Skip to content

vllm.attention.backends.blocksparse_attn

BlocksparseFlashAttentionBackend

Bases: AttentionBackend

Source code in vllm/attention/backends/blocksparse_attn.py
class BlocksparseFlashAttentionBackend(AttentionBackend):

    @staticmethod
    def get_name() -> str:
        return "BLOCK_SPARSE_FLASH_ATTN"

    @staticmethod
    def get_impl_cls() -> Type["BlocksparseFlashAttentionImpl"]:
        return BlocksparseFlashAttentionImpl

    @staticmethod
    def get_metadata_cls() -> Type["AttentionMetadata"]:
        return BlocksparseFlashAttentionMetadata

    @staticmethod
    def get_builder_cls() -> Type["BlocksparseFlashAttentionMetadataBuilder"]:
        return BlocksparseFlashAttentionMetadataBuilder

    @staticmethod
    def get_state_cls() -> Type["CommonAttentionState"]:
        return CommonAttentionState

    @staticmethod
    def get_kv_cache_shape(
        num_blocks: int,
        block_size: int,
        num_kv_heads: int,
        head_size: int,
    ) -> Tuple[int, ...]:
        return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
                                                 num_kv_heads, head_size)

    @staticmethod
    def swap_blocks(
        src_kv_cache: torch.Tensor,
        dst_kv_cache: torch.Tensor,
        src_to_dst: Dict[int, int],
    ) -> None:
        PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)

    @staticmethod
    def copy_blocks(
        kv_caches: List[torch.Tensor],
        src_to_dists: Dict[int, List[int]],
    ) -> None:
        PagedAttention.copy_blocks(kv_caches, src_to_dists)

copy_blocks staticmethod

copy_blocks(
    kv_caches: List[Tensor],
    src_to_dists: Dict[int, List[int]],
) -> None
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def copy_blocks(
    kv_caches: List[torch.Tensor],
    src_to_dists: Dict[int, List[int]],
) -> None:
    PagedAttention.copy_blocks(kv_caches, src_to_dists)

get_builder_cls staticmethod

Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_builder_cls() -> Type["BlocksparseFlashAttentionMetadataBuilder"]:
    return BlocksparseFlashAttentionMetadataBuilder

get_impl_cls staticmethod

Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_impl_cls() -> Type["BlocksparseFlashAttentionImpl"]:
    return BlocksparseFlashAttentionImpl

get_kv_cache_shape staticmethod

get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> Tuple[int, ...]
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_kv_cache_shape(
    num_blocks: int,
    block_size: int,
    num_kv_heads: int,
    head_size: int,
) -> Tuple[int, ...]:
    return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
                                             num_kv_heads, head_size)

get_metadata_cls staticmethod

get_metadata_cls() -> Type[AttentionMetadata]
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
    return BlocksparseFlashAttentionMetadata

get_name staticmethod

get_name() -> str
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_name() -> str:
    return "BLOCK_SPARSE_FLASH_ATTN"

get_state_cls staticmethod

get_state_cls() -> Type[CommonAttentionState]
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def get_state_cls() -> Type["CommonAttentionState"]:
    return CommonAttentionState

swap_blocks staticmethod

swap_blocks(
    src_kv_cache: Tensor,
    dst_kv_cache: Tensor,
    src_to_dst: Dict[int, int],
) -> None
Source code in vllm/attention/backends/blocksparse_attn.py
@staticmethod
def swap_blocks(
    src_kv_cache: torch.Tensor,
    dst_kv_cache: torch.Tensor,
    src_to_dst: Dict[int, int],
) -> None:
    PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)

BlocksparseFlashAttentionImpl

Bases: AttentionImpl

If the input tensors contain prompt tokens, the layout is as follows: |<--------------- num_prompt_tokens -------------->| |<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->|

Otherwise, the layout is as follows: |<------------------ num_generation_tokens (M) ----------------->| |<--generation_0-->|..........|<--generation_M-1-->|<--padding-->|

Generation tokens can contain padding when cuda-graph is used. Currently, prompt tokens don't contain any padding.

The prompts might have different lengths, while the generation tokens always have length 1.

Source code in vllm/attention/backends/blocksparse_attn.py
class BlocksparseFlashAttentionImpl(AttentionImpl):
    """
    If the input tensors contain prompt tokens, the layout is as follows:
    |<--------------- num_prompt_tokens -------------->|
    |<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->|

    Otherwise, the layout is as follows:
    |<------------------ num_generation_tokens (M) ----------------->|
    |<--generation_0-->|..........|<--generation_M-1-->|<--padding-->|

    Generation tokens can contain padding when cuda-graph is used.
    Currently, prompt tokens don't contain any padding.

