Skip to content

vllm.compilation.decorators

_T module-attribute

_T = TypeVar('_T', bound=type[Module])

logger module-attribute

logger = init_logger(__name__)

_support_torch_compile

_support_torch_compile(
    cls: _T,
    dynamic_arg_dims: dict[str, Union[int, list[int]]],
) -> _T

A decorator to add support for compiling the forward method of a class.

Source code in vllm/compilation/decorators.py
def _support_torch_compile(
    cls: _T,
    dynamic_arg_dims: dict[str, Union[int, list[int]]],
) -> _T:
    """
    A decorator to add support for compiling the forward method of a class.
    """
    if TorchCompileWrapperWithCustomDispatcher in cls.__bases__:
        # support decorating multiple times
        return cls

    # take care of method resolution order
    # make sure super().__init__ is called on the base class
    #  other than TorchCompileWrapperWithCustomDispatcher
    cls.__bases__ = cls.__bases__ + (TorchCompileWrapperWithCustomDispatcher, )

    old_init = cls.__init__

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs):
        old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
        self.vllm_config = vllm_config
        # for CompilationLevel.DYNAMO_AS_IS , the upper level model runner
        # will handle the compilation, so we don't need to do anything here.
        self.do_not_compile = \
            vllm_config.compilation_config.level in [
            CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS
        ] or not supports_dynamo()
        if self.do_not_compile:
            return
        compilation_counter.num_models_seen += 1
        TorchCompileWrapperWithCustomDispatcher.__init__(
            self, compilation_level=vllm_config.compilation_config.level)

    cls.__init__ = __init__

    def __call__(self, *args, **kwargs):
        # torch.compiler.is_compiling() means we are inside the compilation
        # e.g. TPU has the compilation logic in model runner, so we don't
        # need to compile the model inside.
        if self.do_not_compile or torch.compiler.is_compiling():
            return self.forward(*args, **kwargs)

        # the first compilation needs to have dynamic shapes marked
        if len(self.compiled_codes) < 1:
            sig = inspect.signature(self.__class__.forward)
            bound_args = sig.bind(self, *args, **kwargs)
            bound_args.apply_defaults()
            for k, dims in dynamic_arg_dims.items():
                arg = bound_args.arguments.get(k)
                if arg is not None:
                    dims = [dims] if isinstance(dims, int) else dims
                    if isinstance(arg, torch.Tensor):
                        # In case dims is specified with negative indexing
                        dims = [
                            arg.ndim + dim if dim < 0 else dim for dim in dims
                        ]
                        torch._dynamo.mark_dynamic(arg, dims)
                    elif isinstance(arg, IntermediateTensors):
                        for tensor in arg.tensors.values():
                            # In case dims is specified with negative indexing
                            dims = [
                                tensor.ndim + dim if dim < 0 else dim
                                for dim in dims
                            ]
                            torch._dynamo.mark_dynamic(tensor, dims)
                    else:
                        raise ValueError(
                            "Unsupported dynamic dimensions"
                            f" {dims} for argument {k} with type {type(arg)}.")
            # here, it is the starting point of the `torch.compile` process
            start_monitoring_torch_compile(self.vllm_config)
            logger.debug("Start compiling function %s",
                         self.original_code_object)

        # if we don't use custom dispatcher, we can directly call the
        # compiled function and let torch.compile handle the dispatching,
        # with the overhead of guard evaluation and recompilation.
        if len(self.compiled_codes) < 1 or not self.use_custom_dispatcher:
            # it seems Dynamo reuse the compilation across instances,
            # while we need to make sure the compiled code is not reused.
            # we need to control all the compilation of the model.
            torch._dynamo.eval_frame.remove_from_cache(
                self.original_code_object)

            # collect all relevant files traced by Dynamo,
            # so that the compilation cache can trigger re-compilation
            # properly when any of these files change.

            # 1. the file containing the top-level forward function
            self.vllm_config.compilation_config.traced_files.add(
                self.original_code_object.co_filename)

            # 2. every time Dynamo sees a function call, it will inline
            # the function by calling InliningInstructionTranslator.inline_call
            # we hijack this function to know all the functions called
            # during Dynamo tracing, and their corresponding files
            inline_call = InliningInstructionTranslator.inline_call

            def patched_inline_call(parent, func, args, kwargs):
                code = func.get_code()
                self.vllm_config.compilation_config.traced_files.add(
                    code.co_filename)
                return inline_call(parent, func, args, kwargs)

            with patch.object(InliningInstructionTranslator, 'inline_call',
                              patched_inline_call):
                output = self.compiled_callable(*args, **kwargs)
            return output

        # usually, capturing the model once is enough, and then we can
        # dispatch to the compiled code directly, without going through
        # the Dynamo guard mechanism.
        with self.dispatch_to_code(0):
            model_output = self.forward(*args, **kwargs)
            return model_output

    cls.__call__ = __call__
    return cls

support_torch_compile

support_torch_compile(
    *,
    dynamic_arg_dims: Optional[
        dict[str, Union[int, list[int]]]
    ],
) -> Callable[[_T], _T]
support_torch_compile(cls: _T) -> _T
support_torch_compile(
    cls: Optional[_T] = None,
    *,
    dynamic_arg_dims: Optional[
        dict[str, Union[int, list[int]]]
    ] = None,
) -> Union[Callable[[_T], _T], _T]

A decorator to add support for compiling the forward method of a class.

