
                self.paged_kv_indices = self.paged_kv_indices.to(self.device)
                self.prefill_wrapper.plan(
                    self.query_start_loc,
                    self.paged_kv_indptr[:self.num_prefills + 1],
                    self.paged_kv_indices,
                    self.paged_kv_last_page_len[:self.num_prefills],
                    self.num_qo_heads,
                    self.num_kv_heads,
                    self.head_dim,
                    self.page_size,
                    causal=True,
                    sm_scale=self.sm_scale,
                    window_left=self.window_left,
                    logits_soft_cap=self.logits_soft_cap,
                    q_data_type=self.q_data_type,
                    kv_data_type=self.data_type)
        if self.num_decode_tokens > 0:
            assert self.paged_kv_indices is not None
            assert self.paged_kv_indptr is not None
            assert self.paged_kv_last_page_len is not None
            self.paged_kv_indices = self.paged_kv_indices.to(self.device)
            self.paged_kv_indptr = self.paged_kv_indptr.to(self.device)
            self.paged_kv_last_page_len = self.paged_kv_last_page_len.to(
                self.device)
            # handle model warmup path
            if self.block_table_bound is not None:
                self.block_table_bound = self.block_table_bound.to(self.device)
            if self.seq_lens_tensor is not None:
                self.seq_lens_tensor = self.seq_lens_tensor.to(self.device)

            assert self.decode_wrapper is not None
            self.decode_wrapper.plan(
                self.paged_kv_indptr[self.num_prefills:],
                self.paged_kv_indices,
                self.paged_kv_last_page_len[self.num_prefills:],
                self.num_qo_heads,
                self.num_kv_heads,
                self.head_dim,
                self.page_size,
                # Disable flashinfer's pos encoding and use vllm's rope.
                pos_encoding_mode="NONE",
                window_left=self.window_left,
                logits_soft_cap=self.logits_soft_cap,
                sm_scale=self.sm_scale,
                # kv-cache data type.
                kv_data_type=self.data_type,
                # query data type.
                q_data_type=self.q_data_type)

    def asdict_zerocopy(self,
                        skip_fields: Optional[Set[str]] = None
                        ) -> Dict[str, Any]:
        if skip_fields is None:
            skip_fields = set()
        # We need to skip the prefill/decode_wrapper field since it cannot be
        # broadcasted with nccl when TP is enabled.
        skip_fields.add('prefill_wrapper')
        skip_fields.add('decode_wrapper')
        return super().asdict_zerocopy(skip_fields)

    @property
    def prefill_metadata(self) -> Optional["FlashInferMetadata"]:
        if self.num_prefills == 0:
            return None
        return self

    @property
    def decode_metadata(self) -> Optional["FlashInferMetadata"]:
        if self.num_decode_tokens == 0:
            return None
        return self

    def advance_step(self,
                     model_input: "ModelInputForGPUWithSamplingMetadata",
                     sampled_token_ids: Optional[torch.Tensor],
                     block_size: int,
                     num_seqs: int,
                     num_queries: int,
                     turn_prefills_into_decodes: bool = False):
        """
        Update metadata in-place to advance one decode step.
        """

        if turn_prefills_into_decodes:
            # When Multi-Step is enabled with Chunked-Prefill, prefills and
            # decodes are scheduled together. In the first step, all the
            # prefills turn into decodes. This update reflects that
            # conversion.
            assert self.num_decode_tokens + self.num_prefills == num_seqs
            # Flashinfer doesn't support speculative decoding + chunked-prefill
            # + multi-step scheduling yet.
            assert self.decode_query_len == 1
            self.num_decode_tokens += self.num_prefills
            self.num_prefills = 0
            self.num_prefill_tokens = 0
            self.max_prefill_seq_len = 0
            self.max_query_len = 1

            self.slot_mapping = self.slot_mapping[:num_seqs]
        else:
            assert self.seq_lens_tensor is not None

        assert num_seqs > 0
        assert num_queries > 0
        assert model_input.attn_metadata is not None
        assert sampled_token_ids is not None

        # When using cudagraph, the num_seqs is padded to the next captured
        # batch sized, but num_queries tracks the actual number of requests in
        # the batch. For --enforce-eager mode, num_seqs == num_queries
        if num_seqs != num_queries:
            assert num_seqs > num_queries
            assert self.use_cuda_graph

        model_input.input_tokens[:num_queries] = sampled_token_ids.flatten()

        # Update GPU tensors
        ops.advance_step_flashinfer(
            num_seqs=num_seqs,
            num_queries=num_queries,
            block_size=block_size,
            input_tokens=model_input.input_tokens,
            sampled_token_ids=model_input.input_tokens,
            input_positions=model_input.input_positions,
            seq_lens=self.seq_lens_tensor,
            slot_mapping=self.slot_mapping,
            block_tables=self.block_tables,
            paged_kv_indices=self.paged_kv_indices,
            paged_kv_indptr=self.paged_kv_indptr,
            paged_kv_last_page_len=self.paged_kv_last_page_len,
            block_table_bound=self.block_table_bound)

block_table_bound class-attribute instance-attribute

block_table_bound: Optional[Tensor] = None

block_tables class-attribute instance-attribute

block_tables: Optional[Tensor] = None

data_type class-attribute instance-attribute

data_type: dtype = None

decode_metadata property

decode_metadata: Optional[FlashInferMetadata]

decode_query_len class-attribute instance-attribute

decode_query_len: Optional[int] = 1

decode_wrapper class-attribute instance-attribute

decode_wrapper: Optional[
    BatchDecodeWithPagedKVCacheWrapper
] = None

device class-attribute instance-attribute

device: device = device('cpu')

head_dim class-attribute instance-attribute

head_dim: Optional[int] = None

is_profile_run class-attribute instance-attribute

is_profile_run: bool = False

logits_soft_cap class-attribute instance-attribute

logits_soft_cap: Optional[float] = None

max_prefill_seq_len instance-attribute

max_prefill_seq_len: int

num_kv_heads class-attribute instance-attribute

num_kv_heads: Optional[int] = None

num_qo_heads class-attribute instance-attribute

num_qo_heads: Optional[int] = None

page_size class-attribute instance-attribute

page_size: Optional[int] = None

paged_kv_indices class-attribute instance-attribute

paged_kv_indices: Optional[Tensor] = None

paged_kv_indptr class-attribute instance-attribute

paged_kv_indptr: Optional[Tensor] = None

paged_kv_last_page_len class-attribute instance-attribute

paged_kv_last_page_len: Optional[Tensor] = None

prefill_metadata property

prefill_metadata: Optional[FlashInferMetadata]