    The prompts might have different lengths, while the generation tokens
    always have length 1.

    """

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: Optional[List[float]],
        sliding_window: Optional[int],
        kv_cache_dtype: str,
        blocksparse_params: Optional[Dict[str, Any]] = None,
        logits_soft_cap: Optional[float] = None,
        attn_type: str = AttentionType.DECODER,
        kv_sharing_target_layer_name: Optional[str] = None,
    ) -> None:
        if kv_sharing_target_layer_name is not None:
            raise NotImplementedError("KV sharing is not supported in V0.")
        assert blocksparse_params is not None
        assert alibi_slopes is None, ValueError(
            "Alibi not support for blocksparse flash attention.")
        assert sliding_window is None, ValueError(
            "sliding_window is invalid for blocksparse attention.")
        assert logits_soft_cap is None, ValueError(
            "logits_soft_cap is invalid for blocksparse attention.")

        if "num_heads" not in blocksparse_params:
            blocksparse_params["num_heads"] = num_heads
        if "num_kv_heads" not in blocksparse_params:
            blocksparse_params["num_kv_heads"] = num_kv_heads or num_heads
        self.blocksparse_params = BlocksparseParams(**blocksparse_params)
        self.kv_cache_dtype = kv_cache_dtype

        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = float(scale)
        self.alibi_slopes = alibi_slopes
        self.num_kv_heads = num_kv_heads

        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        self.local_blocks = self.blocksparse_params.local_blocks
        self.vert_stride = self.blocksparse_params.vert_stride
        self.sparse_block_size = self.blocksparse_params.block_size
        self.head_sliding_step = self.blocksparse_params.head_sliding_step

        supported_head_sizes = PagedAttention.get_supported_head_sizes()
        if head_size not in supported_head_sizes:
            raise ValueError(
                f"Head size {head_size} is not supported by PagedAttention. "
                f"Supported head sizes are: {supported_head_sizes}.")

        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()

        total_num_heads = num_heads * self.tp_size
        self.bs_attn = LocalStridedBlockSparseAttn(
            total_num_heads,
            self.blocksparse_params.max_seqlen,
            self.blocksparse_params.local_blocks,
            self.blocksparse_params.vert_stride,
            self.blocksparse_params.block_size,
            homo_head=self.blocksparse_params.homo_head,
            active_head_range=self.blocksparse_params.active_head_range,
        )

        if attn_type != AttentionType.DECODER:
            raise NotImplementedError("Encoder self-attention and "
                                      "encoder/decoder cross-attention "
                                      "are not implemented for "
                                      "BlocksparseFlashAttentionImpl")

    def forward(
        self,
        layer: AttentionLayer,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: BlocksparseFlashAttentionMetadata,
        output: Optional[torch.Tensor] = None,
        output_scale: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass with FlashAttention and PagedAttention.

        Args:
            query: shape = [num_tokens, num_heads * head_size]
            key: shape = [num_tokens, num_kv_heads * head_size]
            value: shape = [num_tokens, num_kv_heads * head_size]
            kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
                NOTE: kv_cache will be an empty tensor with shape [0]
                for profiling run.
            attn_metadata: Metadata for attention.
        Returns:
            shape = [num_tokens, num_heads * head_size]
        """
        if output_scale is not None:
            raise NotImplementedError(
                "fused output quantization is not yet supported"
                " for BlocksparseFlashAttentionImpl")

        num_tokens, hidden_size = query.shape
        # Reshape the query, key, and value tensors.
        query = query.view(-1, self.num_heads, self.head_size)
        key = key.view(-1, self.num_kv_heads, self.head_size)
        value = value.view(-1, self.num_kv_heads, self.head_size)

        if kv_cache.numel() > 0:
            key_cache, value_cache = PagedAttention.split_kv_cache(
                kv_cache, self.num_kv_heads, self.head_size)

            # Reshape the input keys and values and store them in the cache.
            # If kv_cache is not provided, the new key and value tensors are
            # not cached. This happens during the initial memory profiling run.

