vllm.benchmarks.datasets
This module defines a framework for sampling benchmark requests from various datasets. Each dataset subclass of BenchmarkDataset must implement sample generation. Supported dataset types include: - ShareGPT - Random (synthetic) - Sonnet - BurstGPT - HuggingFace - VisionArena
zeta_prompt
module-attribute
¶
zeta_prompt = "### Instruction:\nYou are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.\n\n### User Edits:\n\n{}\n\n### User Excerpt:\n\n{}\n\n### Response:\n\n"
AIMODataset
¶
Bases: HuggingFaceDataset
Dataset class for processing a AIMO dataset with reasoning questions.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
}
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
ASRDataset
¶
Bases: HuggingFaceDataset
Dataset class for processing a ASR dataset for transcription. Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+ | Dataset | Domain | Speaking Style | hf-subset | +----------------+----------------------------------------+--------------------------+-----------------------------+ | TED-LIUM | TED talks | Oratory | release1, release2, release3| | | | | release3-speaker-adaptation | | VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... | | LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" | | GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test | | SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test | | AMI | Meetings | Spontaneous | ihm, sdm | +----------------+----------------------------------------+--------------------------+-----------------------------+
Source code in vllm/benchmarks/datasets.py
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 |
|
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
TRANSCRIPTION_PREAMBLE
class-attribute
instance-attribute
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
BenchmarkDataset
¶
Bases: ABC
Source code in vllm/benchmarks/datasets.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
random_seed
instance-attribute
¶
__init__
¶
__init__(
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None
Initialize the BenchmarkDataset with an optional dataset path and random seed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path
|
Optional[str]
|
Path to the dataset. If None, it |
None
|
random_seed
|
int
|
Seed value for reproducible shuffling or |
DEFAULT_SEED
|
Source code in vllm/benchmarks/datasets.py
apply_multimodal_chat_transformation
¶
apply_multimodal_chat_transformation(
prompt: str,
mm_content: Optional[MultiModalDataDict] = None,
) -> list[dict]
Transform a prompt and optional multimodal content into a chat format. This method is used for chat models that expect a specific conversation format.
Source code in vllm/benchmarks/datasets.py
get_random_lora_request
¶
get_random_lora_request(
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]
Optionally select a random LoRA request and return its associated tokenizer.
This method is used when LoRA parameters are provided. It randomly selects a LoRA based on max_loras and retrieves a cached tokenizer for that LoRA if available. Otherwise, it returns the base tokenizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
PreTrainedTokenizerBase
|
The base tokenizer to use if no LoRA is selected. |
required |
max_loras
|
Optional[int]
|
The maximum number of LoRAs available.
If |
None
|
lora_path
|
Optional[str]
|
Path to the LoRA parameters on disk.
If |
None
|
Returns:
Type | Description |
---|---|
tuple[Optional[LoRARequest], AnyTokenizer]
|
A tuple with the following elements:
- A new [LoRARequest][] (or |
Source code in vllm/benchmarks/datasets.py
load_data
¶
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load data will vary depending on the dataset format and source.
Raises:
Type | Description |
---|---|
NotImplementedError
|
If a subclass does not implement this method. |
Source code in vllm/benchmarks/datasets.py
maybe_oversample_requests
¶
maybe_oversample_requests(
requests: list[SampleRequest], num_requests: int
) -> None
Oversamples the list of requests if its size is less than the desired number.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
requests
|
List[SampleRequest]
|
The current list of sampled requests. |
required |
num_requests
|
int
|
The target number of requests. |
required |
Source code in vllm/benchmarks/datasets.py
sample
abstractmethod
¶
sample(
tokenizer: PreTrainedTokenizerBase, num_requests: int
) -> list[SampleRequest]
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic for generating a list of SampleRequest objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
PreTrainedTokenizerBase
|
The tokenizer to be used for processing the dataset's text. |
required |
num_requests
|
int
|
The number of sample requests to generate. |
required |
Returns:
Type | Description |
---|---|
list[SampleRequest]
|
list[SampleRequest]: A list of sample requests generated from the |
list[SampleRequest]
|
dataset. |
Source code in vllm/benchmarks/datasets.py
BurstGPTDataset
¶
Bases: BenchmarkDataset
Implements the BurstGPT dataset. Loads data from a CSV file and generates sample requests based on synthetic prompt generation. Only rows with Model "GPT-4" and positive response tokens are used.