prefill_wrapper class-attribute instance-attribute

prefill_wrapper: Optional[
    BatchPrefillWithPagedKVCacheWrapper
] = None

q_data_type class-attribute instance-attribute

q_data_type: dtype = None

query_start_loc class-attribute instance-attribute

query_start_loc: Optional[Tensor] = None

seq_lens_tensor class-attribute instance-attribute

seq_lens_tensor: Optional[Tensor] = None

seq_start_loc class-attribute instance-attribute

seq_start_loc: Optional[Tensor] = None

sm_scale class-attribute instance-attribute

sm_scale: Optional[float] = None

use_cuda_graph class-attribute instance-attribute

use_cuda_graph: bool = True

window_left class-attribute instance-attribute

window_left: int = -1

__init__

__init__(
    num_prefills: int,
    num_prefill_tokens: int,
    num_decode_tokens: int,
    slot_mapping: Tensor,
    multi_modal_placeholder_index_maps: Optional[
        Dict[str, IndexMap]
    ],
    enable_kv_scales_calculation: bool,
    max_prefill_seq_len: int,
    decode_query_len: Optional[int] = 1,
    use_cuda_graph: bool = True,
    prefill_wrapper: Optional[
        BatchPrefillWithPagedKVCacheWrapper
    ] = None,
    decode_wrapper: Optional[
        BatchDecodeWithPagedKVCacheWrapper
    ] = None,
    seq_start_loc: Optional[Tensor] = None,
    query_start_loc: Optional[Tensor] = None,
    block_tables: Optional[Tensor] = None,
    seq_lens_tensor: Optional[Tensor] = None,
    block_table_bound: Optional[Tensor] = None,
    paged_kv_indptr: Optional[Tensor] = None,
    paged_kv_indices: Optional[Tensor] = None,
    paged_kv_last_page_len: Optional[Tensor] = None,
    num_qo_heads: Optional[int] = None,
    num_kv_heads: Optional[int] = None,
    head_dim: Optional[int] = None,
    page_size: Optional[int] = None,
    data_type: dtype = None,
    q_data_type: dtype = None,
    device: device = device("cpu"),
    is_profile_run: bool = False,
    window_left: int = -1,
    logits_soft_cap: Optional[float] = None,
    sm_scale: Optional[float] = None,
) -> None

__post_init__

__post_init__()
Source code in vllm/attention/backends/flashinfer.py
def __post_init__(self):
    # Refer to
    # https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
    supported_head_sizes = FlashInferBackend.get_supported_head_sizes()
    if self.head_dim is not None and self.head_dim \
            not in supported_head_sizes:
        raise ValueError(
            f"Only {supported_head_sizes} are supported for head_dim,",
            f" received {self.head_dim}.")

advance_step

advance_step(
    model_input: ModelInputForGPUWithSamplingMetadata,
    sampled_token_ids: Optional[Tensor],
    block_size: int,
    num_seqs: int,
    num_queries: int,
    turn_prefills_into_decodes: bool = False,
)

Update metadata in-place to advance one decode step.

Source code in vllm/attention/backends/flashinfer.py
def advance_step(self,
                 model_input: "ModelInputForGPUWithSamplingMetadata",
                 sampled_token_ids: Optional[torch.Tensor],
                 block_size: int,
                 num_seqs: int,
                 num_queries: int,
                 turn_prefills_into_decodes: bool = False):
    """
    Update metadata in-place to advance one decode step.
    """

    if turn_prefills_into_decodes:
        # When Multi-Step is enabled with Chunked-Prefill, prefills and
        # decodes are scheduled together. In the first step, all the
        # prefills turn into decodes. This update reflects that
        # conversion.
        assert self.num_decode_tokens + self.num_prefills == num_seqs
        # Flashinfer doesn't support speculative decoding + chunked-prefill
        # + multi-step scheduling yet.
        assert self.decode_query_len == 1
        self.num_decode_tokens += self.num_prefills
        self.num_prefills = 0
        self.num_prefill_tokens = 0
        self.max_prefill_seq_len = 0
        self.max_query_len = 1

        self.slot_mapping = self.slot_mapping[:num_seqs]
    else:
        assert self.seq_lens_tensor is not None

    assert num_seqs > 0
    assert num_queries > 0
    assert model_input.attn_metadata is not None
    assert sampled_token_ids is not None

    # When using cudagraph, the num_seqs is padded to the next captured
    # batch sized, but num_queries tracks the actual number of requests in
    # the batch. For --enforce-eager mode, num_seqs == num_queries
    if num_seqs != num_queries:
        assert num_seqs > num_queries
        assert self.use_cuda_graph

    model_input.input_tokens[:num_queries] = sampled_token_ids.flatten()

    # Update GPU tensors
    ops.advance_step_flashinfer(
        num_seqs=num_seqs,
        num_queries=num_queries,
        block_size=block_size,
        input_tokens=model_input.input_tokens,
        sampled_token_ids=model_input.input_tokens,
        input_positions=model_input.input_positions,
        seq_lens=self.seq_lens_tensor,
        slot_mapping=self.slot_mapping,
        block_tables=self.block_tables,
        paged_kv_indices=self.paged_kv_indices,
        paged_kv_indptr=self.paged_kv_indptr,
        paged_kv_last_page_len=self.paged_kv_last_page_len,
        block_table_bound=self.block_table_bound)

asdict_zerocopy

asdict_zerocopy(
    skip_fields: Optional[Set[str]] = None,
) -> Dict[str, Any]
Source code in vllm/attention/backends/flashinfer.py
def asdict_zerocopy(self,
                    skip_fields: Optional[Set[str]] = None
                    ) -> Dict[str, Any]:
    if skip_fields is None:
        skip_fields = set()
    # We need to skip the prefill/decode_wrapper field since it cannot be
    # broadcasted with nccl when TP is enabled.
    skip_fields.add('prefill_wrapper')
    skip_fields.add('decode_wrapper')
    return super().asdict_zerocopy(skip_fields)

begin_forward

begin_forward()
Source code in vllm/attention/backends/flashinfer.py
def begin_forward(self):
    if self.num_prefill_tokens > 0:
        if self.paged_kv_indices is None:
            return

        assert self.prefill_wrapper is not None
        assert self.query_start_loc is not None
        assert self.paged_kv_indices is not None
        assert self.paged_kv_indptr is not None
        assert self.paged_kv_last_page_len is not None
        assert self.block_table_bound is not None
        assert self.seq_lens_tensor is not None
        self.query_start_loc = self.query_start_loc[:self.num_prefills + 1]
        batch_size = self.query_start_loc.shape[0] - 1
        assert batch_size >= 0
        # We will use flash attention for profiling to
        # determine the number of blocks. Therefore,
        # we don't need to prepare the input for flashinfer for profile run.
        if not self.is_profile_run:
            self.paged_kv_indptr = self.paged_kv_indptr.to(self.device)
            self.paged_kv_last_page_len = self.paged_kv_last_page_len.to(
                self.device)
            self.block_table_bound = self.block_table_bound.to(self.device)
            self.seq_lens_tensor = self.seq_lens_tensor.to(self.device)
            self.paged_kv_indices = self.paged_kv_indices.to(self.device)
            self.prefill_wrapper.plan(
                self.query_start_loc,
                self.paged_kv_indptr[:self.num_prefills + 1],
                self.paged_kv_indices,
                self.paged_kv_last_page_len[:self.num_prefills],
                self.num_qo_heads,
                self.num_kv_heads,
                self.head_dim,
                self.page_size,
                causal=True,
                sm_scale=self.sm_scale,
                window_left=self.window_left,
                logits_soft_cap=self.logits_soft_cap,
                q_data_type=self.q_data_type,
                kv_data_type=self.data_type)
    if self.num_decode_tokens > 0:
        assert self.paged_kv_indices is not None
        assert self.paged_kv_indptr is not None
        assert self.paged_kv_last_page_len is not None
        self.paged_kv_indices = self.paged_kv_indices.to(self.device)
        self.paged_kv_indptr = self.paged_kv_indptr.to(self.device)
        self.paged_kv_last_page_len = self.paged_kv_last_page_len.to(
            self.device)
        # handle model warmup path
        if self.block_table_bound is not None:
            self.block_table_bound = self.block_table_bound.to(self.device)
        if self.seq_lens_tensor is not None:
            self.seq_lens_tensor = self.seq_lens_tensor.to(self.device)

        assert self.decode_wrapper is not None
        self.decode_wrapper.plan(
            self.paged_kv_indptr[self.num_prefills:],
            self.paged_kv_indices,
            self.paged_kv_last_page_len[self.num_prefills:],
            self.num_qo_heads,
            self.num_kv_heads,
            self.head_dim,
            self.page_size,
            # Disable flashinfer's pos encoding and use vllm's rope.
            pos_encoding_mode="NONE",
            window_left=self.window_left,
            logits_soft_cap=self.logits_soft_cap,
            sm_scale=self.sm_scale,
            # kv-cache data type.
            kv_data_type=self.data_type,
            # query data type.
            q_data_type=self.q_data_type)