            PagedAttention.write_to_paged_cache(
                key,
                value,
                key_cache,
                value_cache,
                attn_metadata.slot_mapping,
                self.kv_cache_dtype,
                layer._k_scale,
                layer._v_scale,
            )

        if prefill_meta := attn_metadata.prefill_metadata:

            # Prompt run.
            # normal attention
            # When block_tables are not filled, it means q and k are the
            # prompt, and they have the same length.

            assert kv_cache.numel() == 0 \
                    or prefill_meta.block_tables is None \
                    or prefill_meta.block_tables.numel() == 0, \
                "Does not support prefix-enabled attention."

            output = self.bs_attn(
                q=query,
                k=key,
                v=value,
                cu_seqlens_q=prefill_meta.seq_start_loc,
                cu_seqlens_k=prefill_meta.seq_start_loc,
                sm_scale=self.scale,
            )

        if decode_meta := attn_metadata.decode_metadata:
            # Decoding run.
            output = PagedAttention.forward_decode(
                query,
                key_cache,
                value_cache,
                decode_meta.block_tables,
                decode_meta.seq_lens_tensor,
                self.blocksparse_params.max_seqlen,
                self.kv_cache_dtype,
                self.num_kv_heads,
                self.scale,
                self.alibi_slopes,
                layer._k_scale,
                layer._v_scale,
                tp_rank=self.tp_rank,
                blocksparse_local_blocks=self.local_blocks,
                blocksparse_vert_stride=self.vert_stride,
                blocksparse_block_size=self.sparse_block_size,
                blocksparse_head_sliding_step=self.head_sliding_step,
            )

        assert output is not None
        # Reshape the output tensor.
        return output.view(num_tokens, hidden_size)

alibi_slopes instance-attribute

alibi_slopes = alibi_slopes

blocksparse_params instance-attribute

blocksparse_params = BlocksparseParams(**blocksparse_params)

bs_attn instance-attribute

bs_attn = LocalStridedBlockSparseAttn(
    total_num_heads,
    max_seqlen,
    local_blocks,
    vert_stride,
    block_size,
    homo_head=homo_head,
    active_head_range=active_head_range,
)

head_size instance-attribute

head_size = head_size

head_sliding_step instance-attribute

head_sliding_step = head_sliding_step

kv_cache_dtype instance-attribute

kv_cache_dtype = kv_cache_dtype

local_blocks instance-attribute

local_blocks = local_blocks

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

num_queries_per_kv instance-attribute

num_queries_per_kv = num_heads // num_kv_heads

scale instance-attribute

scale = float(scale)

sparse_block_size instance-attribute

sparse_block_size = block_size

tp_rank instance-attribute

tp_size instance-attribute

vert_stride instance-attribute

vert_stride = vert_stride

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[List[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[Dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: str = DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
) -> None
Source code in vllm/attention/backends/blocksparse_attn.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[List[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    blocksparse_params: Optional[Dict[str, Any]] = None,
    logits_soft_cap: Optional[float] = None,
    attn_type: str = AttentionType.DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
    if kv_sharing_target_layer_name is not None:
        raise NotImplementedError("KV sharing is not supported in V0.")
    assert blocksparse_params is not None
    assert alibi_slopes is None, ValueError(
        "Alibi not support for blocksparse flash attention.")
    assert sliding_window is None, ValueError(
        "sliding_window is invalid for blocksparse attention.")
    assert logits_soft_cap is None, ValueError(
        "logits_soft_cap is invalid for blocksparse attention.")

    if "num_heads" not in blocksparse_params:
        blocksparse_params["num_heads"] = num_heads
    if "num_kv_heads" not in blocksparse_params:
        blocksparse_params["num_kv_heads"] = num_kv_heads or num_heads
    self.blocksparse_params = BlocksparseParams(**blocksparse_params)
    self.kv_cache_dtype = kv_cache_dtype

    self.num_heads = num_heads
    self.head_size = head_size
    self.scale = float(scale)
    self.alibi_slopes = alibi_slopes
    self.num_kv_heads = num_kv_heads

    self.num_queries_per_kv = self.num_heads // self.num_kv_heads

    self.local_blocks = self.blocksparse_params.local_blocks
    self.vert_stride = self.blocksparse_params.vert_stride
    self.sparse_block_size = self.blocksparse_params.block_size
    self.head_sliding_step = self.blocksparse_params.head_sliding_step

    supported_head_sizes = PagedAttention.get_supported_head_sizes()
    if head_size not in supported_head_sizes:
        raise ValueError(
            f"Head size {head_size} is not supported by PagedAttention. "
            f"Supported head sizes are: {supported_head_sizes}.")