Source code in vllm/benchmarks/datasets.py
__init__
¶
_sample_loaded_data
¶
Source code in vllm/benchmarks/datasets.py
load_data
¶
Source code in vllm/benchmarks/datasets.py
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
ConversationDataset
¶
Bases: HuggingFaceDataset
Dataset for conversation data with multimodal support.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
CustomDataset
¶
Bases: BenchmarkDataset
Implements the Custom dataset. Loads data from a JSONL file and generates sample requests based on conversation turns. E.g.,
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
Source code in vllm/benchmarks/datasets.py
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
|
__init__
¶
load_data
¶
Source code in vllm/benchmarks/datasets.py
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
HuggingFaceDataset
¶
Bases: BenchmarkDataset
Base class for datasets hosted on HuggingFace.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
__init__
¶
__init__(
dataset_path: str,
dataset_split: str,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None
Source code in vllm/benchmarks/datasets.py
load_data
¶
Load data from HuggingFace datasets.
Source code in vllm/benchmarks/datasets.py
InstructCoderDataset
¶
Bases: HuggingFaceDataset
InstructCoder Dataset. https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists of 114,239 instruction-input-output triplets, and covers multiple distinct code editing scenario.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
MTBenchDataset
¶
Bases: HuggingFaceDataset
MT-Bench Dataset. https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench. This is similar to Spec decoding benchmark setup in vLLM https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
NextEditPredictionDataset
¶
Bases: HuggingFaceDataset
Dataset class for processing a Next Edit Prediction dataset.
Source code in vllm/benchmarks/datasets.py
MAPPING_PROMPT_FUNCS
class-attribute
instance-attribute
¶
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt
}
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
**kwargs,
)
Source code in vllm/benchmarks/datasets.py
RandomDataset
¶
Bases: BenchmarkDataset
Source code in vllm/benchmarks/datasets.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
__init__
¶
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
SampleRequest
dataclass
¶
Represents a single inference request for benchmarking.
Source code in vllm/benchmarks/datasets.py
multi_modal_data
class-attribute
instance-attribute
¶
multi_modal_data: Optional[
Union[MultiModalDataDict, dict]
] = None
ShareGPTDataset
¶
Bases: BenchmarkDataset
Implements the ShareGPT dataset. Loads data from a JSON file and generates sample requests based on conversation turns.
Source code in vllm/benchmarks/datasets.py
__init__
¶
load_data
¶
Source code in vllm/benchmarks/datasets.py
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
SonnetDataset
¶
Bases: BenchmarkDataset
Simplified implementation of the Sonnet dataset. Loads poem lines from a
text file and generates sample requests. Default values here copied from
benchmark_serving.py
for the sonnet dataset.
Source code in vllm/benchmarks/datasets.py
__init__
¶
load_data
¶
sample
¶
sample(
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
VisionArenaDataset
¶
Bases: HuggingFaceDataset
Vision Arena Dataset.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS
class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat": lambda x: x[
"conversation"
][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x[
"turns"
][0][0]["content"],
}
sample
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
_format_zeta_prompt
¶
_format_zeta_prompt(
sample: dict,
original_start_marker: str = "<|editable_region_start|>",
) -> dict
Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset into prompts and expected outputs. It could be further extended to support more NEP datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict
|
The dataset sample containing events, inputs, and outputs. |
required |
original_start_marker
|
str
|
The marker indicating the start of the editable region. Defaults to "<|editable_region_start|>". |
'<|editable_region_start|>'
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary with the formatted prompts and expected outputs. |
Source code in vllm/benchmarks/datasets.py
add_dataset_parser
¶
add_dataset_parser(parser: ArgumentParser)
Source code in vllm/benchmarks/datasets.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
|
get_samples
¶
get_samples(args, tokenizer) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
|
is_valid_sequence
¶
is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original sample_hf_requests
and sample_sharegpt_requests
functions in benchmark_serving.py, as well as
from sample_requests
in benchmark_throughput.py.
Source code in vllm/benchmarks/datasets.py
lora_path_on_disk
cached
¶
process_image
¶
Process a single image input and return a multimedia content dictionary.
Supports three input types:
-
Dictionary with raw image bytes: - Expects a dict with a 'bytes' key containing raw image data. - Loads the bytes as a PIL.Image.Image.
-
PIL.Image.Image input: - Converts the image to RGB. - Saves the image as a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns a dictionary with the image as a base64 data URL.
-
String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL.
Raises:
Type | Description |
---|---|
ValueError
|
If the input is not a supported type. |