FlashInferMetadataBuilder

Bases: AttentionMetadataBuilder[FlashInferMetadata]

Source code in vllm/attention/backends/flashinfer.py
class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):

    def __init__(self, input_builder: "ModelInputForGPUBuilder"):

        self.input_builder = input_builder
        self.runner = input_builder.runner

        self.sliding_window = input_builder.sliding_window
        self.block_size = input_builder.block_size

        # Global hyperparameters shared by all attention layers
        self.global_hyperparameters: Optional[PerLayerParameters] = None

        self.vllm_config = self.runner.vllm_config

    def prepare(self):
        self.slot_mapping: List[int] = []
        self.prefill_seq_lens: List[int] = []
        self.context_lens: List[int] = []
        self.block_tables: List[List[int]] = []
        self.curr_seq_lens: List[int] = []
        self.multimodal_placeholder_maps: Dict[
            str,
            MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
        self.num_prefills = 0
        self.num_prefill_tokens = 0
        self.num_decode_tokens = 0

        # Please follow https://docs.flashinfer.ai/tutorials/kv_layout.html#page-layout
        # for the precise definition of the following fields.
        # An example:
        # request 1, page indices [0, 5, 8]
        # request 2, page indices [1, 6, 7]
        # request 3, page indices [3, 4]
        # paged_kv_indices is a concatenation of page indices of all requests:
        # [0, 5, 8, 1, 6, 7, 3, 4]
        # paged_kv_indptr is used to index into paged_kv_indices:
        # [0, 3, 6, 8]
        self.paged_kv_indices: List[int] = []
        # 0 at the beginning of paged_kv_indptr indicates the start of the
        # first request’s page indices in the paged_kv_indices list.
        self.paged_kv_indptr: List[int] = [0]
        # paged_kv_last_page_len is the length of the last page of each request
        self.paged_kv_last_page_len: List[int] = []
        self.total_blocks = 0
        self.is_profile_run: bool = False

        if self.global_hyperparameters is None:
            # Infer global hyperparameters, since currently we only support
            # models in which all layers share the same values for the
            # following hyperparameters:
            # - `window_left`
            # - `logits_soft_cap`
            # - `sm_scale`
            inferred_params = infer_global_hyperparameters(
                get_per_layer_parameters(self.vllm_config))
            self.global_hyperparameters = inferred_params
            self.window_left = inferred_params.window_left
            self.logits_soft_cap = inferred_params.logits_soft_cap
            self.sm_scale = inferred_params.sm_scale

    def _add_seq_group(
            self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
            chunked_prefill_enabled: bool):
        """Add a sequence group to the metadata. Specifically update/append
        1. context length.
        2. block table.
        3. slot mapping.
        """
        is_prompt = inter_data.is_prompt
        block_tables = inter_data.block_tables
        computed_block_nums = inter_data.computed_block_nums

        for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
             curr_sliding_window_block) in zip(
                 inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
                 inter_data.orig_seq_lens, inter_data.seq_lens,
                 inter_data.query_lens, inter_data.context_lens,
                 inter_data.curr_sliding_window_blocks):
            self.context_lens.append(context_len)
            if is_prompt:
                mm_maps = inter_data.multi_modal_placeholder_maps
                if mm_maps:
                    for modality, placeholders in mm_maps.items():
                        self.multimodal_placeholder_maps[modality].extend(
                            placeholders)
                self.num_prefills += 1
                self.num_prefill_tokens += token_len
                self.prefill_seq_lens.append(seq_len)
            else:
                assert query_len == 1, (
                    "seq_len: {}, context_len: {}, query_len: {}".format(
                        seq_len, context_len, query_len))
                self.num_decode_tokens += query_len
                self.curr_seq_lens.append(curr_seq_len)

            # Compute block table.
            # TODO(sang): Combine chunked prefill and prefix caching by
            # only allowing multiple of block_size chunk size.
            # NOTE: This only works for oooooooxxx style attention.
            block_table = []
            if inter_data.prefix_cache_hit:
                block_table = computed_block_nums
            elif ((chunked_prefill_enabled or not is_prompt)
                  and block_tables is not None):
                block_table = block_tables[seq_id][-curr_sliding_window_block:]
            self.block_tables.append(block_table)

            is_profile_run = is_block_tables_empty(block_tables)

            # Compute slot mapping.
            start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
                                                       context_len,
                                                       self.sliding_window)
            compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
                                 seq_len, context_len, start_idx,
                                 self.block_size, inter_data.block_tables)

            # It is not necessary to add paged_kv_indices, paged_kv_indptr,
            # and paged_kv_last_page_len for profile run because we will
            # create dummy inputs.
            if is_profile_run:
                self.is_profile_run = is_profile_run
                return

            block_table = block_tables[seq_id]
            self._update_paged_kv_tensors(block_table, seq_len)

    def _update_paged_kv_tensors(self, block_table: List[int], seq_len: int):
        # Get the number of valid blocks based on sequence length.
        # If seq_len = 16, block_size = 16,
        # block_table_bound is 1 with 1 valid block.
        # If seq_len = 15, block_size = 16,
        # block_table_bound is 0 + 1 with 1 valid block.
        self.total_blocks += len(block_table)
        block_table_bound = seq_len // self.block_size + 1 \
                            if seq_len % self.block_size != 0 \
                            else seq_len // self.block_size
        self.paged_kv_indices.extend(block_table[:block_table_bound])
        self.paged_kv_indptr.append(self.paged_kv_indptr[-1] +
                                    block_table_bound)

        last_page_len = seq_len % self.block_size
        if last_page_len == 0:
            last_page_len = self.block_size
        self.paged_kv_last_page_len.append(last_page_len)

    def build(self, seq_lens: List[int], query_lens: List[int],
              cuda_graph_pad_size: int, batch_size: int):
        """Build attention metadata with on-device tensors.

        Args:
            seq_lens: The maybe padded sequence lengths of the input sequences.
            query_lens: The query lengths of the input sequences.
            cuda_graph_pad_size: The padding size for cuda graph.
                                 -1 if cuda graph is not used.
            batch_size: The maybe padded batch size.
        """
        for inter_data in self.input_builder.inter_data_list:
            self._add_seq_group(inter_data,
                                self.input_builder.chunked_prefill_enabled)

        device = self.runner.device
        use_captured_graph = cuda_graph_pad_size != -1

        max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
        num_decode_tokens = self.num_decode_tokens
        decode_query_len = max(query_lens[self.num_prefills:], default=1)

        if use_captured_graph:
            self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
            self.block_tables.extend([] * cuda_graph_pad_size)
            num_decode_tokens = batch_size - self.num_prefill_tokens