    self.tp_size = get_tensor_model_parallel_world_size()
    self.tp_rank = get_tensor_model_parallel_rank()

    total_num_heads = num_heads * self.tp_size
    self.bs_attn = LocalStridedBlockSparseAttn(
        total_num_heads,
        self.blocksparse_params.max_seqlen,
        self.blocksparse_params.local_blocks,
        self.blocksparse_params.vert_stride,
        self.blocksparse_params.block_size,
        homo_head=self.blocksparse_params.homo_head,
        active_head_range=self.blocksparse_params.active_head_range,
    )

    if attn_type != AttentionType.DECODER:
        raise NotImplementedError("Encoder self-attention and "
                                  "encoder/decoder cross-attention "
                                  "are not implemented for "
                                  "BlocksparseFlashAttentionImpl")

forward

forward(
    layer: AttentionLayer,
    query: Tensor,
    key: Tensor,
    value: Tensor,
    kv_cache: Tensor,
    attn_metadata: BlocksparseFlashAttentionMetadata,
    output: Optional[Tensor] = None,
    output_scale: Optional[Tensor] = None,
) -> Tensor

Forward pass with FlashAttention and PagedAttention.

Parameters:

Name Type Description Default
query Tensor

shape = [num_tokens, num_heads * head_size]

required
key Tensor

shape = [num_tokens, num_kv_heads * head_size]

required
value Tensor

shape = [num_tokens, num_kv_heads * head_size]

required
attn_metadata BlocksparseFlashAttentionMetadata

Metadata for attention.

required

Returns: shape = [num_tokens, num_heads * head_size]

Source code in vllm/attention/backends/blocksparse_attn.py
def forward(
    self,
    layer: AttentionLayer,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata: BlocksparseFlashAttentionMetadata,
    output: Optional[torch.Tensor] = None,
    output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    """Forward pass with FlashAttention and PagedAttention.

    Args:
        query: shape = [num_tokens, num_heads * head_size]
        key: shape = [num_tokens, num_kv_heads * head_size]
        value: shape = [num_tokens, num_kv_heads * head_size]
        kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
            NOTE: kv_cache will be an empty tensor with shape [0]
            for profiling run.
        attn_metadata: Metadata for attention.
    Returns:
        shape = [num_tokens, num_heads * head_size]
    """
    if output_scale is not None:
        raise NotImplementedError(
            "fused output quantization is not yet supported"
            " for BlocksparseFlashAttentionImpl")

    num_tokens, hidden_size = query.shape
    # Reshape the query, key, and value tensors.
    query = query.view(-1, self.num_heads, self.head_size)
    key = key.view(-1, self.num_kv_heads, self.head_size)
    value = value.view(-1, self.num_kv_heads, self.head_size)

    if kv_cache.numel() > 0:
        key_cache, value_cache = PagedAttention.split_kv_cache(
            kv_cache, self.num_kv_heads, self.head_size)

        # Reshape the input keys and values and store them in the cache.
        # If kv_cache is not provided, the new key and value tensors are
        # not cached. This happens during the initial memory profiling run.

        PagedAttention.write_to_paged_cache(
            key,
            value,
            key_cache,
            value_cache,
            attn_metadata.slot_mapping,
            self.kv_cache_dtype,
            layer._k_scale,
            layer._v_scale,
        )

    if prefill_meta := attn_metadata.prefill_metadata:

        # Prompt run.
        # normal attention
        # When block_tables are not filled, it means q and k are the
        # prompt, and they have the same length.

        assert kv_cache.numel() == 0 \
                or prefill_meta.block_tables is None \
                or prefill_meta.block_tables.numel() == 0, \
            "Does not support prefix-enabled attention."

        output = self.bs_attn(
            q=query,
            k=key,
            v=value,
            cu_seqlens_q=prefill_meta.seq_start_loc,
            cu_seqlens_k=prefill_meta.seq_start_loc,
            sm_scale=self.scale,
        )

    if decode_meta := attn_metadata.decode_metadata:
        # Decoding run.
        output = PagedAttention.forward_decode(
            query,
            key_cache,
            value_cache,
            decode_meta.block_tables,
            decode_meta.seq_lens_tensor,
            self.blocksparse_params.max_seqlen,
            self.kv_cache_dtype,
            self.num_kv_heads,
            self.scale,
            self.alibi_slopes,
            layer._k_scale,
            layer._v_scale,
            tp_rank=self.tp_rank,
            blocksparse_local_blocks=self.local_blocks,
            blocksparse_vert_stride=self.vert_stride,
            blocksparse_block_size=self.sparse_block_size,
            blocksparse_head_sliding_step=self.head_sliding_step,
        )

    assert output is not None
    # Reshape the output tensor.
    return output.view(num_tokens, hidden_size)

BlocksparseFlashAttentionMetadata dataclass

Bases: AttentionMetadata

A copy of Metadata for FlashAttentionBackend, to avoid having to install flash_attn.

