Skip to content

vllm.v1.worker.gpu_input_batch

CachedRequestState dataclass

Source code in vllm/v1/worker/gpu_input_batch.py
@dataclass
class CachedRequestState:

    req_id: str
    prompt_token_ids: list[int]
    mm_inputs: list[MultiModalKwargs]
    mm_positions: list[PlaceholderRange]
    sampling_params: Optional[SamplingParams]
    pooling_params: Optional[PoolingParams]
    generator: Optional[torch.Generator]

    block_ids: tuple[list[int], ...]
    num_computed_tokens: int
    output_token_ids: list[int]

    mrope_positions: Optional[torch.Tensor] = None
    mrope_position_delta: Optional[int] = None

    lora_request: Optional[LoRARequest] = None

    def __post_init__(self):
        self.num_prompt_tokens = len(self.prompt_token_ids)

    @property
    def num_tokens(self) -> int:
        return self.num_prompt_tokens + len(self.output_token_ids)

    def get_token_id(self, idx: int) -> int:
        if idx < self.num_prompt_tokens:
            return self.prompt_token_ids[idx]
        else:
            return self.output_token_ids[idx - self.num_prompt_tokens]

block_ids instance-attribute

block_ids: tuple[list[int], ...]

generator instance-attribute

generator: Optional[Generator]

lora_request class-attribute instance-attribute

lora_request: Optional[LoRARequest] = None

mm_inputs instance-attribute

mm_inputs: list[MultiModalKwargs]

mm_positions instance-attribute

mm_positions: list[PlaceholderRange]

mrope_position_delta class-attribute instance-attribute

mrope_position_delta: Optional[int] = None

mrope_positions class-attribute instance-attribute

mrope_positions: Optional[Tensor] = None

num_computed_tokens instance-attribute

num_computed_tokens: int

num_tokens property

num_tokens: int

output_token_ids instance-attribute

output_token_ids: list[int]

pooling_params instance-attribute

pooling_params: Optional[PoolingParams]

prompt_token_ids instance-attribute

prompt_token_ids: list[int]

req_id instance-attribute

req_id: str

sampling_params instance-attribute

sampling_params: Optional[SamplingParams]

__init__

__init__(
    req_id: str,
    prompt_token_ids: list[int],
    mm_inputs: list[MultiModalKwargs],
    mm_positions: list[PlaceholderRange],
    sampling_params: Optional[SamplingParams],
    pooling_params: Optional[PoolingParams],
    generator: Optional[Generator],
    block_ids: tuple[list[int], ...],
    num_computed_tokens: int,
    output_token_ids: list[int],
    mrope_positions: Optional[Tensor] = None,
    mrope_position_delta: Optional[int] = None,
    lora_request: Optional[LoRARequest] = None,
) -> None

__post_init__

__post_init__()
Source code in vllm/v1/worker/gpu_input_batch.py
def __post_init__(self):
    self.num_prompt_tokens = len(self.prompt_token_ids)

get_token_id

get_token_id(idx: int) -> int
Source code in vllm/v1/worker/gpu_input_batch.py
def get_token_id(self, idx: int) -> int:
    if idx < self.num_prompt_tokens:
        return self.prompt_token_ids[idx]
    else:
        return self.output_token_ids[idx - self.num_prompt_tokens]

InputBatch

Source code in vllm/v1/worker/gpu_input_batch.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
class InputBatch:

    def __init__(
        self,
        max_num_reqs: int,
        max_model_len: int,
        max_num_batched_tokens: int,
        device: torch.device,
        pin_memory: bool,
        vocab_size: int,
        block_sizes: list[int],  # The block_size of each kv cache group
        is_spec_decode: bool = False,
        logits_processing_needs_token_ids: bool = False,
    ):
        self.is_spec_decode = is_spec_decode
        self.max_num_reqs = max_num_reqs
        self.max_model_len = max_model_len
        self.max_num_batched_tokens = max_num_batched_tokens
        self.device = device
        self.pin_memory = pin_memory
        self.vocab_size = vocab_size
        self.logits_processing_needs_token_ids = (
            logits_processing_needs_token_ids)

        self._req_ids: list[Optional[str]] = []
        self.req_id_to_index: dict[str, int] = {}

        # TODO(woosuk): This buffer could be too large if max_model_len is big.
        # Find a way to reduce the CPU memory usage.
        # This buffer is not directly transferred to the GPU, so it does not
        # need to be pinned.
        self.token_ids_cpu_tensor = torch.zeros(
            (max_num_reqs, max_model_len),
            device="cpu",
            dtype=torch.int32,
            pin_memory=False,
        )
        self.token_ids_cpu = self.token_ids_cpu_tensor.numpy()
        self.num_tokens = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_tokens_no_spec = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_prompt_tokens = np.zeros(max_num_reqs, dtype=np.int32)
        self.num_computed_tokens_cpu_tensor = torch.zeros(
            (max_num_reqs, ),
            device="cpu",
            dtype=torch.int32,
            pin_memory=pin_memory,
        )
        self.num_computed_tokens_cpu = \
            self.num_computed_tokens_cpu_tensor.numpy()

        # Block table.
        self.block_table = MultiGroupBlockTable(
            max_num_reqs=max_num_reqs,
            max_model_len=max_model_len,
            max_num_batched_tokens=max_num_batched_tokens,
            pin_memory=pin_memory,
            device=device,
            block_sizes=block_sizes,
        )

        # Sampling-related.
        self.temperature = torch.empty((max_num_reqs, ),
                                       dtype=torch.float32,
                                       device=device)
        self.temperature_cpu_tensor = torch.empty((max_num_reqs, ),
                                                  dtype=torch.float32,
                                                  device="cpu",
                                                  pin_memory=pin_memory)
        self.temperature_cpu = self.temperature_cpu_tensor.numpy()
        self.greedy_reqs: set[str] = set()
        self.random_reqs: set[str] = set()

        self.top_p = torch.empty((max_num_reqs, ),
                                 dtype=torch.float32,
                                 device=device)
        self.top_p_cpu_tensor = torch.empty((max_num_reqs, ),
                                            dtype=torch.float32,
                                            device="cpu",
                                            pin_memory=pin_memory)
        self.top_p_cpu = self.top_p_cpu_tensor.numpy()
        self.top_p_reqs: set[str] = set()

        self.top_k = torch.empty((max_num_reqs, ),
                                 dtype=torch.int32,
                                 device=device)
        self.top_k_cpu_tensor = torch.empty((max_num_reqs, ),
                                            dtype=torch.int32,
                                            device="cpu",
                                            pin_memory=pin_memory)
        self.top_k_cpu = self.top_k_cpu_tensor.numpy()
        self.top_k_reqs: set[str] = set()

        # IDs of requests which do not support spec decoding
        self.spec_decode_unsupported_reqs: set[str] = set()

        # Frequency penalty related data structures
        self.frequency_penalties = torch.empty((max_num_reqs, ),
                                               dtype=torch.float,
                                               device=device)
        self.frequency_penalties_cpu_tensor = torch.empty(
            (max_num_reqs, ),
            dtype=torch.float,
            device="cpu",
            pin_memory=pin_memory)
        self.frequency_penalties_cpu = \
            self.frequency_penalties_cpu_tensor.numpy()
        self.frequency_penalties_reqs: set[str] = set()

