Skip to content

vllm.platforms.cuda

Code inside this file can safely assume cuda platform, e.g. importing pynvml. However, it should not initialize cuda context.

CudaPlatform module-attribute

_P module-attribute

_P = ParamSpec('_P')

_R module-attribute

_R = TypeVar('_R')

logger module-attribute

logger = init_logger(__name__)

nvml_available module-attribute

nvml_available = True

pynvml module-attribute

pynvml = import_pynvml()

CudaPlatformBase

Bases: Platform

Source code in vllm/platforms/cuda.py
class CudaPlatformBase(Platform):
    _enum = PlatformEnum.CUDA
    device_name: str = "cuda"
    device_type: str = "cuda"
    dispatch_key: str = "CUDA"
    ray_device_key: str = "GPU"
    device_control_env_var: str = "CUDA_VISIBLE_DEVICES"

    @property
    def supported_dtypes(self) -> list[torch.dtype]:
        if self.has_device_capability(80):
            # Ampere and Hopper or later NVIDIA GPUs.
            return [torch.bfloat16, torch.float16, torch.float32]
        elif (not self.has_device_capability(80)
              ) and self.has_device_capability(60):
            # Pascal, Volta and Turing NVIDIA GPUs, BF16 is not supported
            return [torch.float16, torch.float32]
        # Kepler and Maxwell NVIDIA GPUs, only FP32 is supported,
        # though vLLM doesn't support these GPUs.
        return [torch.float32]

    @classmethod
    def set_device(cls, device: torch.device) -> None:
        """
        Set the device for the current platform.
        """
        super().set_device(device)
        # With this trick we can force the device to be set eagerly
        # see https://github.com/pytorch/pytorch/issues/155668
        # for why and when it is needed
        _ = torch.zeros(1, device=device)

    @classmethod
    def get_device_capability(cls,
                              device_id: int = 0
                              ) -> Optional[DeviceCapability]:
        raise NotImplementedError

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        raise NotImplementedError

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        raise NotImplementedError

    @classmethod
    def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
        if enforce_eager:
            logger.warning(
                "To see benefits of async output processing, enable CUDA "
                "graph. Since, enforce-eager is enabled, async output "
                "processor cannot be used")
            return False
        return True

    @classmethod
    def is_fully_connected(cls, device_ids: list[int]) -> bool:
        raise NotImplementedError

    @classmethod
    def log_warnings(cls):
        pass

    @classmethod
    def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
        parallel_config = vllm_config.parallel_config
        scheduler_config = vllm_config.scheduler_config
        model_config = vllm_config.model_config

        if parallel_config.worker_cls == "auto":
            if scheduler_config.is_multi_step:
                if envs.VLLM_USE_V1:
                    raise NotImplementedError(
                        "Multi-step scheduling is not supported (and not "
                        "needed) on vLLM V1. Please launch without "
                        "--num-scheduler-steps.")
                else:
                    parallel_config.worker_cls = \
                        "vllm.worker.multi_step_worker.MultiStepWorker"
            elif vllm_config.speculative_config:
                if envs.VLLM_USE_V1:
                    parallel_config.worker_cls = \
                            "vllm.v1.worker.gpu_worker.Worker"
                else:
                    parallel_config.worker_cls = \
                        "vllm.spec_decode.spec_decode_worker.create_spec_worker"
                    parallel_config.sd_worker_cls = \
                        "vllm.worker.worker.Worker"
            else:
                if envs.VLLM_USE_V1:
                    parallel_config.worker_cls = \
                            "vllm.v1.worker.gpu_worker.Worker"
                else:
                    parallel_config.worker_cls = "vllm.worker.worker.Worker"

        cache_config = vllm_config.cache_config
        if cache_config and cache_config.block_size is None:
            cache_config.block_size = 16

        # TODO(lucas): handle this more gracefully
        # Note: model_config may be None during testing
        if model_config is not None and model_config.use_mla:
            # if `VLLM_ATTENTION_BACKEND` is not set and we are using MLA, then
            # we default to FlashMLA backend, so we need to force the blocksize
            # here
            use_flashmla = (envs.VLLM_ATTENTION_BACKEND is None \
                or envs.VLLM_ATTENTION_BACKEND == "FLASHMLA")
            from vllm.attention.ops.flashmla import is_flashmla_supported
            if use_flashmla and is_flashmla_supported()[0] \
                and cache_config.block_size != 64:
                cache_config.block_size = 64
                logger.info(
                    "Forcing kv cache block size to 64 for FlashMLA backend.")

