A helper method to load the PEFT weights from the HuggingFace Hub or locally
Parameters:
Name |
Type |
Description |
Default |
model_id
|
`str`
|
The local path to the adapter weights or the name of the adapter to
load from the HuggingFace Hub.
|
required
|
device
|
`str`
|
The device to load the weights onto.
|
None
|
hf_hub_download_kwargs
|
`dict`
|
Additional arguments to pass to the hf_hub_download method when
loading from the HuggingFace Hub.
|
{}
|
Source code in vllm/prompt_adapter/utils.py
| def load_peft_weights(model_id: str,
device: Optional[str] = None,
**hf_hub_download_kwargs) -> dict:
r"""
A helper method to load the PEFT weights from the HuggingFace Hub or locally
Args:
model_id (`str`):
The local path to the adapter weights or the name of the adapter to
load from the HuggingFace Hub.
device (`str`):
The device to load the weights onto.
hf_hub_download_kwargs (`dict`):
Additional arguments to pass to the `hf_hub_download` method when
loading from the HuggingFace Hub.
"""
path = (os.path.join(model_id, hf_hub_download_kwargs["subfolder"]) if
hf_hub_download_kwargs.get("subfolder") is not None else model_id)
if device is None:
device = infer_device()
if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)):
filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME)
use_safetensors = True
elif os.path.exists(os.path.join(path, WEIGHTS_NAME)):
filename = os.path.join(path, WEIGHTS_NAME)
use_safetensors = False
else:
token = hf_hub_download_kwargs.get("token")
if token is None:
token = hf_hub_download_kwargs.get("use_auth_token")
hub_filename = (os.path.join(hf_hub_download_kwargs["subfolder"],
SAFETENSORS_WEIGHTS_NAME)
if hf_hub_download_kwargs.get("subfolder") is not None
else SAFETENSORS_WEIGHTS_NAME)
has_remote_safetensors_file = file_exists(
repo_id=model_id,
filename=hub_filename,
revision=hf_hub_download_kwargs.get("revision"),
repo_type=hf_hub_download_kwargs.get("repo_type"),
token=token,
)
use_safetensors = has_remote_safetensors_file
if has_remote_safetensors_file:
# Priority 1: load safetensors weights
filename = hf_hub_download(
model_id,
SAFETENSORS_WEIGHTS_NAME,
**hf_hub_download_kwargs,
)
else:
try:
filename = hf_hub_download(model_id, WEIGHTS_NAME,
**hf_hub_download_kwargs)
except EntryNotFoundError:
raise ValueError( # noqa: B904
f"Can't find weights for {model_id} in {model_id} or \
in the Hugging Face Hub. "
f"Please check that the file {WEIGHTS_NAME} or \
{SAFETENSORS_WEIGHTS_NAME} is present at {model_id}.")
if use_safetensors:
adapters_weights = safe_load_file(filename, device=device)
else:
adapters_weights = torch.load(filename,
map_location=torch.device(device),
weights_only=True)
return adapters_weights
|