NOTE: Any python object stored here is not updated when it is cuda-graph replayed. If you have values that need to be changed dynamically, it should be stored in tensor. The tensor has to be updated from CUDAGraphRunner.forward API.

Source code in vllm/attention/backends/blocksparse_attn.py
@dataclass
class BlocksparseFlashAttentionMetadata(AttentionMetadata):
    """A copy of Metadata for FlashAttentionBackend,
    to avoid having to install flash_attn.

    NOTE: Any python object stored here is not updated when it is
    cuda-graph replayed. If you have values that need to be changed
    dynamically, it should be stored in tensor. The tensor has to be
    updated from `CUDAGraphRunner.forward` API.
    """
    # (batch_size,). The sequence length per sequence. Sequence length means
    # the computed tokens + new tokens None if it is a decoding.
    seq_lens: Optional[List[int]]
    # seq_lens stored as a tensor.
    seq_lens_tensor: Optional[torch.Tensor]

    # NOTE(sang): Definition of context_len, query_len, and seq_len.
    # |---------- N-1 iteration --------|
    # |---------------- N iteration ---------------------|
    # |- tokenA -|......................|-- newTokens ---|
    # |---------- context_len ----------|
    # |-------------------- seq_len ----------------------|
    #                                   |-- query_len ---|

    # Maximum query length in the batch. None for decoding.
    max_query_len: Optional[int]
    # Maximum sequence length among prefill batch. 0 if there are decoding
    # requests only.
    max_prefill_seq_len: int
    # Maximum sequence length among decode batch. 0 if there are prefill
    # requests only.
    max_decode_seq_len: int
    # (batch_size + 1,). The cumulative subquery lengths of the sequences in
    # the batch, used to index into subquery. E.g., if the subquery length
    # is [4, 6], it is [0, 4, 10].
    query_start_loc: Optional[torch.Tensor]
    # (batch_size + 1,). The cumulative sequence lengths of the sequences in
    # the batch, used to index into sequence. E.g., if the sequence length is
    # [4, 6], it is [0, 4, 10].
    seq_start_loc: Optional[torch.Tensor]
    # (batch_size,) A tensor of context lengths (tokens that are computed
    # so far).
    context_lens_tensor: Optional[torch.Tensor]

    # (batch_size, max_blocks_per_seq).
    # Block addresses per sequence. (Seq id -> list of physical block)
    # E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
    # in the kv cache. Each block can contain up to block_size tokens.
    # 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
    # captured.
    block_tables: Optional[torch.Tensor]

    # Whether or not if cuda graph is enabled.
    # Cuda-graph is currently enabled for decoding only.
    # TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
    use_cuda_graph: bool

    # Max number of query tokens for among request in the batch.
    max_decode_query_len: Optional[int] = None

    _cached_prefill_metadata: Optional[
        "BlocksparseFlashAttentionMetadata"] = None
    _cached_decode_metadata: Optional[
        "BlocksparseFlashAttentionMetadata"] = None

    @property
    def prefill_metadata(
            self) -> Optional["BlocksparseFlashAttentionMetadata"]:
        if self.num_prefills == 0:
            return None

        if self._cached_prefill_metadata is not None:
            return self._cached_prefill_metadata

        assert self.seq_lens is not None
        assert self.seq_lens_tensor is not None
        assert self.query_start_loc is not None
        assert self.context_lens_tensor is not None
        assert self.block_tables is not None
        assert self.seq_start_loc is not None

        self._cached_prefill_metadata = BlocksparseFlashAttentionMetadata(
            num_prefills=self.num_prefills,
            num_prefill_tokens=self.num_prefill_tokens,
            num_decode_tokens=0,
            slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
            multi_modal_placeholder_index_maps=self.
            multi_modal_placeholder_index_maps,
            enable_kv_scales_calculation=self.enable_kv_scales_calculation,
            seq_lens=self.seq_lens[:self.num_prefills],
            seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
            max_query_len=self.max_query_len,
            max_prefill_seq_len=self.max_prefill_seq_len,
            max_decode_seq_len=0,
            query_start_loc=self.query_start_loc[:self.num_prefills + 1],
            seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
            context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
            block_tables=self.block_tables[:self.num_prefills],
            use_cuda_graph=False,
        )
        return self._cached_prefill_metadata