            # The shape of graph_block_tables is
            # [max batch size, max context len // block size].
            input_block_tables = self.runner.graph_block_tables[:batch_size]
            max_blocks = input_block_tables.shape[1]
            for i, block_table in enumerate(self.block_tables):
                if block_table:
                    num_blocks = len(block_table)
                    if num_blocks <= max_blocks:
                        input_block_tables[i, :num_blocks] = block_table
                    else:
                        # It may be possible to have more blocks allocated due
                        # to lookahead slots of multi-step, however, they are
                        # not used anyway, so can be safely ignored.
                        input_block_tables[
                            i, :max_blocks] = block_table[:max_blocks]

            block_tables = torch.from_numpy(input_block_tables).to(
                device, non_blocking=True)

            last_paged_kv_indptr = self.paged_kv_indptr[-1]
            self.paged_kv_indptr.extend([last_paged_kv_indptr] *
                                        cuda_graph_pad_size)
            self.paged_kv_last_page_len.extend([0] * cuda_graph_pad_size)
        else:
            block_tables = make_tensor_with_pad(
                self.block_tables,
                pad=0,
                dtype=torch.int,
                device=device,
            )

        assert device is not None
        seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
                                           self.runner.pin_memory)
        query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
                                             self.runner.pin_memory)
        slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
                                               device, self.runner.pin_memory)
        query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
                                      dtype=torch.int32,
                                      device=device)
        seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
                                    dtype=torch.int32,
                                    device=device)
        placeholder_index_maps = {
            modality: placeholder_map.index_map()
            for modality, placeholder_map in
            self.multimodal_placeholder_maps.items()
        }
        torch.cumsum(seq_lens_tensor,
                     dim=0,
                     dtype=seq_start_loc.dtype,
                     out=seq_start_loc[1:])
        torch.cumsum(query_lens_tensor,
                     dim=0,
                     dtype=query_start_loc.dtype,
                     out=query_start_loc[1:])

        if len(self.paged_kv_indptr) > 0:
            # extend to the maximum number of blocks as returned by the
            # scheduler
            self.paged_kv_indices.extend(
                [0] * (self.total_blocks - len(self.paged_kv_indices)))
            paged_kv_indices_tensor = torch.tensor(self.paged_kv_indices,
                                                   device="cpu",
                                                   dtype=torch.int)
            paged_kv_indptr_tensor = torch.tensor(self.paged_kv_indptr,
                                                  device="cpu",
                                                  dtype=torch.int)
            paged_kv_last_page_len_tensor = torch.tensor(
                self.paged_kv_last_page_len, device="cpu", dtype=torch.int)
            block_table_bound_tensor = torch.zeros(len(self.paged_kv_indptr) -
                                                   1,
                                                   device="cpu",
                                                   dtype=torch.int)
        else:
            paged_kv_indices_tensor = None
            paged_kv_indptr_tensor = None
            paged_kv_last_page_len_tensor = None
            block_table_bound_tensor = None

        if self.runner.kv_cache_dtype.startswith("fp8"):
            kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                self.runner.kv_cache_dtype)
        else:
            kv_cache_dtype = get_kv_cache_torch_dtype(
                self.runner.kv_cache_dtype, self.runner.model_config.dtype)

        return FlashInferMetadata(
            decode_query_len=decode_query_len,
            num_prefills=self.num_prefills,
            slot_mapping=slot_mapping_tensor,
            multi_modal_placeholder_index_maps=placeholder_index_maps,
            enable_kv_scales_calculation=False,
            num_prefill_tokens=self.num_prefill_tokens,
            num_decode_tokens=num_decode_tokens,
            max_prefill_seq_len=max_prefill_seq_len,
            block_tables=block_tables,
            paged_kv_indptr=paged_kv_indptr_tensor,
            paged_kv_indices=paged_kv_indices_tensor,
            paged_kv_last_page_len=paged_kv_last_page_len_tensor,
            block_table_bound=block_table_bound_tensor,
            seq_lens_tensor=seq_lens_tensor,
            num_qo_heads=self.runner.model_config.get_num_attention_heads(
                self.runner.parallel_config),
            num_kv_heads=self.runner.model_config.get_num_kv_heads(
                self.runner.parallel_config),
            head_dim=self.runner.model_config.get_head_size(),
            page_size=self.block_size,
            seq_start_loc=seq_start_loc,
            query_start_loc=query_start_loc,
            device=device,
            data_type=kv_cache_dtype,
            q_data_type=self.runner.model_config.dtype,
            use_cuda_graph=use_captured_graph,
            is_profile_run=self.is_profile_run,
            window_left=self.window_left,
            logits_soft_cap=self.logits_soft_cap,
            sm_scale=self.sm_scale,
        )

block_size instance-attribute

block_size = block_size

global_hyperparameters instance-attribute

global_hyperparameters: Optional[PerLayerParameters] = None

input_builder instance-attribute

input_builder = input_builder

runner instance-attribute

runner = runner

sliding_window instance-attribute

sliding_window = sliding_window

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(input_builder: ModelInputForGPUBuilder)
Source code in vllm/attention/backends/flashinfer.py
def __init__(self, input_builder: "ModelInputForGPUBuilder"):

    self.input_builder = input_builder
    self.runner = input_builder.runner

    self.sliding_window = input_builder.sliding_window
    self.block_size = input_builder.block_size

    # Global hyperparameters shared by all attention layers
    self.global_hyperparameters: Optional[PerLayerParameters] = None

    self.vllm_config = self.runner.vllm_config

_add_seq_group

_add_seq_group(
    inter_data: InterDataForSeqGroup,
    chunked_prefill_enabled: bool,
)

Add a sequence group to the metadata. Specifically update/append 1. context length. 2. block table. 3. slot mapping.

Source code in vllm/attention/backends/flashinfer.py
def _add_seq_group(
        self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
        chunked_prefill_enabled: bool):
    """Add a sequence group to the metadata. Specifically update/append
    1. context length.
    2. block table.
    3. slot mapping.
    """
    is_prompt = inter_data.is_prompt
    block_tables = inter_data.block_tables
    computed_block_nums = inter_data.computed_block_nums

    for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
         curr_sliding_window_block) in zip(
             inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
             inter_data.orig_seq_lens, inter_data.seq_lens,
             inter_data.query_lens, inter_data.context_lens,
             inter_data.curr_sliding_window_blocks):
        self.context_lens.append(context_len)
        if is_prompt:
            mm_maps = inter_data.multi_modal_placeholder_maps
            if mm_maps:
                for modality, placeholders in mm_maps.items():
                    self.multimodal_placeholder_maps[modality].extend(
                        placeholders)
            self.num_prefills += 1
            self.num_prefill_tokens += token_len
            self.prefill_seq_lens.append(seq_len)
        else:
            assert query_len == 1, (
                "seq_len: {}, context_len: {}, query_len: {}".format(
                    seq_len, context_len, query_len))
            self.num_decode_tokens += query_len
            self.curr_seq_lens.append(curr_seq_len)

        # Compute block table.
        # TODO(sang): Combine chunked prefill and prefix caching by
        # only allowing multiple of block_size chunk size.
        # NOTE: This only works for oooooooxxx style attention.
        block_table = []
        if inter_data.prefix_cache_hit:
            block_table = computed_block_nums
        elif ((chunked_prefill_enabled or not is_prompt)
              and block_tables is not None):
            block_table = block_tables[seq_id][-curr_sliding_window_block:]
        self.block_tables.append(block_table)

        is_profile_run = is_block_tables_empty(block_tables)

        # Compute slot mapping.
        start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
                                                   context_len,
                                                   self.sliding_window)
        compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
                             seq_len, context_len, start_idx,
                             self.block_size, inter_data.block_tables)