        if (envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput"
                and parallel_config.data_parallel_size > 1
                and vllm_config.compilation_config.use_cudagraph):
            logger.info(
                "Data Parallel: Forcing enforce eager to be True since DP "
                "with DeepEP high-throughput kernels are not CUDA Graph "
                "compatible. The DeepEP low-latency kernels are CUDA Graph "
                "compatible. Set the all_to_all backend to deepep_low_latency "
                "to use those kernels instead.")
            vllm_config.compilation_config.use_cudagraph = False
            vllm_config.model_config.enforce_eager = True
            # TODO (varun): Turning this ON gives incorrect results for the
            # Deepseek-V2-lite model.
            vllm_config.compilation_config.use_inductor = False

    @classmethod
    def get_current_memory_usage(cls,
                                 device: Optional[torch.types.Device] = None
                                 ) -> float:
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats(device)
        return torch.cuda.max_memory_allocated(device)

    @classmethod
    def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
                             kv_cache_dtype, block_size, use_v1,
                             use_mla) -> str:
        if use_mla:
            # TODO(lucas): refactor to  be more concise
            #  we should probably consider factoring out V1 here
            if selected_backend == _Backend.CUTLASS_MLA_VLLM_V1:
                if use_v1:
                    logger.info_once("Using Cutlass MLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "cutlass_mla.CutlassMLABackend")
                else:
                    logger.warning(
                        "Cutlass MLA backend is only supported on V1 engine")
            if selected_backend == _Backend.TRITON_MLA or block_size != 64:
                if use_v1:
                    logger.info_once("Using Triton MLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "triton_mla.TritonMLABackend")
                else:
                    logger.info("Using Triton MLA backend.")
                    return "vllm.attention.backends.triton_mla.TritonMLABackend"
            else:
                from vllm.attention.backends.flashmla import (
                    is_flashmla_supported)
                if not is_flashmla_supported()[0]:
                    logger.warning(
                        "FlashMLA backend is not supported due to %s",
                        is_flashmla_supported()[1])
                elif block_size != 64:
                    logger.warning(
                        "FlashMLA backend is not supported for block size %d"
                        " (currently only supports block size 64).",
                        block_size)
                else:
                    if use_v1:
                        logger.info_once(
                            "Using FlashMLA backend on V1 engine.")
                        return ("vllm.v1.attention.backends.mla."
                                "flashmla.FlashMLABackend")
                    else:
                        logger.info("Using FlashMLA backend.")
                        return ("vllm.attention.backends."
                                "flashmla.FlashMLABackend")
        if use_v1:
            if selected_backend == _Backend.FLASHINFER:
                logger.info_once("Using FlashInfer backend on V1 engine.")
                return "vllm.v1.attention.backends.flashinfer.FlashInferBackend"
            elif selected_backend == _Backend.FLEX_ATTENTION:
                logger.info("Using FlexAttenion backend on V1 engine.")
                return "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend"  # noqa: E501
            elif selected_backend == _Backend.TRITON_ATTN_VLLM_V1:
                logger.info_once("Using Triton backend on V1 engine.")
                return ("vllm.v1.attention.backends."
                        "triton_attn.TritonAttentionBackend")
            elif selected_backend == _Backend.FLASH_ATTN:
                logger.info_once("Using Flash Attention backend on V1 engine.")
                return ("vllm.v1.attention.backends."
                        "flash_attn.FlashAttentionBackend")

            # Default backends for V1 engine
            # Prefer FlashInfer for Blackwell GPUs if installed
            if cls.is_device_capability(100):
                try:
                    import flashinfer  # noqa: F401
                    logger.info_once(
                        "Using FlashInfer backend on V1 engine by default for "
                        "Blackwell (SM 10.0) GPUs.")
                    return ("vllm.v1.attention.backends."
                            "flashinfer.FlashInferBackend")
                except ImportError:
                    logger.info_once(
                        "FlashInfer failed to import for V1 engine on "
                        "Blackwell (SM 10.0) GPUs; it is recommended to "
                        "install FlashInfer for better performance.")
                    pass
            # FlashAttention is the default for SM 8.0+ GPUs
            if cls.has_device_capability(80):
                logger.info_once("Using Flash Attention backend on V1 engine.")
                return ("vllm.v1.attention.backends."
                        "flash_attn.FlashAttentionBackend")