        # Presence penalty related data structures
        self.presence_penalties = torch.empty((max_num_reqs, ),
                                              dtype=torch.float,
                                              device=device)
        self.presence_penalties_cpu_tensor = torch.empty((max_num_reqs, ),
                                                         dtype=torch.float,
                                                         device="cpu",
                                                         pin_memory=pin_memory)
        self.presence_penalties_cpu = self.presence_penalties_cpu_tensor.numpy(
        )
        self.presence_penalties_reqs: set[str] = set()

        # Repetition penalty related data structures
        self.repetition_penalties = torch.empty((max_num_reqs, ),
                                                dtype=torch.float,
                                                device=device)
        self.repetition_penalties_cpu_tensor = torch.empty(
            (max_num_reqs, ),
            dtype=torch.float,
            device="cpu",
            pin_memory=pin_memory)
        self.repetition_penalties_cpu = \
            self.repetition_penalties_cpu_tensor.numpy()
        self.repetition_penalties_reqs: set[str] = set()

        # lora related
        self.request_lora_mapping = np.zeros((self.max_num_reqs, ),
                                             dtype=np.int32)
        self.lora_id_to_request_ids: dict[int, set[str]] = {}
        self.lora_id_to_lora_request: dict[int, LoRARequest] = {}

        # req_index -> generator
        # NOTE(woosuk): The indices of the requests that do not have their own
        # generator should not be included in the dictionary.
        self.generators: dict[int, torch.Generator] = {}

        self.num_logprobs: dict[str, int] = {}
        # NOTE(rob): num_prompt_logprobs only includes reqs
        # that are currently in the prefill phase.
        self.num_prompt_logprobs: dict[str, int] = {}

        # To accumulate prompt logprobs tensor chunks across prefill steps.
        self.in_progress_prompt_logprobs_cpu: dict[str, LogprobsTensors] = {}

        # Internal representation of per-step batch state changes, used for
        # reordering persistent batch and generating logitsprocs batch state
        # updates. Should reset each step.
        self.batch_update_builder = BatchUpdateBuilder()

        # Define logits processors.
        # TODO(andy): logits processor list should be extensible via engine
        # constructor argument; for now the list is fixed.
        self.logitsprocs = init_builtin_logitsprocs(
            pin_memory_available=pin_memory,
            max_num_reqs=max_num_reqs + 1,
            device=device)

        # TODO convert this to LogitsProcessor
        self.has_allowed_token_ids: set[str] = set()
        # NOTE(lufang): In the mask tensor, if the corresponding token allowed,
        # the value is False. Since we use masked_fill_ to set -inf.
        self.allowed_token_ids_mask: Optional[torch.Tensor] = None
        self.allowed_token_ids_mask_cpu_tensor: Optional[torch.Tensor] = None

        # req_index -> bad_words_token_ids
        self.bad_words_token_ids: dict[int, list[list[int]]] = {}

        self.req_output_token_ids: list[Optional[list[int]]] = []

        # This is updated each time the batch constituents change.
        self.sampling_metadata = self._make_sampling_metadata()

        self.pooling_params: dict[str, PoolingParams] = {}

    @property
    def req_ids(self) -> list[str]:
        # None elements should only be present transiently
        # while performing state updates to the batch.
        return cast(list[str], self._req_ids)

    def _get_next_add_index(self) -> int:
        if (req_index := self.batch_update_builder.pop_removed()) is not None:
            # Fill the empty index.
            return req_index
        # Append to end
        return self.num_reqs

    def _register_add_request(self, request: "CachedRequestState") -> int:
        """Track add-request operations"""
        req_index = self._get_next_add_index()
        assert req_index < self.max_num_reqs
        params = (request.sampling_params
                  if request.sampling_params else request.pooling_params)
        self.batch_update_builder.added.append(
            (req_index, params, request.output_token_ids))
        return req_index

    def add_request(
        self,
        request: "CachedRequestState",
    ) -> int:
        req_index = self._register_add_request(request)

        req_id = request.req_id
        if req_index == len(self._req_ids):
            self._req_ids.append(req_id)
            self.req_output_token_ids.append(request.output_token_ids)
        else:
            self._req_ids[req_index] = req_id
            self.req_output_token_ids[req_index] = request.output_token_ids

        self.req_id_to_index[req_id] = req_index

        # Copy the prompt token ids and output token ids.
        num_prompt_tokens = len(request.prompt_token_ids)
        self.num_prompt_tokens[req_index] = num_prompt_tokens
        self.token_ids_cpu[
            req_index, :num_prompt_tokens] = request.prompt_token_ids
        start_idx = num_prompt_tokens
        end_idx = start_idx + len(request.output_token_ids)
        self.token_ids_cpu[req_index,
                           start_idx:end_idx] = request.output_token_ids
        # Number of token ids in token_ids_cpu.
        # NOTE(woosuk): This may include spec decode tokens.
        self.num_tokens[req_index] = request.num_tokens
        # Number of tokens without spec decode tokens.
        self.num_tokens_no_spec[req_index] = request.num_tokens

        self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens
        self.block_table.add_row(request.block_ids, req_index)

        if sampling_params := request.sampling_params:
            if (self.is_spec_decode
                    and is_spec_decode_unsupported(sampling_params)):
                self.spec_decode_unsupported_reqs.add(req_id)
            if sampling_params.sampling_type == SamplingType.GREEDY:
                # Avoid later division by zero.
                self.temperature_cpu[req_index] = -1.0
                self.greedy_reqs.add(req_id)
            else:
                self.temperature_cpu[req_index] = sampling_params.temperature
                self.random_reqs.add(req_id)

            self.top_p_cpu[req_index] = sampling_params.top_p
            if sampling_params.top_p < 1:
                self.top_p_reqs.add(req_id)
            top_k = sampling_params.top_k
            if 0 < top_k < self.vocab_size:
                self.top_k_reqs.add(req_id)
            else:
                top_k = self.vocab_size
            self.top_k_cpu[req_index] = top_k
            self.frequency_penalties_cpu[
                req_index] = sampling_params.frequency_penalty
            if sampling_params.frequency_penalty != 0.0:
                self.frequency_penalties_reqs.add(req_id)
            self.presence_penalties_cpu[
                req_index] = sampling_params.presence_penalty
            if sampling_params.presence_penalty != 0.0:
                self.presence_penalties_reqs.add(req_id)
            self.repetition_penalties_cpu[
                req_index] = sampling_params.repetition_penalty
            if sampling_params.repetition_penalty != 1.0:
                self.repetition_penalties_reqs.add(req_id)