        # It is not necessary to add paged_kv_indices, paged_kv_indptr,
        # and paged_kv_last_page_len for profile run because we will
        # create dummy inputs.
        if is_profile_run:
            self.is_profile_run = is_profile_run
            return

        block_table = block_tables[seq_id]
        self._update_paged_kv_tensors(block_table, seq_len)

_update_paged_kv_tensors

_update_paged_kv_tensors(
    block_table: List[int], seq_len: int
)
Source code in vllm/attention/backends/flashinfer.py
def _update_paged_kv_tensors(self, block_table: List[int], seq_len: int):
    # Get the number of valid blocks based on sequence length.
    # If seq_len = 16, block_size = 16,
    # block_table_bound is 1 with 1 valid block.
    # If seq_len = 15, block_size = 16,
    # block_table_bound is 0 + 1 with 1 valid block.
    self.total_blocks += len(block_table)
    block_table_bound = seq_len // self.block_size + 1 \
                        if seq_len % self.block_size != 0 \
                        else seq_len // self.block_size
    self.paged_kv_indices.extend(block_table[:block_table_bound])
    self.paged_kv_indptr.append(self.paged_kv_indptr[-1] +
                                block_table_bound)

    last_page_len = seq_len % self.block_size
    if last_page_len == 0:
        last_page_len = self.block_size
    self.paged_kv_last_page_len.append(last_page_len)

build

build(
    seq_lens: List[int],
    query_lens: List[int],
    cuda_graph_pad_size: int,
    batch_size: int,
)

Build attention metadata with on-device tensors.

Parameters:

Name Type Description Default
seq_lens List[int]

The maybe padded sequence lengths of the input sequences.

required
query_lens List[int]

The query lengths of the input sequences.

required
cuda_graph_pad_size int

The padding size for cuda graph. -1 if cuda graph is not used.

required
batch_size int

The maybe padded batch size.

required
Source code in vllm/attention/backends/flashinfer.py
def build(self, seq_lens: List[int], query_lens: List[int],
          cuda_graph_pad_size: int, batch_size: int):
    """Build attention metadata with on-device tensors.

    Args:
        seq_lens: The maybe padded sequence lengths of the input sequences.
        query_lens: The query lengths of the input sequences.
        cuda_graph_pad_size: The padding size for cuda graph.
                             -1 if cuda graph is not used.
        batch_size: The maybe padded batch size.
    """
    for inter_data in self.input_builder.inter_data_list:
        self._add_seq_group(inter_data,
                            self.input_builder.chunked_prefill_enabled)

    device = self.runner.device
    use_captured_graph = cuda_graph_pad_size != -1

    max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
    num_decode_tokens = self.num_decode_tokens
    decode_query_len = max(query_lens[self.num_prefills:], default=1)

    if use_captured_graph:
        self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
        self.block_tables.extend([] * cuda_graph_pad_size)
        num_decode_tokens = batch_size - self.num_prefill_tokens

        # The shape of graph_block_tables is
        # [max batch size, max context len // block size].
        input_block_tables = self.runner.graph_block_tables[:batch_size]
        max_blocks = input_block_tables.shape[1]
        for i, block_table in enumerate(self.block_tables):
            if block_table:
                num_blocks = len(block_table)
                if num_blocks <= max_blocks:
                    input_block_tables[i, :num_blocks] = block_table
                else:
                    # It may be possible to have more blocks allocated due
                    # to lookahead slots of multi-step, however, they are
                    # not used anyway, so can be safely ignored.
                    input_block_tables[
                        i, :max_blocks] = block_table[:max_blocks]

        block_tables = torch.from_numpy(input_block_tables).to(
            device, non_blocking=True)

        last_paged_kv_indptr = self.paged_kv_indptr[-1]
        self.paged_kv_indptr.extend([last_paged_kv_indptr] *
                                    cuda_graph_pad_size)
        self.paged_kv_last_page_len.extend([0] * cuda_graph_pad_size)
    else:
        block_tables = make_tensor_with_pad(
            self.block_tables,
            pad=0,
            dtype=torch.int,
            device=device,
        )

    assert device is not None
    seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
                                       self.runner.pin_memory)
    query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
                                         self.runner.pin_memory)
    slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
                                           device, self.runner.pin_memory)
    query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
                                  dtype=torch.int32,
                                  device=device)
    seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
                                dtype=torch.int32,
                                device=device)
    placeholder_index_maps = {
        modality: placeholder_map.index_map()
        for modality, placeholder_map in
        self.multimodal_placeholder_maps.items()
    }
    torch.cumsum(seq_lens_tensor,
                 dim=0,
                 dtype=seq_start_loc.dtype,
                 out=seq_start_loc[1:])
    torch.cumsum(query_lens_tensor,
                 dim=0,
                 dtype=query_start_loc.dtype,
                 out=query_start_loc[1:])

    if len(self.paged_kv_indptr) > 0:
        # extend to the maximum number of blocks as returned by the
        # scheduler
        self.paged_kv_indices.extend(
            [0] * (self.total_blocks - len(self.paged_kv_indices)))
        paged_kv_indices_tensor = torch.tensor(self.paged_kv_indices,
                                               device="cpu",
                                               dtype=torch.int)
        paged_kv_indptr_tensor = torch.tensor(self.paged_kv_indptr,
                                              device="cpu",
                                              dtype=torch.int)
        paged_kv_last_page_len_tensor = torch.tensor(
            self.paged_kv_last_page_len, device="cpu", dtype=torch.int)
        block_table_bound_tensor = torch.zeros(len(self.paged_kv_indptr) -
                                               1,
                                               device="cpu",
                                               dtype=torch.int)
    else:
        paged_kv_indices_tensor = None
        paged_kv_indptr_tensor = None
        paged_kv_last_page_len_tensor = None
        block_table_bound_tensor = None

    if self.runner.kv_cache_dtype.startswith("fp8"):
        kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
            self.runner.kv_cache_dtype)
    else:
        kv_cache_dtype = get_kv_cache_torch_dtype(
            self.runner.kv_cache_dtype, self.runner.model_config.dtype)

    return FlashInferMetadata(
        decode_query_len=decode_query_len,
        num_prefills=self.num_prefills,
        slot_mapping=slot_mapping_tensor,
        multi_modal_placeholder_index_maps=placeholder_index_maps,
        enable_kv_scales_calculation=False,
        num_prefill_tokens=self.num_prefill_tokens,
        num_decode_tokens=num_decode_tokens,
        max_prefill_seq_len=max_prefill_seq_len,
        block_tables=block_tables,
        paged_kv_indptr=paged_kv_indptr_tensor,
        paged_kv_indices=paged_kv_indices_tensor,
        paged_kv_last_page_len=paged_kv_last_page_len_tensor,
        block_table_bound=block_table_bound_tensor,
        seq_lens_tensor=seq_lens_tensor,
        num_qo_heads=self.runner.model_config.get_num_attention_heads(
            self.runner.parallel_config),
        num_kv_heads=self.runner.model_config.get_num_kv_heads(
            self.runner.parallel_config),
        head_dim=self.runner.model_config.get_head_size(),
        page_size=self.block_size,
        seq_start_loc=seq_start_loc,
        query_start_loc=query_start_loc,
        device=device,
        data_type=kv_cache_dtype,
        q_data_type=self.runner.model_config.dtype,
        use_cuda_graph=use_captured_graph,
        is_profile_run=self.is_profile_run,
        window_left=self.window_left,
        logits_soft_cap=self.logits_soft_cap,
        sm_scale=self.sm_scale,
    )

prepare

prepare()
Source code in vllm/attention/backends/flashinfer.py
def prepare(self):
    self.slot_mapping: List[int] = []
    self.prefill_seq_lens: List[int] = []
    self.context_lens: List[int] = []
    self.block_tables: List[List[int]] = []
    self.curr_seq_lens: List[int] = []
    self.multimodal_placeholder_maps: Dict[
        str,
        MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
    self.num_prefills = 0
    self.num_prefill_tokens = 0
    self.num_decode_tokens = 0