        # Backends for V0 engine
        if selected_backend == _Backend.FLASHINFER:
            logger.info("Using FlashInfer backend.")
            return "vllm.attention.backends.flashinfer.FlashInferBackend"
        elif selected_backend == _Backend.XFORMERS:
            logger.info("Using XFormers backend.")
            return "vllm.attention.backends.xformers.XFormersBackend"
        elif selected_backend == _Backend.DUAL_CHUNK_FLASH_ATTN:
            logger.info("Using DualChunkFlashAttention backend.")
            return ("vllm.attention.backends.dual_chunk_flash_attn."
                    "DualChunkFlashAttentionBackend")
        elif selected_backend == _Backend.FLASH_ATTN:
            pass
        elif selected_backend:
            raise ValueError(
                f"Invalid attention backend for {cls.device_name}, "
                f"with use_v1: {use_v1} use_mla: {use_mla}")

        target_backend = _Backend.FLASH_ATTN
        if not cls.has_device_capability(80):
            # Volta and Turing NVIDIA GPUs.
            logger.info(
                "Cannot use FlashAttention-2 backend for Volta and Turing "
                "GPUs.")
            target_backend = _Backend.XFORMERS
        elif dtype not in (torch.float16, torch.bfloat16):
            logger.info(
                "Cannot use FlashAttention-2 backend for dtype other than "
                "torch.float16 or torch.bfloat16.")
            target_backend = _Backend.XFORMERS
        elif block_size % 16 != 0:
            logger.info(
                "Cannot use FlashAttention-2 backend for block size not "
                "divisible by 16.")
            target_backend = _Backend.XFORMERS

        # FlashAttn is valid for the model, checking if the package is
        # installed.
        if target_backend == _Backend.FLASH_ATTN:
            try:
                import vllm.vllm_flash_attn  # noqa: F401
                from vllm.attention.backends.flash_attn import (  # noqa: F401
                    FlashAttentionBackend, flash_attn_supports_fp8)

                supported_sizes = \
                    FlashAttentionBackend.get_supported_head_sizes()
                if head_size not in supported_sizes:
                    logger.info(
                        "Cannot use FlashAttention-2 backend for head size %d.",
                        head_size)
                    target_backend = _Backend.XFORMERS
                fp8_kv_cache = (kv_cache_dtype is not None
                                and kv_cache_dtype.startswith("fp8"))
                if (fp8_kv_cache and not flash_attn_supports_fp8()):
                    logger.info(
                        "Cannot use FlashAttention backend for FP8 KV cache.")
                    logger.warning(
                        "Please use FlashInfer backend with FP8 KV Cache for "
                        "better performance by setting environment variable "
                        "VLLM_ATTENTION_BACKEND=FLASHINFER")
                    target_backend = _Backend.XFORMERS
            except ImportError:
                logger.info(
                    "Cannot use FlashAttention-2 backend because the "
                    "vllm.vllm_flash_attn package is not found. "
                    "Make sure that vllm_flash_attn was built and installed "
                    "(on by default).")
                target_backend = _Backend.XFORMERS

        if target_backend == _Backend.XFORMERS:
            logger.info("Using XFormers backend.")
            return "vllm.attention.backends.xformers.XFormersBackend"

        logger.info("Using Flash Attention backend.")
        return "vllm.attention.backends.flash_attn.FlashAttentionBackend"

    @classmethod
    def get_punica_wrapper(cls) -> str:
        return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"

    @classmethod
    def get_device_communicator_cls(cls) -> str:
        return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator"  # noqa

    @classmethod
    def supports_fp8(cls) -> bool:
        return cls.has_device_capability(89)

    @classmethod
    def supports_v1(cls, model_config: "ModelConfig") -> bool:
        return True

    @classmethod
    def use_custom_allreduce(cls) -> bool:
        return True

    @classmethod
    def get_piecewise_backend_cls(cls) -> str:
        return "vllm.compilation.cuda_piecewise_backend.CUDAPiecewiseBackend"  # noqa

