vllm.model_executor.model_loader.sharded_state_loader
ShardedStateLoader
¶
Bases: BaseModelLoader
Model loader that directly loads each worker's model state dict, which
enables a fast load path for large tensor-parallel models where each worker
only needs to read its own shard rather than the entire checkpoint. See
examples/offline_inference/save_sharded_state.py
for creating a sharded
checkpoint.
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
DEFAULT_PATTERN
class-attribute
instance-attribute
¶
__init__
¶
__init__(
load_config: LoadConfig,
runai_model_streamer: bool = False,
)
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
_filter_subtensors
staticmethod
¶
Filter out all tensors that share the same memory or a subset of the memory of another tensor.
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
_prepare_weights
¶
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
download_model
¶
download_model(model_config: ModelConfig) -> None
iterate_over_files
¶
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
load_weights
¶
load_weights(
model: Module, model_config: ModelConfig
) -> None
Source code in vllm/model_executor/model_loader/sharded_state_loader.py
save_model
staticmethod
¶
save_model(
model: Module,
path: str,
pattern: Optional[str] = None,
max_size: Optional[int] = None,
) -> None