    # Please follow https://docs.flashinfer.ai/tutorials/kv_layout.html#page-layout
    # for the precise definition of the following fields.
    # An example:
    # request 1, page indices [0, 5, 8]
    # request 2, page indices [1, 6, 7]
    # request 3, page indices [3, 4]
    # paged_kv_indices is a concatenation of page indices of all requests:
    # [0, 5, 8, 1, 6, 7, 3, 4]
    # paged_kv_indptr is used to index into paged_kv_indices:
    # [0, 3, 6, 8]
    self.paged_kv_indices: List[int] = []
    # 0 at the beginning of paged_kv_indptr indicates the start of the
    # first request’s page indices in the paged_kv_indices list.
    self.paged_kv_indptr: List[int] = [0]
    # paged_kv_last_page_len is the length of the last page of each request
    self.paged_kv_last_page_len: List[int] = []
    self.total_blocks = 0
    self.is_profile_run: bool = False

    if self.global_hyperparameters is None:
        # Infer global hyperparameters, since currently we only support
        # models in which all layers share the same values for the
        # following hyperparameters:
        # - `window_left`
        # - `logits_soft_cap`
        # - `sm_scale`
        inferred_params = infer_global_hyperparameters(
            get_per_layer_parameters(self.vllm_config))
        self.global_hyperparameters = inferred_params
        self.window_left = inferred_params.window_left
        self.logits_soft_cap = inferred_params.logits_soft_cap
        self.sm_scale = inferred_params.sm_scale

FlashInferState

Bases: AttentionState

Source code in vllm/attention/backends/flashinfer.py
class FlashInferState(AttentionState):

    def __init__(self, runner):
        self.runner = runner
        self._is_graph_capturing = False
        self._workspace_buffer = None
        self._decode_wrapper = None
        self._prefill_wrapper = None

        # Global hyperparameters shared by all attention layers
        self.global_hyperparameters: Optional[PerLayerParameters] = None

        self.vllm_config = self.runner.vllm_config
        self._kv_cache_layout = None

    def _get_workspace_buffer(self):
        if self._workspace_buffer is None:
            self._workspace_buffer = torch.empty(
                FLASHINFER_WORKSPACE_BUFFER_SIZE,
                dtype=torch.uint8,
                device=self.runner.device)
        return self._workspace_buffer

    def get_kv_cache_layout(self):
        if self._kv_cache_layout is None:
            self._kv_cache_layout = FLASHINFER_KV_CACHE_LAYOUT
        return self._kv_cache_layout

    def _get_prefill_wrapper(self):
        if self._prefill_wrapper is None:
            self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
                self._get_workspace_buffer(), self.get_kv_cache_layout())
        return self._prefill_wrapper

    def _get_decode_wrapper(self):
        if self._decode_wrapper is None:
            num_qo_heads = (self.runner.model_config.get_num_attention_heads(
                self.runner.parallel_config))
            num_kv_heads = self.runner.model_config.get_num_kv_heads(
                self.runner.parallel_config)
            use_tensor_cores = envs.VLLM_FLASHINFER_FORCE_TENSOR_CORES or (
                num_qo_heads // num_kv_heads > 4)
            self._decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
                self._get_workspace_buffer(),
                self.get_kv_cache_layout(),
                use_tensor_cores=use_tensor_cores)
        return self._decode_wrapper

    @contextmanager
    def graph_capture(self, max_batch_size: int):
        self._is_graph_capturing = True
        self._graph_decode_wrapper = None
        self._graph_slot_mapping = torch.full((max_batch_size, ),
                                              PAD_SLOT_ID,
                                              dtype=torch.long,
                                              device=self.runner.device)
        self._graph_seq_lens = torch.ones(max_batch_size,
                                          dtype=torch.int32,
                                          device=self.runner.device)
        self._graph_block_tables = torch.from_numpy(
            self.runner.graph_block_tables).to(device=self.runner.device)
        self._graph_decode_workspace_buffer = self._get_workspace_buffer()
        self._graph_indices_buffer = torch.empty(
            max_batch_size * self.runner.cache_config.num_gpu_blocks,
            dtype=torch.int32,
            device=self.runner.device)
        self._graph_indptr_buffer = torch.empty(max_batch_size + 1,
                                                dtype=torch.int32,
                                                device=self.runner.device)
        self._graph_last_page_len_buffer = torch.empty(
            max_batch_size, dtype=torch.int32, device=self.runner.device)
        yield
        self._is_graph_capturing = False
        del self._graph_slot_mapping
        del self._graph_seq_lens
        del self._graph_block_tables
        del self._graph_decode_workspace_buffer
        del self._graph_indices_buffer
        del self._graph_indptr_buffer
        del self._graph_last_page_len_buffer
        del self._graph_decode_wrapper

    def graph_clone(self, batch_size: int):
        assert self._is_graph_capturing
        state = self.__class__(self.runner)
        state._workspace_buffer = self._graph_decode_workspace_buffer
        state._decode_wrapper = self._graph_decode_wrapper
        state._prefill_wrapper = self._get_prefill_wrapper()
        return state

    def graph_capture_get_metadata_for_batch(
            self, batch_size: int, is_encoder_decoder_model: bool = False):
        assert self._is_graph_capturing
        _indptr_buffer = self._graph_indptr_buffer[:batch_size + 1]
        _last_page_len_buffer = self._graph_last_page_len_buffer[:batch_size]

        num_qo_heads = (self.runner.model_config.get_num_attention_heads(
            self.runner.parallel_config))
        num_kv_heads = self.runner.model_config.get_num_kv_heads(
            self.runner.parallel_config)
        use_tensor_cores = envs.VLLM_FLASHINFER_FORCE_TENSOR_CORES or (
            num_qo_heads // num_kv_heads > 4)
        self._graph_decode_wrapper = \
            CUDAGraphBatchDecodeWithPagedKVCacheWrapper(
            self._graph_decode_workspace_buffer, _indptr_buffer,
            self._graph_indices_buffer, _last_page_len_buffer,
            self.get_kv_cache_layout(),
            use_tensor_cores)
        if self.runner.kv_cache_dtype.startswith("fp8"):
            kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
                self.runner.kv_cache_dtype)
        else:
            kv_cache_dtype = get_kv_cache_torch_dtype(
                self.runner.kv_cache_dtype, self.runner.model_config.dtype)

        paged_kv_indptr_tensor_host = torch.arange(0,
                                                   batch_size + 1,
                                                   dtype=torch.int32)
        paged_kv_indices_tensor_host = torch.arange(0,
                                                    batch_size,
                                                    dtype=torch.int32)
        paged_kv_last_page_len_tensor_host = torch.full((batch_size, ),
                                                        self.runner.block_size,
                                                        dtype=torch.int32)
        query_start_loc_host = torch.arange(0,
                                            batch_size + 1,
                                            dtype=torch.int32)

        global_params = infer_global_hyperparameters(
            get_per_layer_parameters(self.vllm_config))