    @classmethod
    def stateless_init_device_torch_dist_pg(
        cls,
        backend: str,
        prefix_store: PrefixStore,
        group_rank: int,
        group_size: int,
        timeout: timedelta,
    ) -> ProcessGroup:
        assert is_nccl_available()
        pg: ProcessGroup = ProcessGroup(
            prefix_store,
            group_rank,
            group_size,
        )
        from torch.distributed.distributed_c10d import ProcessGroupNCCL

        backend_options = ProcessGroupNCCL.Options()
        backend_options._timeout = timeout

        backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
                                         backend_options)
        backend_type = ProcessGroup.BackendType.NCCL
        device = torch.device("cuda")
        pg._set_default_backend(backend_type)
        backend_class._set_sequence_number_for_group()

        pg._register_backend(device, backend_type, backend_class)
        return pg

    @classmethod
    def device_count(cls) -> int:
        return cuda_device_count_stateless()

_enum class-attribute instance-attribute

_enum = CUDA

device_control_env_var class-attribute instance-attribute

device_control_env_var: str = 'CUDA_VISIBLE_DEVICES'

device_name class-attribute instance-attribute

device_name: str = 'cuda'

device_type class-attribute instance-attribute

device_type: str = 'cuda'

dispatch_key class-attribute instance-attribute

dispatch_key: str = 'CUDA'

ray_device_key class-attribute instance-attribute

ray_device_key: str = 'GPU'

supported_dtypes property

supported_dtypes: list[dtype]

check_and_update_config classmethod

check_and_update_config(vllm_config: VllmConfig) -> None
Source code in vllm/platforms/cuda.py
@classmethod
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
    parallel_config = vllm_config.parallel_config
    scheduler_config = vllm_config.scheduler_config
    model_config = vllm_config.model_config

    if parallel_config.worker_cls == "auto":
        if scheduler_config.is_multi_step:
            if envs.VLLM_USE_V1:
                raise NotImplementedError(
                    "Multi-step scheduling is not supported (and not "
                    "needed) on vLLM V1. Please launch without "
                    "--num-scheduler-steps.")
            else:
                parallel_config.worker_cls = \
                    "vllm.worker.multi_step_worker.MultiStepWorker"
        elif vllm_config.speculative_config:
            if envs.VLLM_USE_V1:
                parallel_config.worker_cls = \
                        "vllm.v1.worker.gpu_worker.Worker"
            else:
                parallel_config.worker_cls = \
                    "vllm.spec_decode.spec_decode_worker.create_spec_worker"
                parallel_config.sd_worker_cls = \
                    "vllm.worker.worker.Worker"
        else:
            if envs.VLLM_USE_V1:
                parallel_config.worker_cls = \
                        "vllm.v1.worker.gpu_worker.Worker"
            else:
                parallel_config.worker_cls = "vllm.worker.worker.Worker"

    cache_config = vllm_config.cache_config
    if cache_config and cache_config.block_size is None:
        cache_config.block_size = 16

    # TODO(lucas): handle this more gracefully
    # Note: model_config may be None during testing
    if model_config is not None and model_config.use_mla:
        # if `VLLM_ATTENTION_BACKEND` is not set and we are using MLA, then
        # we default to FlashMLA backend, so we need to force the blocksize
        # here
        use_flashmla = (envs.VLLM_ATTENTION_BACKEND is None \
            or envs.VLLM_ATTENTION_BACKEND == "FLASHMLA")
        from vllm.attention.ops.flashmla import is_flashmla_supported
        if use_flashmla and is_flashmla_supported()[0] \
            and cache_config.block_size != 64:
            cache_config.block_size = 64
            logger.info(
                "Forcing kv cache block size to 64 for FlashMLA backend.")

    if (envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput"
            and parallel_config.data_parallel_size > 1
            and vllm_config.compilation_config.use_cudagraph):
        logger.info(
            "Data Parallel: Forcing enforce eager to be True since DP "
            "with DeepEP high-throughput kernels are not CUDA Graph "
            "compatible. The DeepEP low-latency kernels are CUDA Graph "
            "compatible. Set the all_to_all backend to deepep_low_latency "
            "to use those kernels instead.")
        vllm_config.compilation_config.use_cudagraph = False
        vllm_config.model_config.enforce_eager = True
        # TODO (varun): Turning this ON gives incorrect results for the
        # Deepseek-V2-lite model.
        vllm_config.compilation_config.use_inductor = False