            # NOTE(woosuk): self.generators should not include the requests that
            # do not have their own generator.
            if request.generator is not None:
                self.generators[req_index] = request.generator

            if sampling_params.logprobs is not None:
                self.num_logprobs[req_id] = sampling_params.logprobs
            if sampling_params.prompt_logprobs is not None:
                self.num_prompt_logprobs[
                    req_id] = sampling_params.prompt_logprobs

            if sampling_params.allowed_token_ids:
                self.has_allowed_token_ids.add(req_id)
                if self.allowed_token_ids_mask_cpu_tensor is None:
                    # Lazy allocation for this tensor, which can be large.
                    # False means we don't fill with -inf.
                    self.allowed_token_ids_mask = torch.zeros(
                        self.max_num_reqs,
                        self.vocab_size,
                        dtype=torch.bool,
                        device=self.device)
                    self.allowed_token_ids_mask_cpu_tensor = torch.zeros(
                        self.max_num_reqs,
                        self.vocab_size,
                        dtype=torch.bool,
                        device="cpu")
                self.allowed_token_ids_mask_cpu_tensor[req_index] = True
                # False means we don't fill with -inf.
                self.allowed_token_ids_mask_cpu_tensor[req_index][
                    sampling_params.allowed_token_ids] = False

            if sampling_params.bad_words_token_ids:
                self.bad_words_token_ids[
                    req_index] = sampling_params.bad_words_token_ids
        else:
            assert request.pooling_params is not None
            self.pooling_params[req_id] = request.pooling_params

        # Add request lora ID
        if request.lora_request:
            lora_id = request.lora_request.lora_int_id
            if lora_id not in self.lora_id_to_request_ids:
                self.lora_id_to_request_ids[lora_id] = set()

            self.request_lora_mapping[req_index] = lora_id
            self.lora_id_to_request_ids[lora_id].add(request.req_id)
            self.lora_id_to_lora_request[lora_id] = request.lora_request
        else:
            # No LoRA
            self.request_lora_mapping[req_index] = 0

        return req_index

    def remove_request(self, req_id: str) -> Optional[int]:
        """This method must always be followed by a call to condense().

        Args:
          req_id: request to remove

        Returns:
          Removed request index, or `None` if `req_id` not recognized
        """

        req_index = self.req_id_to_index.pop(req_id, None)
        if req_index is None:
            return None
        self.batch_update_builder.removed_append(req_index)
        self._req_ids[req_index] = None
        self.req_output_token_ids[req_index] = None

        self.greedy_reqs.discard(req_id)
        self.random_reqs.discard(req_id)
        self.top_p_reqs.discard(req_id)
        self.top_k_reqs.discard(req_id)
        self.spec_decode_unsupported_reqs.discard(req_id)
        self.frequency_penalties_reqs.discard(req_id)
        self.presence_penalties_reqs.discard(req_id)
        self.repetition_penalties_reqs.discard(req_id)
        self.generators.pop(req_index, None)
        self.num_logprobs.pop(req_id, None)
        self.num_prompt_logprobs.pop(req_id, None)
        self.in_progress_prompt_logprobs_cpu.pop(req_id, None)

        # LoRA
        lora_id = self.request_lora_mapping[req_index]
        if lora_id != 0:
            self.lora_id_to_request_ids[lora_id].discard(req_id)
            if len(self.lora_id_to_request_ids[lora_id]) == 0:
                self.lora_id_to_request_ids.pop(lora_id)
                self.lora_id_to_lora_request.pop(lora_id)
            self.request_lora_mapping[req_index] = 0

        self.has_allowed_token_ids.discard(req_id)
        if self.allowed_token_ids_mask_cpu_tensor is not None:
            # False means we don't fill with -inf.
            self.allowed_token_ids_mask_cpu_tensor[req_index].fill_(False)
        self.bad_words_token_ids.pop(req_index, None)
        self.pooling_params.pop(req_id, None)
        return req_index

    def swap_states(self, i1: int, i2: int) -> None:
        self.batch_update_builder.moved.append(
            (i1, i2, MoveDirectionality.SWAP))
        old_id_i1 = self._req_ids[i1]
        old_id_i2 = self._req_ids[i2]
        self._req_ids[i1], self._req_ids[i2] =\
            self._req_ids[i2], self._req_ids[i1] # noqa
        self.req_output_token_ids[i1], self.req_output_token_ids[i2] =\
            self.req_output_token_ids[i2], self.req_output_token_ids[i1]
        assert old_id_i1 is not None and old_id_i2 is not None
        self.req_id_to_index[old_id_i1], self.req_id_to_index[old_id_i2] =\
            self.req_id_to_index[old_id_i2], self.req_id_to_index[old_id_i1]
        self.num_tokens[i1], self.num_tokens[i2] =\
            self.num_tokens[i2], self.num_tokens[i1]
        self.num_tokens_no_spec[i1], self.num_tokens_no_spec[i2] =\
            self.num_tokens_no_spec[i2], self.num_tokens_no_spec[i1]
        self.num_prompt_tokens[i1], self.num_prompt_tokens[i2] =\
            self.num_prompt_tokens[i2], self.num_prompt_tokens[i1]
        self.num_computed_tokens_cpu[i1], self.num_computed_tokens_cpu[i2] =\
            self.num_computed_tokens_cpu[i2], self.num_computed_tokens_cpu[i1]
        self.temperature_cpu[i1], self.temperature_cpu[i2] =\
            self.temperature_cpu[i2], self.temperature_cpu[i1]
        self.top_p_cpu[i1], self.top_p_cpu[i2] =\
            self.top_p_cpu[i2], self.top_p_cpu[i1]
        self.top_k_cpu[i1], self.top_k_cpu[i2] =\
            self.top_k_cpu[i2], self.top_k_cpu[i1]
        self.frequency_penalties_cpu[i1], self.frequency_penalties_cpu[i2] =\
            self.frequency_penalties_cpu[i2], self.frequency_penalties_cpu[i1]
        self.presence_penalties_cpu[i1], self.presence_penalties_cpu[i2] =\
            self.presence_penalties_cpu[i2], self.presence_penalties_cpu[i1]
        self.repetition_penalties_cpu[i1], self.repetition_penalties_cpu[i2] =\
            self.repetition_penalties_cpu[i2], self.repetition_penalties_cpu[i1]

        # NOTE: the following is unsafe
        # self.token_ids_cpu[i1, ...], self.token_ids_cpu[i2, ...], =\
        #     self.token_ids_cpu[i2, ...], self.token_ids_cpu[i1, ...]
        # instead, we need to temporiarily copy the data for one of the indices
        # TODO(lucas): optimize this by only copying valid indices
        tmp = self.token_ids_cpu[i1, ...].copy()
        self.token_ids_cpu[i1, ...] = self.token_ids_cpu[i2, ...]
        self.token_ids_cpu[i2, ...] = tmp

        swap_dict_values(self.generators, i1, i2)
        swap_dict_values(self.bad_words_token_ids, i1, i2)

        self.request_lora_mapping[i1], self.request_lora_mapping[i2] =\
            self.request_lora_mapping[i2], self.request_lora_mapping[i1]

        if self.allowed_token_ids_mask_cpu_tensor is not None:
            self.allowed_token_ids_mask_cpu_tensor[i1], \
                self.allowed_token_ids_mask_cpu_tensor[i2] =\
                self.allowed_token_ids_mask_cpu_tensor[i2], \
                    self.allowed_token_ids_mask_cpu_tensor[i1]
        self.block_table.swap_row(i1, i2)

    def condense(self) -> None:
        """Slide non-empty requests down into lower, empty indices.

        Any consecutive empty indices at the very end of the list are not
        filled.

        Args:
          empty_req_indices: empty indices which may be filled.