    @property
    def decode_metadata(self) -> Optional["BlocksparseFlashAttentionMetadata"]:
        if self.num_decode_tokens == 0:
            return None

        if self._cached_decode_metadata is not None:
            return self._cached_decode_metadata
        assert self.block_tables is not None
        assert self.seq_lens_tensor is not None

        self._cached_decode_metadata = BlocksparseFlashAttentionMetadata(
            num_prefills=0,
            num_prefill_tokens=0,
            num_decode_tokens=self.num_decode_tokens,
            slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
            multi_modal_placeholder_index_maps=None,
            enable_kv_scales_calculation=False,
            seq_lens=None,
            seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
            max_query_len=None,
            max_prefill_seq_len=0,
            max_decode_seq_len=self.max_decode_seq_len,
            query_start_loc=None,
            seq_start_loc=None,
            context_lens_tensor=None,
            block_tables=self.block_tables[self.num_prefills:],
            use_cuda_graph=self.use_cuda_graph,
        )
        return self._cached_decode_metadata

_cached_decode_metadata class-attribute instance-attribute

_cached_decode_metadata: Optional[
    BlocksparseFlashAttentionMetadata
] = None

_cached_prefill_metadata class-attribute instance-attribute

_cached_prefill_metadata: Optional[
    BlocksparseFlashAttentionMetadata
] = None

block_tables instance-attribute

block_tables: Optional[Tensor]

context_lens_tensor instance-attribute

context_lens_tensor: Optional[Tensor]

decode_metadata property

max_decode_query_len class-attribute instance-attribute

max_decode_query_len: Optional[int] = None

max_decode_seq_len instance-attribute

max_decode_seq_len: int

max_prefill_seq_len instance-attribute

max_prefill_seq_len: int

max_query_len instance-attribute

max_query_len: Optional[int]

prefill_metadata property

query_start_loc instance-attribute

query_start_loc: Optional[Tensor]

seq_lens instance-attribute

seq_lens: Optional[List[int]]

seq_lens_tensor instance-attribute

seq_lens_tensor: Optional[Tensor]

seq_start_loc instance-attribute

seq_start_loc: Optional[Tensor]

use_cuda_graph instance-attribute

use_cuda_graph: bool

__init__

__init__(
    num_prefills: int,
    num_prefill_tokens: int,
    num_decode_tokens: int,
    slot_mapping: Tensor,
    multi_modal_placeholder_index_maps: Optional[
        Dict[str, IndexMap]
    ],
    enable_kv_scales_calculation: bool,
    seq_lens: Optional[List[int]],
    seq_lens_tensor: Optional[Tensor],
    max_query_len: Optional[int],
    max_prefill_seq_len: int,
    max_decode_seq_len: int,
    query_start_loc: Optional[Tensor],
    seq_start_loc: Optional[Tensor],
    context_lens_tensor: Optional[Tensor],
    block_tables: Optional[Tensor],
    use_cuda_graph: bool,
    max_decode_query_len: Optional[int] = None,
    _cached_prefill_metadata: Optional[
        BlocksparseFlashAttentionMetadata
    ] = None,
    _cached_decode_metadata: Optional[
        BlocksparseFlashAttentionMetadata
    ] = None,
) -> None

BlocksparseFlashAttentionMetadataBuilder

Bases: CommonMetadataBuilder[BlocksparseFlashAttentionMetadata]

Source code in vllm/attention/backends/blocksparse_attn.py
class BlocksparseFlashAttentionMetadataBuilder(
        CommonMetadataBuilder[BlocksparseFlashAttentionMetadata]):

    _metadata_cls = BlocksparseFlashAttentionMetadata

_metadata_cls class-attribute instance-attribute

BlocksparseParams dataclass

Source code in vllm/attention/backends/blocksparse_attn.py
@dataclass
class BlocksparseParams:
    max_seqlen: int

    # Num q heads per tensor-parallel rank/partition
    num_heads: int  # per TP partition
    # Num kv heads per tensor-parallel rank/partition
    num_kv_heads: int