device_count classmethod

device_count() -> int
Source code in vllm/platforms/cuda.py
@classmethod
def device_count(cls) -> int:
    return cuda_device_count_stateless()

get_attn_backend_cls classmethod

get_attn_backend_cls(
    selected_backend,
    head_size,
    dtype,
    kv_cache_dtype,
    block_size,
    use_v1,
    use_mla,
) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
                         kv_cache_dtype, block_size, use_v1,
                         use_mla) -> str:
    if use_mla:
        # TODO(lucas): refactor to  be more concise
        #  we should probably consider factoring out V1 here
        if selected_backend == _Backend.CUTLASS_MLA_VLLM_V1:
            if use_v1:
                logger.info_once("Using Cutlass MLA backend on V1 engine.")
                return ("vllm.v1.attention.backends.mla."
                        "cutlass_mla.CutlassMLABackend")
            else:
                logger.warning(
                    "Cutlass MLA backend is only supported on V1 engine")
        if selected_backend == _Backend.TRITON_MLA or block_size != 64:
            if use_v1:
                logger.info_once("Using Triton MLA backend on V1 engine.")
                return ("vllm.v1.attention.backends.mla."
                        "triton_mla.TritonMLABackend")
            else:
                logger.info("Using Triton MLA backend.")
                return "vllm.attention.backends.triton_mla.TritonMLABackend"
        else:
            from vllm.attention.backends.flashmla import (
                is_flashmla_supported)
            if not is_flashmla_supported()[0]:
                logger.warning(
                    "FlashMLA backend is not supported due to %s",
                    is_flashmla_supported()[1])
            elif block_size != 64:
                logger.warning(
                    "FlashMLA backend is not supported for block size %d"
                    " (currently only supports block size 64).",
                    block_size)
            else:
                if use_v1:
                    logger.info_once(
                        "Using FlashMLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "flashmla.FlashMLABackend")
                else:
                    logger.info("Using FlashMLA backend.")
                    return ("vllm.attention.backends."
                            "flashmla.FlashMLABackend")
    if use_v1:
        if selected_backend == _Backend.FLASHINFER:
            logger.info_once("Using FlashInfer backend on V1 engine.")
            return "vllm.v1.attention.backends.flashinfer.FlashInferBackend"
        elif selected_backend == _Backend.FLEX_ATTENTION:
            logger.info("Using FlexAttenion backend on V1 engine.")
            return "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend"  # noqa: E501
        elif selected_backend == _Backend.TRITON_ATTN_VLLM_V1:
            logger.info_once("Using Triton backend on V1 engine.")
            return ("vllm.v1.attention.backends."
                    "triton_attn.TritonAttentionBackend")
        elif selected_backend == _Backend.FLASH_ATTN:
            logger.info_once("Using Flash Attention backend on V1 engine.")
            return ("vllm.v1.attention.backends."
                    "flash_attn.FlashAttentionBackend")

        # Default backends for V1 engine
        # Prefer FlashInfer for Blackwell GPUs if installed
        if cls.is_device_capability(100):
            try:
                import flashinfer  # noqa: F401
                logger.info_once(
                    "Using FlashInfer backend on V1 engine by default for "
                    "Blackwell (SM 10.0) GPUs.")
                return ("vllm.v1.attention.backends."
                        "flashinfer.FlashInferBackend")
            except ImportError:
                logger.info_once(
                    "FlashInfer failed to import for V1 engine on "
                    "Blackwell (SM 10.0) GPUs; it is recommended to "
                    "install FlashInfer for better performance.")
                pass
        # FlashAttention is the default for SM 8.0+ GPUs
        if cls.has_device_capability(80):
            logger.info_once("Using Flash Attention backend on V1 engine.")
            return ("vllm.v1.attention.backends."
                    "flash_attn.FlashAttentionBackend")