        Returns:
          swaps: list of (from,to) swap tuples for moved requests
          empty_req_indices: indices not filled by condensation
        """
        if not (empty_req_indices := self.batch_update_builder.removed):
            # All removed requests were replaced by added requests, or else no
            # requests were removed at all. No condense() needed
            return
        num_reqs = self.num_reqs
        if num_reqs == 0:
            # The batched states are empty.
            self._req_ids.clear()
            self.req_output_token_ids.clear()
            return

        # NOTE(woosuk): This function assumes that the empty_req_indices
        # is sorted in descending order.
        last_req_index = num_reqs + len(empty_req_indices) - 1
        while empty_req_indices:
            # Find the largest non-empty index.
            while last_req_index in empty_req_indices:
                last_req_index -= 1

            # Find the smallest empty index.
            empty_index = self.batch_update_builder.peek_removed()
            assert empty_index is not None
            if empty_index >= last_req_index:
                break

            # Move active request down into empty request
            # index.
            self.batch_update_builder.pop_removed()
            self.batch_update_builder.moved.append(
                (last_req_index, empty_index,
                 MoveDirectionality.UNIDIRECTIONAL))
            req_id = self._req_ids[last_req_index]
            output_token_ids = self.req_output_token_ids[last_req_index]
            assert req_id is not None
            self._req_ids[empty_index] = req_id
            self._req_ids[last_req_index] = None
            self.req_output_token_ids[empty_index] = output_token_ids
            self.req_output_token_ids[last_req_index] = None
            self.req_id_to_index[req_id] = empty_index

            num_tokens = self.num_tokens[last_req_index]
            self.token_ids_cpu[empty_index, :num_tokens] = self.token_ids_cpu[
                last_req_index, :num_tokens]
            self.num_tokens[empty_index] = num_tokens
            self.num_tokens_no_spec[empty_index] = self.num_tokens_no_spec[
                last_req_index]
            self.num_prompt_tokens[empty_index] = self.num_prompt_tokens[
                last_req_index]
            self.num_computed_tokens_cpu[
                empty_index] = self.num_computed_tokens_cpu[last_req_index]
            self.block_table.move_row(last_req_index, empty_index)
            self.temperature_cpu[empty_index] = self.temperature_cpu[
                last_req_index]
            self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index]
            self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index]
            self.frequency_penalties_cpu[
                empty_index] = self.frequency_penalties_cpu[last_req_index]
            self.presence_penalties_cpu[
                empty_index] = self.presence_penalties_cpu[last_req_index]
            self.repetition_penalties_cpu[
                empty_index] = self.repetition_penalties_cpu[last_req_index]
            generator = self.generators.pop(last_req_index, None)
            if generator is not None:
                self.generators[empty_index] = generator

            self.request_lora_mapping[empty_index] = self.request_lora_mapping[
                last_req_index]

            # TODO convert these to LogitsProcessors
            if self.allowed_token_ids_mask_cpu_tensor is not None:
                self.allowed_token_ids_mask_cpu_tensor[
                    empty_index] = self.allowed_token_ids_mask_cpu_tensor[
                        last_req_index]

            bad_words_token_ids = self.bad_words_token_ids.pop(
                last_req_index, None)
            if bad_words_token_ids is not None:
                self.bad_words_token_ids[empty_index] = bad_words_token_ids

            # Decrement last_req_index since it is now empty.
            last_req_index -= 1

        # Trim lists to the batch size.
        del self._req_ids[self.num_reqs:]
        del self.req_output_token_ids[self.num_reqs:]

    def refresh_metadata(self):
        """Apply batch updates, reset input batch at end of step

        * Apply batch add/remove/permute to logits procs' states
        * If batch state is modified, update sampling metadata
        """
        batch_update = self.batch_update_builder.get_and_reset(self.num_reqs)
        for logit_proc in self.logitsprocs.all:
            logit_proc.update_state(batch_update)
        if batch_update:
            self.sampling_metadata = self._make_sampling_metadata()

    def _make_sampling_metadata(self) -> SamplingMetadata:
        num_reqs = self.num_reqs
        if not self.all_greedy:
            temperature = copy_slice(self.temperature_cpu_tensor,
                                     self.temperature, num_reqs)
        else:
            temperature = None
        if not self.no_top_p:
            copy_slice(self.top_p_cpu_tensor, self.top_p, num_reqs)
        if not self.no_top_k:
            copy_slice(self.top_k_cpu_tensor, self.top_k, num_reqs)

        if not self.no_penalties:
            # Since syncing these tensors is expensive only copy them
            # if necessary i.e. if there are requests which require
            # penalties to be applied during sampling.
            copy_slice(self.frequency_penalties_cpu_tensor,
                       self.frequency_penalties, num_reqs)
            copy_slice(self.presence_penalties_cpu_tensor,
                       self.presence_penalties, num_reqs)
            copy_slice(self.repetition_penalties_cpu_tensor,
                       self.repetition_penalties, num_reqs)

        needs_prompt_token_ids = (not self.no_penalties or
                                  (self.num_reqs > 0
                                   and self.logits_processing_needs_token_ids))
        if needs_prompt_token_ids:
            # The prompt tokens are used only for applying penalties or
            # step pooling during the sampling/pooling process.
            # Hence copy these tensors only when there are requests which
            # need penalties/step_pooler to be applied.
            prompt_token_ids = self._make_prompt_token_ids_tensor()
        else:
            prompt_token_ids = None

        allowed_token_ids_mask: Optional[torch.Tensor] = None
        if not self.no_allowed_token_ids:
            assert self.allowed_token_ids_mask is not None
            copy_slice(self.allowed_token_ids_mask_cpu_tensor,
                       self.allowed_token_ids_mask, num_reqs)
            allowed_token_ids_mask = self.allowed_token_ids_mask[:num_reqs]

        return SamplingMetadata(
            temperature=temperature,
            all_greedy=self.all_greedy,
            all_random=self.all_random,
            top_p=None if self.no_top_p else self.top_p[:num_reqs],
            top_k=None if self.no_top_k else self.top_k[:num_reqs],
            generators=self.generators,
            max_num_logprobs=self.max_num_logprobs,
            prompt_token_ids=prompt_token_ids,
            frequency_penalties=self.frequency_penalties[:num_reqs],
            presence_penalties=self.presence_penalties[:num_reqs],
            repetition_penalties=self.repetition_penalties[:num_reqs],
            output_token_ids=cast(list[list[int]], self.req_output_token_ids),
            no_penalties=self.no_penalties,
            allowed_token_ids_mask=allowed_token_ids_mask,
            bad_words_token_ids=self.bad_words_token_ids,
            logitsprocs=self.logitsprocs,
        )