Usage 1: use directly as a decorator without arguments:

@support_torch_compile
class MyModel(nn.Module):
    def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
        ...

Usage 2: use as a decorator with arguments:

@support_torch_compile(dynamic_arg_dims={"x": 0, "y": 0})
class MyModel(nn.Module):
    def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
        ...

dynamic_arg_dims is a dictionary that maps argument names to the dynamic dimensions of the argument. The dynamic dimensions can be either a single integer or a list of integers.

if dynamic_arg_dims is None, it is inferred from the type annotation of the forward method, based on the following default rules:

  • if the argument is annotated as torch.Tensor or Optional[torch.Tensor], the first dimension will be marked as dynamic.
  • if the argument is annotated as IntermediateTensors, the first dimension of all the tensors in the intermediate tensors will be marked as dynamic.

During runtime, when we actually mark dimensions of tensors, it depends on the value of arguments:

  • if it is a single integer (can be negative), the corresponding dimension of the argument will be marked as dynamic.
  • if it is None, ignored.
  • if it is IntermediateTensors, all the tensors in the intermediate tensors will be marked as dynamic.
  • otherwise, it will raise an error.

NOTE: if an argument is None, it should always be passed as None during the lifetime of the model, otherwise, it cannot be captured as a single computation graph.

Source code in vllm/compilation/decorators.py
def support_torch_compile(
    cls: Optional[_T] = None,
    *,
    dynamic_arg_dims: Optional[dict[str, Union[int, list[int]]]] = None,
) -> Union[Callable[[_T], _T], _T]:
    """
    A decorator to add support for compiling the forward method of a class.

    Usage 1: use directly as a decorator without arguments:

    ```python
    @support_torch_compile
    class MyModel(nn.Module):
        def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
            ...
    ```

    Usage 2: use as a decorator with arguments:

    ```python
    @support_torch_compile(dynamic_arg_dims={"x": 0, "y": 0})
    class MyModel(nn.Module):
        def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
            ...
    ```

    `dynamic_arg_dims` is a dictionary that maps argument names to the dynamic
    dimensions of the argument. The dynamic dimensions can be either a single
    integer or a list of integers.

    if `dynamic_arg_dims` is `None`, it is inferred from the type annotation
    of the `forward` method, based on the following default rules:

    - if the argument is annotated as `torch.Tensor` or
        `Optional[torch.Tensor]`, the first dimension will be
        marked as dynamic.
    - if the argument is annotated as `IntermediateTensors`, the first
        dimension of all the tensors in the intermediate tensors
        will be marked as dynamic.

    During runtime, when we actually mark dimensions of tensors,
     it depends on the value of arguments:

    - if it is a single integer (can be negative), the corresponding dimension 
        of the argument will be marked as dynamic.
    - if it is `None`, ignored.
    - if it is `IntermediateTensors`, all the tensors in the intermediate
        tensors will be marked as dynamic.
    - otherwise, it will raise an error.

    NOTE: if an argument is `None`, it should always be passed as `None` during
    the lifetime of the model, otherwise, it cannot be captured as a single
    computation graph.
    """

    def cls_decorator_helper(cls: _T) -> _T:
        # helper to pass `dynamic_arg_dims`` to `_support_torch_compile``
        # to avoid too much indentation for `_support_torch_compile``
        if not hasattr(cls, 'forward'):
            raise TypeError("decorated class should have a forward method.")
        sig = inspect.signature(cls.forward)
        inferred_dynamic_arg_dims = dynamic_arg_dims
        if inferred_dynamic_arg_dims is None:
            inferred_dynamic_arg_dims = {}
            for k, v in sig.parameters.items():
                if v.annotation in [
                        torch.Tensor, Optional[torch.Tensor],
                        IntermediateTensors, Optional[IntermediateTensors]
                ]:
                    inferred_dynamic_arg_dims[k] = 0

            logger.debug(("Inferred dynamic dimensions for "
                          "forward method of %s: %s"), cls,
                         list(inferred_dynamic_arg_dims.keys()))

        if len(inferred_dynamic_arg_dims) == 0:
            raise ValueError(
                "No dynamic dimensions found in the forward method of "
                f"{cls}. Please provide dynamic_arg_dims explicitly.")

        for k in inferred_dynamic_arg_dims:
            if k not in sig.parameters:
                raise ValueError(
                    f"Argument {k} not found in the forward method of {cls}")
        return _support_torch_compile(cls, inferred_dynamic_arg_dims)

    if cls is not None:
        # use `support_torch_compile` as a decorator without arguments
        assert isinstance(cls, type)
        return cls_decorator_helper(cls)

    return cls_decorator_helper