    # Backends for V0 engine
    if selected_backend == _Backend.FLASHINFER:
        logger.info("Using FlashInfer backend.")
        return "vllm.attention.backends.flashinfer.FlashInferBackend"
    elif selected_backend == _Backend.XFORMERS:
        logger.info("Using XFormers backend.")
        return "vllm.attention.backends.xformers.XFormersBackend"
    elif selected_backend == _Backend.DUAL_CHUNK_FLASH_ATTN:
        logger.info("Using DualChunkFlashAttention backend.")
        return ("vllm.attention.backends.dual_chunk_flash_attn."
                "DualChunkFlashAttentionBackend")
    elif selected_backend == _Backend.FLASH_ATTN:
        pass
    elif selected_backend:
        raise ValueError(
            f"Invalid attention backend for {cls.device_name}, "
            f"with use_v1: {use_v1} use_mla: {use_mla}")

    target_backend = _Backend.FLASH_ATTN
    if not cls.has_device_capability(80):
        # Volta and Turing NVIDIA GPUs.
        logger.info(
            "Cannot use FlashAttention-2 backend for Volta and Turing "
            "GPUs.")
        target_backend = _Backend.XFORMERS
    elif dtype not in (torch.float16, torch.bfloat16):
        logger.info(
            "Cannot use FlashAttention-2 backend for dtype other than "
            "torch.float16 or torch.bfloat16.")
        target_backend = _Backend.XFORMERS
    elif block_size % 16 != 0:
        logger.info(
            "Cannot use FlashAttention-2 backend for block size not "
            "divisible by 16.")
        target_backend = _Backend.XFORMERS

    # FlashAttn is valid for the model, checking if the package is
    # installed.
    if target_backend == _Backend.FLASH_ATTN:
        try:
            import vllm.vllm_flash_attn  # noqa: F401
            from vllm.attention.backends.flash_attn import (  # noqa: F401
                FlashAttentionBackend, flash_attn_supports_fp8)

            supported_sizes = \
                FlashAttentionBackend.get_supported_head_sizes()
            if head_size not in supported_sizes:
                logger.info(
                    "Cannot use FlashAttention-2 backend for head size %d.",
                    head_size)
                target_backend = _Backend.XFORMERS
            fp8_kv_cache = (kv_cache_dtype is not None
                            and kv_cache_dtype.startswith("fp8"))
            if (fp8_kv_cache and not flash_attn_supports_fp8()):
                logger.info(
                    "Cannot use FlashAttention backend for FP8 KV cache.")
                logger.warning(
                    "Please use FlashInfer backend with FP8 KV Cache for "
                    "better performance by setting environment variable "
                    "VLLM_ATTENTION_BACKEND=FLASHINFER")
                target_backend = _Backend.XFORMERS
        except ImportError:
            logger.info(
                "Cannot use FlashAttention-2 backend because the "
                "vllm.vllm_flash_attn package is not found. "
                "Make sure that vllm_flash_attn was built and installed "
                "(on by default).")
            target_backend = _Backend.XFORMERS

    if target_backend == _Backend.XFORMERS:
        logger.info("Using XFormers backend.")
        return "vllm.attention.backends.xformers.XFormersBackend"

    logger.info("Using Flash Attention backend.")
    return "vllm.attention.backends.flash_attn.FlashAttentionBackend"

get_current_memory_usage classmethod

get_current_memory_usage(
    device: Optional[Device] = None,
) -> float
Source code in vllm/platforms/cuda.py
@classmethod
def get_current_memory_usage(cls,
                             device: Optional[torch.types.Device] = None
                             ) -> float:
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats(device)
    return torch.cuda.max_memory_allocated(device)

get_device_capability classmethod

get_device_capability(
    device_id: int = 0,
) -> Optional[DeviceCapability]
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_capability(cls,
                          device_id: int = 0
                          ) -> Optional[DeviceCapability]:
    raise NotImplementedError

get_device_communicator_cls classmethod

get_device_communicator_cls() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_communicator_cls(cls) -> str:
    return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator"  # noqa

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
    raise NotImplementedError

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
    raise NotImplementedError

get_piecewise_backend_cls classmethod

get_piecewise_backend_cls() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_piecewise_backend_cls(cls) -> str:
    return "vllm.compilation.cuda_piecewise_backend.CUDAPiecewiseBackend"  # noqa

get_punica_wrapper classmethod

get_punica_wrapper() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_punica_wrapper(cls) -> str:
    return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"

is_async_output_supported classmethod

is_async_output_supported(
    enforce_eager: Optional[bool],
) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
    if enforce_eager:
        logger.warning(
            "To see benefits of async output processing, enable CUDA "
            "graph. Since, enforce-eager is enabled, async output "
            "processor cannot be used")
        return False
    return True

is_fully_connected classmethod

is_fully_connected(device_ids: list[int]) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_fully_connected(cls, device_ids: list[int]) -> bool:
    raise NotImplementedError

log_warnings classmethod

log_warnings()
Source code in vllm/platforms/cuda.py
@classmethod
def log_warnings(cls):
    pass

set_device classmethod

set_device(device: device) -> None

Set the device for the current platform.