    @property
    def pooling_metadata(self) -> PoolingMetadata:
        if len(self.pooling_params) == 0:
            pooling_params = []
        else:
            # Note, for now this assumes that all request in the batch
            # are either sampling or pooling requests
            assert len(self.req_ids) == len(self.pooling_params)
            pooling_params = [
                self.pooling_params[req_id] for req_id in self.req_ids
            ]

        return PoolingMetadata(
            prompt_lens=torch.from_numpy(
                self.num_prompt_tokens[:self.num_reqs]).to(self.device),
            prompt_token_ids=self.sampling_metadata.prompt_token_ids,
            pooling_params=pooling_params,
        )

    def _make_prompt_token_ids_tensor(self) -> torch.Tensor:
        max_prompt_len = self.num_prompt_tokens[:self.num_reqs].max()
        prompt_token_ids_cpu_tensor = torch.empty(
            (self.num_reqs, max_prompt_len),
            device="cpu",
            dtype=torch.int64,
            pin_memory=self.pin_memory,
        )
        prompt_token_ids = prompt_token_ids_cpu_tensor.numpy()
        prompt_token_ids[:] = self.token_ids_cpu[:self.
                                                 num_reqs, :max_prompt_len]
        # Use the value of vocab_size as a pad since we don't have a
        # token_id of this value.
        for i in range(self.num_reqs):
            prompt_token_ids[i, self.num_prompt_tokens[i]:] = self.vocab_size
        return prompt_token_ids_cpu_tensor.to(device=self.device,
                                              non_blocking=True)

    def make_lora_inputs(
        self, num_scheduled_tokens: np.ndarray
    ) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
        """
        Given the num_scheduled_tokens for each request in the batch, return
        datastructures used to activate the current LoRAs.
        Returns:
            1. prompt_lora_mapping: A tuple of size self.num_reqs where,
               prompt_lora_mapping[i] is the LoRA id to use for the ith prompt.
            2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens)
               where, token_lora_mapping[i] is the LoRA id to use for ith token.
            3. lora_requests: Set of relevant LoRA requests.
        """

        req_lora_mapping = self.request_lora_mapping[:self.num_reqs]
        prompt_lora_mapping = tuple(req_lora_mapping)
        token_lora_mapping = tuple(
            req_lora_mapping.repeat(num_scheduled_tokens))
        active_lora_requests: set[LoRARequest] = set(
            self.lora_id_to_lora_request.values())

        return prompt_lora_mapping, token_lora_mapping, active_lora_requests

    @property
    def num_reqs(self) -> int:
        return len(self.req_id_to_index)

    @property
    def all_greedy(self) -> bool:
        return len(self.random_reqs) == 0

    @property
    def all_random(self) -> bool:
        return len(self.greedy_reqs) == 0

    @property
    def no_top_p(self) -> bool:
        return len(self.top_p_reqs) == 0

    @property
    def no_top_k(self) -> bool:
        return len(self.top_k_reqs) == 0

    @property
    def no_penalties(self) -> bool:
        return (len(self.presence_penalties_reqs) == 0
                and len(self.frequency_penalties_reqs) == 0
                and len(self.repetition_penalties_reqs) == 0)

    @property
    def max_num_logprobs(self) -> Optional[int]:
        return max(self.num_logprobs.values()) if self.num_logprobs else None

    @property
    def no_prompt_logprob(self) -> bool:
        return not self.num_prompt_logprobs

    @property
    def no_allowed_token_ids(self) -> bool:
        return len(self.has_allowed_token_ids) == 0

_req_ids instance-attribute

_req_ids: list[Optional[str]] = []

all_greedy property

all_greedy: bool

all_random property

all_random: bool

allowed_token_ids_mask instance-attribute

allowed_token_ids_mask: Optional[Tensor] = None

allowed_token_ids_mask_cpu_tensor instance-attribute

allowed_token_ids_mask_cpu_tensor: Optional[Tensor] = None

bad_words_token_ids instance-attribute

bad_words_token_ids: dict[int, list[list[int]]] = {}

batch_update_builder instance-attribute

batch_update_builder = BatchUpdateBuilder()

block_table instance-attribute

block_table = MultiGroupBlockTable(
    max_num_reqs=max_num_reqs,
    max_model_len=max_model_len,
    max_num_batched_tokens=max_num_batched_tokens,
    pin_memory=pin_memory,
    device=device,
    block_sizes=block_sizes,
)

device instance-attribute

device = device

frequency_penalties instance-attribute

frequency_penalties = empty(
    (max_num_reqs,), dtype=float, device=device
)

frequency_penalties_cpu instance-attribute

frequency_penalties_cpu = numpy()

frequency_penalties_cpu_tensor instance-attribute

frequency_penalties_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=float,
    device="cpu",
    pin_memory=pin_memory,
)

frequency_penalties_reqs instance-attribute

frequency_penalties_reqs: set[str] = set()

generators instance-attribute

generators: dict[int, Generator] = {}

greedy_reqs instance-attribute

greedy_reqs: set[str] = set()

has_allowed_token_ids instance-attribute

has_allowed_token_ids: set[str] = set()

in_progress_prompt_logprobs_cpu instance-attribute

in_progress_prompt_logprobs_cpu: dict[
    str, LogprobsTensors
] = {}

is_spec_decode instance-attribute

is_spec_decode = is_spec_decode

logits_processing_needs_token_ids instance-attribute

logits_processing_needs_token_ids = (
    logits_processing_needs_token_ids
)

logitsprocs instance-attribute

logitsprocs = init_builtin_logitsprocs(
    pin_memory_available=pin_memory,
    max_num_reqs=max_num_reqs + 1,
    device=device,
)

lora_id_to_lora_request instance-attribute

lora_id_to_lora_request: dict[int, LoRARequest] = {}

lora_id_to_request_ids instance-attribute

lora_id_to_request_ids: dict[int, set[str]] = {}

max_model_len instance-attribute

max_model_len = max_model_len

max_num_batched_tokens instance-attribute

max_num_batched_tokens = max_num_batched_tokens

max_num_logprobs property

max_num_logprobs: Optional[int]

max_num_reqs instance-attribute

max_num_reqs = max_num_reqs

no_allowed_token_ids property

no_allowed_token_ids: bool

no_penalties property

no_penalties: bool

no_prompt_logprob property

no_prompt_logprob: bool

no_top_k property

no_top_k: bool

no_top_p property

no_top_p: bool

num_computed_tokens_cpu instance-attribute

num_computed_tokens_cpu = numpy()

num_computed_tokens_cpu_tensor instance-attribute

num_computed_tokens_cpu_tensor = zeros(
    (max_num_reqs,),
    device="cpu",
    dtype=int32,
    pin_memory=pin_memory,
)

num_logprobs instance-attribute

num_logprobs: dict[str, int] = {}

num_prompt_logprobs instance-attribute

num_prompt_logprobs: dict[str, int] = {}

num_prompt_tokens instance-attribute

num_prompt_tokens = zeros(max_num_reqs, dtype=int32)

num_reqs property

num_reqs: int

num_tokens instance-attribute

num_tokens = zeros(max_num_reqs, dtype=int32)

num_tokens_no_spec instance-attribute

num_tokens_no_spec = zeros(max_num_reqs, dtype=int32)

pin_memory instance-attribute

pin_memory = pin_memory

pooling_metadata property

pooling_metadata: PoolingMetadata

pooling_params instance-attribute

pooling_params: dict[str, PoolingParams] = {}

presence_penalties instance-attribute

presence_penalties = empty(
    (max_num_reqs,), dtype=float, device=device
)

presence_penalties_cpu instance-attribute

presence_penalties_cpu = numpy()

presence_penalties_cpu_tensor instance-attribute

presence_penalties_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=float,
    device="cpu",
    pin_memory=pin_memory,
)