        attn_metadata = self.runner.attn_backend.make_metadata(
            num_prefills=0,
            slot_mapping=self._graph_slot_mapping[:batch_size],
            multi_modal_placeholder_index_maps=None,
            enable_kv_scales_calculation=False,
            num_prefill_tokens=0,
            num_decode_tokens=batch_size,
            max_prefill_seq_len=0,
            block_tables=self._graph_block_tables,
            paged_kv_indptr=paged_kv_indptr_tensor_host,
            paged_kv_indices=paged_kv_indices_tensor_host,
            paged_kv_last_page_len=paged_kv_last_page_len_tensor_host,
            num_qo_heads=num_qo_heads,
            num_kv_heads=num_kv_heads,
            head_dim=self.runner.model_config.get_head_size(),
            page_size=self.runner.block_size,
            seq_start_loc=None,
            query_start_loc=query_start_loc_host,
            device=self.runner.device,
            data_type=kv_cache_dtype,
            q_data_type=self.runner.model_config.dtype,
            use_cuda_graph=True,
            decode_wrapper=self._graph_decode_wrapper,
            prefill_wrapper=None,
            **dataclasses.asdict(global_params),
        )
        attn_metadata.begin_forward()
        return attn_metadata

    def get_graph_input_buffers(self,
                                attn_metadata,
                                is_encoder_decoder_model: bool = False):
        return {
            "slot_mapping": attn_metadata.slot_mapping,
        }

    def prepare_graph_input_buffers(self,
                                    input_buffers,
                                    attn_metadata,
                                    is_encoder_decoder_model: bool = False):
        return

    def begin_forward(self, model_input):
        assert not self._is_graph_capturing
        state = self
        use_cuda_graph = model_input.attn_metadata.use_cuda_graph
        is_decode = model_input.attn_metadata.num_prefills == 0
        # In case of multistep chunked-prefill, there might be prefill requests
        # scheduled while CUDA graph mode is enabled. We don't run graph in that
        # case.
        if use_cuda_graph and is_decode:
            if model_input.inputs_embeds is None:
                batch_size = model_input.input_tokens.shape[0]
                state = (
                    self.runner.graph_runners[model_input.virtual_engine][(
                        batch_size, False)].attn_state)
            else:
                batch_size = model_input.inputs_embeds.shape[0]
                state = (
                    self.runner.graph_runners[model_input.virtual_engine][(
                        batch_size, True)].attn_state)

        model_input.attn_metadata.prefill_wrapper = state._get_prefill_wrapper(
        )
        model_input.attn_metadata.decode_wrapper = state._get_decode_wrapper()
        model_input.attn_metadata.begin_forward()

_decode_wrapper instance-attribute

_decode_wrapper = None

_is_graph_capturing instance-attribute

_is_graph_capturing = False

_kv_cache_layout instance-attribute

_kv_cache_layout = None

_prefill_wrapper instance-attribute

_prefill_wrapper = None

_workspace_buffer instance-attribute

_workspace_buffer = None

global_hyperparameters instance-attribute

global_hyperparameters: Optional[PerLayerParameters] = None

runner instance-attribute

runner = runner

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(runner)
Source code in vllm/attention/backends/flashinfer.py
def __init__(self, runner):
    self.runner = runner
    self._is_graph_capturing = False
    self._workspace_buffer = None
    self._decode_wrapper = None
    self._prefill_wrapper = None

    # Global hyperparameters shared by all attention layers
    self.global_hyperparameters: Optional[PerLayerParameters] = None

    self.vllm_config = self.runner.vllm_config
    self._kv_cache_layout = None

_get_decode_wrapper

_get_decode_wrapper()
Source code in vllm/attention/backends/flashinfer.py
def _get_decode_wrapper(self):
    if self._decode_wrapper is None:
        num_qo_heads = (self.runner.model_config.get_num_attention_heads(
            self.runner.parallel_config))
        num_kv_heads = self.runner.model_config.get_num_kv_heads(
            self.runner.parallel_config)
        use_tensor_cores = envs.VLLM_FLASHINFER_FORCE_TENSOR_CORES or (
            num_qo_heads // num_kv_heads > 4)
        self._decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
            self._get_workspace_buffer(),
            self.get_kv_cache_layout(),
            use_tensor_cores=use_tensor_cores)
    return self._decode_wrapper

_get_prefill_wrapper

_get_prefill_wrapper()
Source code in vllm/attention/backends/flashinfer.py
def _get_prefill_wrapper(self):
    if self._prefill_wrapper is None:
        self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
            self._get_workspace_buffer(), self.get_kv_cache_layout())
    return self._prefill_wrapper

_get_workspace_buffer

_get_workspace_buffer()
Source code in vllm/attention/backends/flashinfer.py
def _get_workspace_buffer(self):
    if self._workspace_buffer is None:
        self._workspace_buffer = torch.empty(
            FLASHINFER_WORKSPACE_BUFFER_SIZE,
            dtype=torch.uint8,
            device=self.runner.device)
    return self._workspace_buffer

begin_forward

begin_forward(model_input)
Source code in vllm/attention/backends/flashinfer.py
def begin_forward(self, model_input):
    assert not self._is_graph_capturing
    state = self
    use_cuda_graph = model_input.attn_metadata.use_cuda_graph
    is_decode = model_input.attn_metadata.num_prefills == 0
    # In case of multistep chunked-prefill, there might be prefill requests
    # scheduled while CUDA graph mode is enabled. We don't run graph in that
    # case.
    if use_cuda_graph and is_decode:
        if model_input.inputs_embeds is None:
            batch_size = model_input.input_tokens.shape[0]
            state = (
                self.runner.graph_runners[model_input.virtual_engine][(
                    batch_size, False)].attn_state)
        else:
            batch_size = model_input.inputs_embeds.shape[0]
            state = (
                self.runner.graph_runners[model_input.virtual_engine][(
                    batch_size, True)].attn_state)

    model_input.attn_metadata.prefill_wrapper = state._get_prefill_wrapper(
    )
    model_input.attn_metadata.decode_wrapper = state._get_decode_wrapper()
    model_input.attn_metadata.begin_forward()

get_graph_input_buffers

get_graph_input_buffers(
    attn_metadata, is_encoder_decoder_model: bool = False
)
Source code in vllm/attention/backends/flashinfer.py
def get_graph_input_buffers(self,
                            attn_metadata,
                            is_encoder_decoder_model: bool = False):
    return {
        "slot_mapping": attn_metadata.slot_mapping,
    }

get_kv_cache_layout

get_kv_cache_layout()
Source code in vllm/attention/backends/flashinfer.py
def get_kv_cache_layout(self):
    if self._kv_cache_layout is None:
        self._kv_cache_layout = FLASHINFER_KV_CACHE_LAYOUT
    return self._kv_cache_layout

graph_capture

graph_capture(max_batch_size: int)
Source code in vllm/attention/backends/flashinfer.py
@contextmanager
def graph_capture(self, max_batch_size: int):
    self._is_graph_capturing = True
    self._graph_decode_wrapper = None
    self._graph_slot_mapping = torch.full((max_batch_size, ),
                                          PAD_SLOT_ID,
                                          dtype=torch.long,
                                          device=self.runner.device)
    self._graph_seq_lens = torch.ones(max_batch_size,
                                      dtype=torch.int32,
                                      device=self.runner.device)
    self._graph_block_tables = torch.from_numpy(
        self.runner.graph_block_tables).to(device=self.runner.device)
    self._graph_decode_workspace_buffer = self._get_workspace_buffer()
    self._graph_indices_buffer = torch.empty(
        max_batch_size * self.runner.cache_config.num_gpu_blocks,
        dtype=torch.int32,
        device=self.runner.device)
    self._graph_indptr_buffer = torch.empty(max_batch_size + 1,
                                            dtype=torch.int32,
                                            device=self.runner.device)
    self._graph_last_page_len_buffer = torch.empty(
        max_batch_size, dtype=torch.int32, device=self.runner.device)
    yield
    self._is_graph_capturing = False
    del self._graph_slot_mapping
    del self._graph_seq_lens
    del self._graph_block_tables
    del self._graph_decode_workspace_buffer
    del self._graph_indices_buffer
    del self._graph_indptr_buffer
    del self._graph_last_page_len_buffer
    del self._graph_decode_wrapper