Source code in vllm/platforms/cuda.py
@classmethod
def set_device(cls, device: torch.device) -> None:
    """
    Set the device for the current platform.
    """
    super().set_device(device)
    # With this trick we can force the device to be set eagerly
    # see https://github.com/pytorch/pytorch/issues/155668
    # for why and when it is needed
    _ = torch.zeros(1, device=device)

stateless_init_device_torch_dist_pg classmethod

stateless_init_device_torch_dist_pg(
    backend: str,
    prefix_store: PrefixStore,
    group_rank: int,
    group_size: int,
    timeout: timedelta,
) -> ProcessGroup
Source code in vllm/platforms/cuda.py
@classmethod
def stateless_init_device_torch_dist_pg(
    cls,
    backend: str,
    prefix_store: PrefixStore,
    group_rank: int,
    group_size: int,
    timeout: timedelta,
) -> ProcessGroup:
    assert is_nccl_available()
    pg: ProcessGroup = ProcessGroup(
        prefix_store,
        group_rank,
        group_size,
    )
    from torch.distributed.distributed_c10d import ProcessGroupNCCL

    backend_options = ProcessGroupNCCL.Options()
    backend_options._timeout = timeout

    backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
                                     backend_options)
    backend_type = ProcessGroup.BackendType.NCCL
    device = torch.device("cuda")
    pg._set_default_backend(backend_type)
    backend_class._set_sequence_number_for_group()

    pg._register_backend(device, backend_type, backend_class)
    return pg

supports_fp8 classmethod

supports_fp8() -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def supports_fp8(cls) -> bool:
    return cls.has_device_capability(89)

supports_v1 classmethod

supports_v1(model_config: ModelConfig) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def supports_v1(cls, model_config: "ModelConfig") -> bool:
    return True

use_custom_allreduce classmethod

use_custom_allreduce() -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def use_custom_allreduce(cls) -> bool:
    return True

NonNvmlCudaPlatform

Bases: CudaPlatformBase

Source code in vllm/platforms/cuda.py
class NonNvmlCudaPlatform(CudaPlatformBase):

    @classmethod
    @cache
    def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
        major, minor = torch.cuda.get_device_capability(device_id)
        return DeviceCapability(major=major, minor=minor)

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        return torch.cuda.get_device_name(device_id)

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        device_props = torch.cuda.get_device_properties(device_id)
        return device_props.total_memory

    @classmethod
    def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
        logger.exception(
            "NVLink detection not possible, as context support was"
            " not found. Assuming no NVLink available.")
        return False

get_device_capability cached classmethod

get_device_capability(
    device_id: int = 0,
) -> DeviceCapability
Source code in vllm/platforms/cuda.py
@classmethod
@cache
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
    major, minor = torch.cuda.get_device_capability(device_id)
    return DeviceCapability(major=major, minor=minor)

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
    return torch.cuda.get_device_name(device_id)

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
    device_props = torch.cuda.get_device_properties(device_id)
    return device_props.total_memory

is_fully_connected classmethod

is_fully_connected(physical_device_ids: list[int]) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
    logger.exception(
        "NVLink detection not possible, as context support was"
        " not found. Assuming no NVLink available.")
    return False

NvmlCudaPlatform

Bases: CudaPlatformBase

Source code in vllm/platforms/cuda.py
class NvmlCudaPlatform(CudaPlatformBase):

    @classmethod
    @cache
    @with_nvml_context
    def get_device_capability(cls,
                              device_id: int = 0
                              ) -> Optional[DeviceCapability]:
        try:
            physical_device_id = cls.device_id_to_physical_device_id(device_id)
            handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
            major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
            return DeviceCapability(major=major, minor=minor)
        except RuntimeError:
            return None

    @classmethod
    @with_nvml_context
    def has_device_capability(
        cls,
        capability: Union[tuple[int, int], int],
        device_id: int = 0,
    ) -> bool:
        try:
            return super().has_device_capability(capability, device_id)
        except RuntimeError:
            return False