presence_penalties_reqs instance-attribute

presence_penalties_reqs: set[str] = set()

random_reqs instance-attribute

random_reqs: set[str] = set()

repetition_penalties instance-attribute

repetition_penalties = empty(
    (max_num_reqs,), dtype=float, device=device
)

repetition_penalties_cpu instance-attribute

repetition_penalties_cpu = numpy()

repetition_penalties_cpu_tensor instance-attribute

repetition_penalties_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=float,
    device="cpu",
    pin_memory=pin_memory,
)

repetition_penalties_reqs instance-attribute

repetition_penalties_reqs: set[str] = set()

req_id_to_index instance-attribute

req_id_to_index: dict[str, int] = {}

req_ids property

req_ids: list[str]

req_output_token_ids instance-attribute

req_output_token_ids: list[Optional[list[int]]] = []

request_lora_mapping instance-attribute

request_lora_mapping = zeros((max_num_reqs,), dtype=int32)

sampling_metadata instance-attribute

sampling_metadata = _make_sampling_metadata()

spec_decode_unsupported_reqs instance-attribute

spec_decode_unsupported_reqs: set[str] = set()

temperature instance-attribute

temperature = empty(
    (max_num_reqs,), dtype=float32, device=device
)

temperature_cpu instance-attribute

temperature_cpu = numpy()

temperature_cpu_tensor instance-attribute

temperature_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=float32,
    device="cpu",
    pin_memory=pin_memory,
)

token_ids_cpu instance-attribute

token_ids_cpu = numpy()

token_ids_cpu_tensor instance-attribute

token_ids_cpu_tensor = zeros(
    (max_num_reqs, max_model_len),
    device="cpu",
    dtype=int32,
    pin_memory=False,
)

top_k instance-attribute

top_k = empty((max_num_reqs,), dtype=int32, device=device)

top_k_cpu instance-attribute

top_k_cpu = numpy()

top_k_cpu_tensor instance-attribute

top_k_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=int32,
    device="cpu",
    pin_memory=pin_memory,
)

top_k_reqs instance-attribute

top_k_reqs: set[str] = set()

top_p instance-attribute

top_p = empty((max_num_reqs,), dtype=float32, device=device)

top_p_cpu instance-attribute

top_p_cpu = numpy()

top_p_cpu_tensor instance-attribute

top_p_cpu_tensor = empty(
    (max_num_reqs,),
    dtype=float32,
    device="cpu",
    pin_memory=pin_memory,
)

top_p_reqs instance-attribute

top_p_reqs: set[str] = set()

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    max_num_reqs: int,
    max_model_len: int,
    max_num_batched_tokens: int,
    device: device,
    pin_memory: bool,
    vocab_size: int,
    block_sizes: list[int],
    is_spec_decode: bool = False,
    logits_processing_needs_token_ids: bool = False,
)
Source code in vllm/v1/worker/gpu_input_batch.py
def __init__(
    self,
    max_num_reqs: int,
    max_model_len: int,
    max_num_batched_tokens: int,
    device: torch.device,
    pin_memory: bool,
    vocab_size: int,
    block_sizes: list[int],  # The block_size of each kv cache group
    is_spec_decode: bool = False,
    logits_processing_needs_token_ids: bool = False,
):
    self.is_spec_decode = is_spec_decode
    self.max_num_reqs = max_num_reqs
    self.max_model_len = max_model_len
    self.max_num_batched_tokens = max_num_batched_tokens
    self.device = device
    self.pin_memory = pin_memory
    self.vocab_size = vocab_size
    self.logits_processing_needs_token_ids = (
        logits_processing_needs_token_ids)

    self._req_ids: list[Optional[str]] = []
    self.req_id_to_index: dict[str, int] = {}

    # TODO(woosuk): This buffer could be too large if max_model_len is big.
    # Find a way to reduce the CPU memory usage.
    # This buffer is not directly transferred to the GPU, so it does not
    # need to be pinned.
    self.token_ids_cpu_tensor = torch.zeros(
        (max_num_reqs, max_model_len),
        device="cpu",
        dtype=torch.int32,
        pin_memory=False,
    )
    self.token_ids_cpu = self.token_ids_cpu_tensor.numpy()
    self.num_tokens = np.zeros(max_num_reqs, dtype=np.int32)
    self.num_tokens_no_spec = np.zeros(max_num_reqs, dtype=np.int32)
    self.num_prompt_tokens = np.zeros(max_num_reqs, dtype=np.int32)
    self.num_computed_tokens_cpu_tensor = torch.zeros(
        (max_num_reqs, ),
        device="cpu",
        dtype=torch.int32,
        pin_memory=pin_memory,
    )
    self.num_computed_tokens_cpu = \
        self.num_computed_tokens_cpu_tensor.numpy()

    # Block table.
    self.block_table = MultiGroupBlockTable(
        max_num_reqs=max_num_reqs,
        max_model_len=max_model_len,
        max_num_batched_tokens=max_num_batched_tokens,
        pin_memory=pin_memory,
        device=device,
        block_sizes=block_sizes,
    )

    # Sampling-related.
    self.temperature = torch.empty((max_num_reqs, ),
                                   dtype=torch.float32,
                                   device=device)
    self.temperature_cpu_tensor = torch.empty((max_num_reqs, ),
                                              dtype=torch.float32,
                                              device="cpu",
                                              pin_memory=pin_memory)
    self.temperature_cpu = self.temperature_cpu_tensor.numpy()
    self.greedy_reqs: set[str] = set()
    self.random_reqs: set[str] = set()

    self.top_p = torch.empty((max_num_reqs, ),
                             dtype=torch.float32,
                             device=device)
    self.top_p_cpu_tensor = torch.empty((max_num_reqs, ),
                                        dtype=torch.float32,
                                        device="cpu",
                                        pin_memory=pin_memory)
    self.top_p_cpu = self.top_p_cpu_tensor.numpy()
    self.top_p_reqs: set[str] = set()

    self.top_k = torch.empty((max_num_reqs, ),
                             dtype=torch.int32,
                             device=device)
    self.top_k_cpu_tensor = torch.empty((max_num_reqs, ),
                                        dtype=torch.int32,
                                        device="cpu",
                                        pin_memory=pin_memory)
    self.top_k_cpu = self.top_k_cpu_tensor.numpy()
    self.top_k_reqs: set[str] = set()

    # IDs of requests which do not support spec decoding
    self.spec_decode_unsupported_reqs: set[str] = set()

    # Frequency penalty related data structures
    self.frequency_penalties = torch.empty((max_num_reqs, ),
                                           dtype=torch.float,
                                           device=device)
    self.frequency_penalties_cpu_tensor = torch.empty(
        (max_num_reqs, ),
        dtype=torch.float,
        device="cpu",
        pin_memory=pin_memory)
    self.frequency_penalties_cpu = \
        self.frequency_penalties_cpu_tensor.numpy()
    self.frequency_penalties_reqs: set[str] = set()