    # block size used for blocksparse attention.
    # This is the block_size used in `local_blocks`, `vert_stride`.
    block_size: int

    # Number of blocks for local attention, i.e., number of
    # local attended tokens / `sparse_block_size`
    local_blocks: int

    # Attend to one block per every `vert_stride` blocks.
    # Controlling the sparsity
    vert_stride: int
    """
    If to use the same vertical stride offset for all heads, 
    i.e., attend to the same block of tokens on all heads.
    By default, it is False, i.e., attention on the non-local 
    blocks depends on the `head_idx`, that is on
    blocks satisfying 
    `(block_idx + head_idx * head_sliding_step + 1) % vert_stride == 0`
    where `head_sliding_step=max(1, int(vert_stride / num_total_heads))`,
            `block_idx = position_id // sparse_block_size`.
    See `..ops.blocksparse_attention.utils:get_sparse_attn_mask`
    for more detail.
    """
    homo_head: bool = False

    # If within a group, the kv offsets that each q attends is the same or no.
    homo_head_group: bool = False

    # Decided by homo_head and homo_head group
    head_sliding_step: int = field(init=False)

    # range of q heads to for a TP rank
    active_head_range: Tuple = field(init=False)

    def __post_init__(self):
        assert self.block_size > 0
        assert self.local_blocks >= 0
        assert self.vert_stride >= 1

        tp_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        total_heads = tp_size * self.num_heads
        total_kv_heads = tp_size * self.num_kv_heads

        if self.homo_head:
            self.head_sliding_step = 0
        elif self.homo_head_group:
            head_sliding_step = get_head_sliding_step(total_kv_heads,
                                                      self.vert_stride)
            # negative indicates sliding along kv heads, i.e., homo q group
            self.head_sliding_step = -head_sliding_step
        else:
            self.head_sliding_step = get_head_sliding_step(
                total_heads, self.vert_stride)

        self.active_head_range = (
            tp_rank * self.num_heads,
            (tp_rank + 1) * self.num_heads,
        )

active_head_range class-attribute instance-attribute

active_head_range: Tuple = field(init=False)

block_size instance-attribute

block_size: int

head_sliding_step class-attribute instance-attribute

head_sliding_step: int = field(init=False)

homo_head class-attribute instance-attribute

homo_head: bool = False

homo_head_group class-attribute instance-attribute

homo_head_group: bool = False

local_blocks instance-attribute

local_blocks: int

max_seqlen instance-attribute

max_seqlen: int

num_heads instance-attribute

num_heads: int

num_kv_heads instance-attribute

num_kv_heads: int

vert_stride instance-attribute

vert_stride: int

If to use the same vertical stride offset for all heads, i.e., attend to the same block of tokens on all heads. By default, it is False, i.e., attention on the non-local blocks depends on the head_idx, that is on blocks satisfying (block_idx + head_idx * head_sliding_step + 1) % vert_stride == 0 where head_sliding_step=max(1, int(vert_stride / num_total_heads)), block_idx = position_id // sparse_block_size. See ..ops.blocksparse_attention.utils:get_sparse_attn_mask for more detail.

__init__

__init__(
    max_seqlen: int,
    num_heads: int,
    num_kv_heads: int,
    block_size: int,
    local_blocks: int,
    vert_stride: int,
    homo_head: bool = False,
    homo_head_group: bool = False,
) -> None

__post_init__

__post_init__()
Source code in vllm/attention/backends/blocksparse_attn.py
def __post_init__(self):
    assert self.block_size > 0
    assert self.local_blocks >= 0
    assert self.vert_stride >= 1

    tp_size = get_tensor_model_parallel_world_size()
    tp_rank = get_tensor_model_parallel_rank()
    total_heads = tp_size * self.num_heads
    total_kv_heads = tp_size * self.num_kv_heads

    if self.homo_head:
        self.head_sliding_step = 0
    elif self.homo_head_group:
        head_sliding_step = get_head_sliding_step(total_kv_heads,
                                                  self.vert_stride)
        # negative indicates sliding along kv heads, i.e., homo q group
        self.head_sliding_step = -head_sliding_step
    else:
        self.head_sliding_step = get_head_sliding_step(
            total_heads, self.vert_stride)

    self.active_head_range = (
        tp_rank * self.num_heads,
        (tp_rank + 1) * self.num_heads,
    )