    @classmethod
    @with_nvml_context
    def get_device_name(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        return cls._get_physical_device_name(physical_device_id)

    @classmethod
    @with_nvml_context
    def get_device_uuid(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return pynvml.nvmlDeviceGetUUID(handle)

    @classmethod
    @with_nvml_context
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)

    @classmethod
    @with_nvml_context
    def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
        """
        query if the set of gpus are fully connected by nvlink (1 hop)
        """
        handles = [
            pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
        ]
        for i, handle in enumerate(handles):
            for j, peer_handle in enumerate(handles):
                if i < j:
                    try:
                        p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                            handle,
                            peer_handle,
                            pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                        )
                        if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                            return False
                    except pynvml.NVMLError:
                        logger.exception(
                            "NVLink detection failed. This is normal if"
                            " your machine has no NVLink equipped.")
                        return False
        return True

    @classmethod
    def _get_physical_device_name(cls, device_id: int = 0) -> str:
        handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
        return pynvml.nvmlDeviceGetName(handle)

    @classmethod
    @with_nvml_context
    def log_warnings(cls):
        device_ids: int = pynvml.nvmlDeviceGetCount()
        if device_ids > 1:
            device_names = [
                cls._get_physical_device_name(i) for i in range(device_ids)
            ]
            if (len(set(device_names)) > 1
                    and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"):
                logger.warning(
                    "Detected different devices in the system: %s. Please"
                    " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
                    "avoid unexpected behavior.",
                    ", ".join(device_names),
                )

_get_physical_device_name classmethod

_get_physical_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def _get_physical_device_name(cls, device_id: int = 0) -> str:
    handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
    return pynvml.nvmlDeviceGetName(handle)

get_device_capability cached classmethod

get_device_capability(
    device_id: int = 0,
) -> Optional[DeviceCapability]
Source code in vllm/platforms/cuda.py
@classmethod
@cache
@with_nvml_context
def get_device_capability(cls,
                          device_id: int = 0
                          ) -> Optional[DeviceCapability]:
    try:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
        return DeviceCapability(major=major, minor=minor)
    except RuntimeError:
        return None

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_name(cls, device_id: int = 0) -> str:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    return cls._get_physical_device_name(physical_device_id)

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_total_memory(cls, device_id: int = 0) -> int:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
    return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)

get_device_uuid classmethod

get_device_uuid(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_uuid(cls, device_id: int = 0) -> str:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
    return pynvml.nvmlDeviceGetUUID(handle)

has_device_capability classmethod

has_device_capability(
    capability: Union[tuple[int, int], int],
    device_id: int = 0,
) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def has_device_capability(
    cls,
    capability: Union[tuple[int, int], int],
    device_id: int = 0,
) -> bool:
    try:
        return super().has_device_capability(capability, device_id)
    except RuntimeError:
        return False

is_fully_connected classmethod

is_fully_connected(physical_device_ids: list[int]) -> bool

query if the set of gpus are fully connected by nvlink (1 hop)

Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
    """
    query if the set of gpus are fully connected by nvlink (1 hop)
    """
    handles = [
        pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
    ]
    for i, handle in enumerate(handles):
        for j, peer_handle in enumerate(handles):
            if i < j:
                try:
                    p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                        handle,
                        peer_handle,
                        pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                    )
                    if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                        return False
                except pynvml.NVMLError:
                    logger.exception(
                        "NVLink detection failed. This is normal if"
                        " your machine has no NVLink equipped.")
                    return False
    return True

log_warnings classmethod

log_warnings()
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def log_warnings(cls):
    device_ids: int = pynvml.nvmlDeviceGetCount()
    if device_ids > 1:
        device_names = [
            cls._get_physical_device_name(i) for i in range(device_ids)
        ]
        if (len(set(device_names)) > 1
                and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"):
            logger.warning(
                "Detected different devices in the system: %s. Please"
                " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
                "avoid unexpected behavior.",
                ", ".join(device_names),
            )

with_nvml_context

with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]
Source code in vllm/platforms/cuda.py
def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:

    @wraps(fn)
    def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
        pynvml.nvmlInit()
        try:
            return fn(*args, **kwargs)
        finally:
            pynvml.nvmlShutdown()

    return wrapper