    # Presence penalty related data structures
    self.presence_penalties = torch.empty((max_num_reqs, ),
                                          dtype=torch.float,
                                          device=device)
    self.presence_penalties_cpu_tensor = torch.empty((max_num_reqs, ),
                                                     dtype=torch.float,
                                                     device="cpu",
                                                     pin_memory=pin_memory)
    self.presence_penalties_cpu = self.presence_penalties_cpu_tensor.numpy(
    )
    self.presence_penalties_reqs: set[str] = set()

    # Repetition penalty related data structures
    self.repetition_penalties = torch.empty((max_num_reqs, ),
                                            dtype=torch.float,
                                            device=device)
    self.repetition_penalties_cpu_tensor = torch.empty(
        (max_num_reqs, ),
        dtype=torch.float,
        device="cpu",
        pin_memory=pin_memory)
    self.repetition_penalties_cpu = \
        self.repetition_penalties_cpu_tensor.numpy()
    self.repetition_penalties_reqs: set[str] = set()

    # lora related
    self.request_lora_mapping = np.zeros((self.max_num_reqs, ),
                                         dtype=np.int32)
    self.lora_id_to_request_ids: dict[int, set[str]] = {}
    self.lora_id_to_lora_request: dict[int, LoRARequest] = {}

    # req_index -> generator
    # NOTE(woosuk): The indices of the requests that do not have their own
    # generator should not be included in the dictionary.
    self.generators: dict[int, torch.Generator] = {}

    self.num_logprobs: dict[str, int] = {}
    # NOTE(rob): num_prompt_logprobs only includes reqs
    # that are currently in the prefill phase.
    self.num_prompt_logprobs: dict[str, int] = {}

    # To accumulate prompt logprobs tensor chunks across prefill steps.
    self.in_progress_prompt_logprobs_cpu: dict[str, LogprobsTensors] = {}

    # Internal representation of per-step batch state changes, used for
    # reordering persistent batch and generating logitsprocs batch state
    # updates. Should reset each step.
    self.batch_update_builder = BatchUpdateBuilder()

    # Define logits processors.
    # TODO(andy): logits processor list should be extensible via engine
    # constructor argument; for now the list is fixed.
    self.logitsprocs = init_builtin_logitsprocs(
        pin_memory_available=pin_memory,
        max_num_reqs=max_num_reqs + 1,
        device=device)

    # TODO convert this to LogitsProcessor
    self.has_allowed_token_ids: set[str] = set()
    # NOTE(lufang): In the mask tensor, if the corresponding token allowed,
    # the value is False. Since we use masked_fill_ to set -inf.
    self.allowed_token_ids_mask: Optional[torch.Tensor] = None
    self.allowed_token_ids_mask_cpu_tensor: Optional[torch.Tensor] = None

    # req_index -> bad_words_token_ids
    self.bad_words_token_ids: dict[int, list[list[int]]] = {}

    self.req_output_token_ids: list[Optional[list[int]]] = []

    # This is updated each time the batch constituents change.
    self.sampling_metadata = self._make_sampling_metadata()

    self.pooling_params: dict[str, PoolingParams] = {}

_get_next_add_index

_get_next_add_index() -> int
Source code in vllm/v1/worker/gpu_input_batch.py
def _get_next_add_index(self) -> int:
    if (req_index := self.batch_update_builder.pop_removed()) is not None:
        # Fill the empty index.
        return req_index
    # Append to end
    return self.num_reqs

_make_prompt_token_ids_tensor

_make_prompt_token_ids_tensor() -> Tensor
Source code in vllm/v1/worker/gpu_input_batch.py
def _make_prompt_token_ids_tensor(self) -> torch.Tensor:
    max_prompt_len = self.num_prompt_tokens[:self.num_reqs].max()
    prompt_token_ids_cpu_tensor = torch.empty(
        (self.num_reqs, max_prompt_len),
        device="cpu",
        dtype=torch.int64,
        pin_memory=self.pin_memory,
    )
    prompt_token_ids = prompt_token_ids_cpu_tensor.numpy()
    prompt_token_ids[:] = self.token_ids_cpu[:self.
                                             num_reqs, :max_prompt_len]
    # Use the value of vocab_size as a pad since we don't have a
    # token_id of this value.
    for i in range(self.num_reqs):
        prompt_token_ids[i, self.num_prompt_tokens[i]:] = self.vocab_size
    return prompt_token_ids_cpu_tensor.to(device=self.device,
                                          non_blocking=True)

_make_sampling_metadata

_make_sampling_metadata() -> SamplingMetadata
Source code in vllm/v1/worker/gpu_input_batch.py
def _make_sampling_metadata(self) -> SamplingMetadata:
    num_reqs = self.num_reqs
    if not self.all_greedy:
        temperature = copy_slice(self.temperature_cpu_tensor,
                                 self.temperature, num_reqs)
    else:
        temperature = None
    if not self.no_top_p:
        copy_slice(self.top_p_cpu_tensor, self.top_p, num_reqs)
    if not self.no_top_k:
        copy_slice(self.top_k_cpu_tensor, self.top_k, num_reqs)

    if not self.no_penalties:
        # Since syncing these tensors is expensive only copy them
        # if necessary i.e. if there are requests which require
        # penalties to be applied during sampling.
        copy_slice(self.frequency_penalties_cpu_tensor,
                   self.frequency_penalties, num_reqs)
        copy_slice(self.presence_penalties_cpu_tensor,
                   self.presence_penalties, num_reqs)
        copy_slice(self.repetition_penalties_cpu_tensor,
                   self.repetition_penalties, num_reqs)

    needs_prompt_token_ids = (not self.no_penalties or
                              (self.num_reqs > 0
                               and self.logits_processing_needs_token_ids))
    if needs_prompt_token_ids:
        # The prompt tokens are used only for applying penalties or
        # step pooling during the sampling/pooling process.
        # Hence copy these tensors only when there are requests which
        # need penalties/step_pooler to be applied.
        prompt_token_ids = self._make_prompt_token_ids_tensor()
    else:
        prompt_token_ids = None

    allowed_token_ids_mask: Optional[torch.Tensor] = None
    if not self.no_allowed_token_ids:
        assert self.allowed_token_ids_mask is not None
        copy_slice(self.allowed_token_ids_mask_cpu_tensor,
                   self.allowed_token_ids_mask, num_reqs)
        allowed_token_ids_mask = self.allowed_token_ids_mask[:num_reqs]

    return SamplingMetadata(
        temperature=temperature,
        all_greedy=self.all_greedy,
        all_random=self.all_random,
        top_p=None if self.no_top_p else self.top_p[:num_reqs],
        top_k=None if self.no_top_k else self.top_k[:num_reqs],
        generators=self.generators,
        max_num_logprobs=self.max_num_logprobs,
        prompt_token_ids=prompt_token_ids,
        frequency_penalties=self.frequency_penalties[:num_reqs],
        presence_penalties=self.presence_penalties[:num_reqs],
        repetition_penalties=self.repetition_penalties[:num_reqs],
        output_token_ids=cast(list[list[int]], self.req_output_token_ids),
        no_penalties=self.no_penalties,
        allowed_token_ids_mask=allowed_token_ids_mask,
        bad_words_token_ids=self.bad_words_token_ids,
        logitsprocs=self.logitsprocs,
    )