graph_capture_get_metadata_for_batch

graph_capture_get_metadata_for_batch(
    batch_size: int, is_encoder_decoder_model: bool = False
)
Source code in vllm/attention/backends/flashinfer.py
def graph_capture_get_metadata_for_batch(
        self, batch_size: int, is_encoder_decoder_model: bool = False):
    assert self._is_graph_capturing
    _indptr_buffer = self._graph_indptr_buffer[:batch_size + 1]
    _last_page_len_buffer = self._graph_last_page_len_buffer[:batch_size]

    num_qo_heads = (self.runner.model_config.get_num_attention_heads(
        self.runner.parallel_config))
    num_kv_heads = self.runner.model_config.get_num_kv_heads(
        self.runner.parallel_config)
    use_tensor_cores = envs.VLLM_FLASHINFER_FORCE_TENSOR_CORES or (
        num_qo_heads // num_kv_heads > 4)
    self._graph_decode_wrapper = \
        CUDAGraphBatchDecodeWithPagedKVCacheWrapper(
        self._graph_decode_workspace_buffer, _indptr_buffer,
        self._graph_indices_buffer, _last_page_len_buffer,
        self.get_kv_cache_layout(),
        use_tensor_cores)
    if self.runner.kv_cache_dtype.startswith("fp8"):
        kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
            self.runner.kv_cache_dtype)
    else:
        kv_cache_dtype = get_kv_cache_torch_dtype(
            self.runner.kv_cache_dtype, self.runner.model_config.dtype)

    paged_kv_indptr_tensor_host = torch.arange(0,
                                               batch_size + 1,
                                               dtype=torch.int32)
    paged_kv_indices_tensor_host = torch.arange(0,
                                                batch_size,
                                                dtype=torch.int32)
    paged_kv_last_page_len_tensor_host = torch.full((batch_size, ),
                                                    self.runner.block_size,
                                                    dtype=torch.int32)
    query_start_loc_host = torch.arange(0,
                                        batch_size + 1,
                                        dtype=torch.int32)

    global_params = infer_global_hyperparameters(
        get_per_layer_parameters(self.vllm_config))

    attn_metadata = self.runner.attn_backend.make_metadata(
        num_prefills=0,
        slot_mapping=self._graph_slot_mapping[:batch_size],
        multi_modal_placeholder_index_maps=None,
        enable_kv_scales_calculation=False,
        num_prefill_tokens=0,
        num_decode_tokens=batch_size,
        max_prefill_seq_len=0,
        block_tables=self._graph_block_tables,
        paged_kv_indptr=paged_kv_indptr_tensor_host,
        paged_kv_indices=paged_kv_indices_tensor_host,
        paged_kv_last_page_len=paged_kv_last_page_len_tensor_host,
        num_qo_heads=num_qo_heads,
        num_kv_heads=num_kv_heads,
        head_dim=self.runner.model_config.get_head_size(),
        page_size=self.runner.block_size,
        seq_start_loc=None,
        query_start_loc=query_start_loc_host,
        device=self.runner.device,
        data_type=kv_cache_dtype,
        q_data_type=self.runner.model_config.dtype,
        use_cuda_graph=True,
        decode_wrapper=self._graph_decode_wrapper,
        prefill_wrapper=None,
        **dataclasses.asdict(global_params),
    )
    attn_metadata.begin_forward()
    return attn_metadata

graph_clone

graph_clone(batch_size: int)
Source code in vllm/attention/backends/flashinfer.py
def graph_clone(self, batch_size: int):
    assert self._is_graph_capturing
    state = self.__class__(self.runner)
    state._workspace_buffer = self._graph_decode_workspace_buffer
    state._decode_wrapper = self._graph_decode_wrapper
    state._prefill_wrapper = self._get_prefill_wrapper()
    return state

prepare_graph_input_buffers

prepare_graph_input_buffers(
    input_buffers,
    attn_metadata,
    is_encoder_decoder_model: bool = False,
)
Source code in vllm/attention/backends/flashinfer.py
def prepare_graph_input_buffers(self,
                                input_buffers,
                                attn_metadata,
                                is_encoder_decoder_model: bool = False):
    return

PerLayerParameters dataclass

Currently, FlashInfer backend only support models in which all layers share the same values for the following hyperparameters.

Source code in vllm/attention/backends/flashinfer.py
@dataclass
class PerLayerParameters:
    """
    Currently, FlashInfer backend only support models in which all layers share
    the same values for the following hyperparameters.
    """

    window_left: int
    logits_soft_cap: Optional[float]
    sm_scale: float

logits_soft_cap instance-attribute

logits_soft_cap: Optional[float]

sm_scale instance-attribute

sm_scale: float

window_left instance-attribute

window_left: int

__init__

__init__(
    window_left: int,
    logits_soft_cap: Optional[float],
    sm_scale: float,
) -> None

get_per_layer_parameters

get_per_layer_parameters(
    vllm_config: VllmConfig,
) -> Dict[str, PerLayerParameters]

Scan all attention layers and determine some hyperparameters to use during plan.

Source code in vllm/attention/backends/flashinfer.py
def get_per_layer_parameters(
        vllm_config: VllmConfig) -> Dict[str, PerLayerParameters]:
    """
    Scan all attention layers and determine some hyperparameters
    to use during `plan`.
    """

    layers = get_layers_from_vllm_config(vllm_config, Attention)
    per_layer_params: Dict[str, PerLayerParameters] = {}

    for key, layer in layers.items():
        impl = layer.impl
        assert isinstance(impl, FlashInferImpl)

        # Infer hyperparameters from the attention layer
        window_size = impl.sliding_window
        window_left = window_size[0] if window_size is not None else -1
        logits_soft_cap = impl.logits_soft_cap
        sm_scale = impl.scale

        per_layer_params[key] = PerLayerParameters(window_left,
                                                   logits_soft_cap, sm_scale)

    return per_layer_params

infer_global_hyperparameters

infer_global_hyperparameters(
    per_layer_params: Dict[str, PerLayerParameters],
) -> PerLayerParameters

Currently, FlashInfer backend only support models in which all layers share the same values for the following hyperparameters: - window_left - logits_soft_cap - sm_scale

So this function asserts that all layers share the same values for these hyperparameters and returns the global values.

Source code in vllm/attention/backends/flashinfer.py
def infer_global_hyperparameters(
        per_layer_params: Dict[str, PerLayerParameters]) -> PerLayerParameters:
    """
    Currently, FlashInfer backend only support models in which all layers share
    the same values for the following hyperparameters:
    - `window_left`
    - `logits_soft_cap`
    - `sm_scale`

    So this function asserts that all layers share the same values for these
    hyperparameters and returns the global values.
    """

    assert len(per_layer_params) > 0, "No attention layers found in the model."

    param_sets = list(per_layer_params.values())
    global_params = param_sets[0]
    for params in param_sets:
        assert params == global_params, (
            "FlashInfer backend currently only supports models in which all "
            "layers share the same values for the following hyperparameters: "
            "`window_left`, `logits_soft_cap`, `sm_scale`.")

    return global_params