_register_add_request

_register_add_request(request: CachedRequestState) -> int

Track add-request operations

Source code in vllm/v1/worker/gpu_input_batch.py
def _register_add_request(self, request: "CachedRequestState") -> int:
    """Track add-request operations"""
    req_index = self._get_next_add_index()
    assert req_index < self.max_num_reqs
    params = (request.sampling_params
              if request.sampling_params else request.pooling_params)
    self.batch_update_builder.added.append(
        (req_index, params, request.output_token_ids))
    return req_index

add_request

add_request(request: CachedRequestState) -> int
Source code in vllm/v1/worker/gpu_input_batch.py
def add_request(
    self,
    request: "CachedRequestState",
) -> int:
    req_index = self._register_add_request(request)

    req_id = request.req_id
    if req_index == len(self._req_ids):
        self._req_ids.append(req_id)
        self.req_output_token_ids.append(request.output_token_ids)
    else:
        self._req_ids[req_index] = req_id
        self.req_output_token_ids[req_index] = request.output_token_ids

    self.req_id_to_index[req_id] = req_index

    # Copy the prompt token ids and output token ids.
    num_prompt_tokens = len(request.prompt_token_ids)
    self.num_prompt_tokens[req_index] = num_prompt_tokens
    self.token_ids_cpu[
        req_index, :num_prompt_tokens] = request.prompt_token_ids
    start_idx = num_prompt_tokens
    end_idx = start_idx + len(request.output_token_ids)
    self.token_ids_cpu[req_index,
                       start_idx:end_idx] = request.output_token_ids
    # Number of token ids in token_ids_cpu.
    # NOTE(woosuk): This may include spec decode tokens.
    self.num_tokens[req_index] = request.num_tokens
    # Number of tokens without spec decode tokens.
    self.num_tokens_no_spec[req_index] = request.num_tokens

    self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens
    self.block_table.add_row(request.block_ids, req_index)

    if sampling_params := request.sampling_params:
        if (self.is_spec_decode
                and is_spec_decode_unsupported(sampling_params)):
            self.spec_decode_unsupported_reqs.add(req_id)
        if sampling_params.sampling_type == SamplingType.GREEDY:
            # Avoid later division by zero.
            self.temperature_cpu[req_index] = -1.0
            self.greedy_reqs.add(req_id)
        else:
            self.temperature_cpu[req_index] = sampling_params.temperature
            self.random_reqs.add(req_id)

        self.top_p_cpu[req_index] = sampling_params.top_p
        if sampling_params.top_p < 1:
            self.top_p_reqs.add(req_id)
        top_k = sampling_params.top_k
        if 0 < top_k < self.vocab_size:
            self.top_k_reqs.add(req_id)
        else:
            top_k = self.vocab_size
        self.top_k_cpu[req_index] = top_k
        self.frequency_penalties_cpu[
            req_index] = sampling_params.frequency_penalty
        if sampling_params.frequency_penalty != 0.0:
            self.frequency_penalties_reqs.add(req_id)
        self.presence_penalties_cpu[
            req_index] = sampling_params.presence_penalty
        if sampling_params.presence_penalty != 0.0:
            self.presence_penalties_reqs.add(req_id)
        self.repetition_penalties_cpu[
            req_index] = sampling_params.repetition_penalty
        if sampling_params.repetition_penalty != 1.0:
            self.repetition_penalties_reqs.add(req_id)

        # NOTE(woosuk): self.generators should not include the requests that
        # do not have their own generator.
        if request.generator is not None:
            self.generators[req_index] = request.generator

        if sampling_params.logprobs is not None:
            self.num_logprobs[req_id] = sampling_params.logprobs
        if sampling_params.prompt_logprobs is not None:
            self.num_prompt_logprobs[
                req_id] = sampling_params.prompt_logprobs

        if sampling_params.allowed_token_ids:
            self.has_allowed_token_ids.add(req_id)
            if self.allowed_token_ids_mask_cpu_tensor is None:
                # Lazy allocation for this tensor, which can be large.
                # False means we don't fill with -inf.
                self.allowed_token_ids_mask = torch.zeros(
                    self.max_num_reqs,
                    self.vocab_size,
                    dtype=torch.bool,
                    device=self.device)
                self.allowed_token_ids_mask_cpu_tensor = torch.zeros(
                    self.max_num_reqs,
                    self.vocab_size,
                    dtype=torch.bool,
                    device="cpu")
            self.allowed_token_ids_mask_cpu_tensor[req_index] = True
            # False means we don't fill with -inf.
            self.allowed_token_ids_mask_cpu_tensor[req_index][
                sampling_params.allowed_token_ids] = False

        if sampling_params.bad_words_token_ids:
            self.bad_words_token_ids[
                req_index] = sampling_params.bad_words_token_ids
    else:
        assert request.pooling_params is not None
        self.pooling_params[req_id] = request.pooling_params

    # Add request lora ID
    if request.lora_request:
        lora_id = request.lora_request.lora_int_id
        if lora_id not in self.lora_id_to_request_ids:
            self.lora_id_to_request_ids[lora_id] = set()

        self.request_lora_mapping[req_index] = lora_id
        self.lora_id_to_request_ids[lora_id].add(request.req_id)
        self.lora_id_to_lora_request[lora_id] = request.lora_request
    else:
        # No LoRA
        self.request_lora_mapping[req_index] = 0

    return req_index

condense

condense() -> None

Slide non-empty requests down into lower, empty indices.

Any consecutive empty indices at the very end of the list are not filled.

Parameters:

Name Type Description Default
empty_req_indices

empty indices which may be filled.

required

Returns:

Name Type Description
swaps None

list of (from,to) swap tuples for moved requests

empty_req_indices None

indices not filled by condensation

Source code in vllm/v1/worker/gpu_input_batch.py
def condense(self) -> None:
    """Slide non-empty requests down into lower, empty indices.

    Any consecutive empty indices at the very end of the list are not
    filled.

    Args:
      empty_req_indices: empty indices which may be filled.

    Returns:
      swaps: list of (from,to) swap tuples for moved requests
      empty_req_indices: indices not filled by condensation
    """
    if not (empty_req_indices := self.batch_update_builder.removed):
        # All removed requests were replaced by added requests, or else no
        # requests were removed at all. No condense() needed
        return
    num_reqs = self.num_reqs
    if num_reqs == 0:
        # The batched states are empty.
        self._req_ids.clear()
        self.req_output_token_ids.clear()
        return

    # NOTE(woosuk): This function assumes that the empty_req_indices
    # is sorted in descending order.
    last_req_index = num_reqs + len(empty_req_indices) - 1
    while empty_req_indices:
        # Find the largest non-empty index.
        while last_req_index in empty_req_indices:
            last_req_index -= 1

        # Find the smallest empty index.
        empty_index = self.batch_update_builder.peek_removed()
        assert empty_index is not None
        if empty_index >= last_req_index:
            break

        # Move active request down into empty request
        # index.
        self.batch_update_builder.pop_removed()
        self.batch_update_builder.moved.append(
            (last_req_index, empty_index,
             MoveDirectionality.UNIDIRECTIONAL))
        req_id = self._req_ids[last_req_index]
        output_token_ids = self.req_output_token_ids[last_req_index]
        assert req_id is not None
        self._req_ids[empty_index] = req_id
        self._req_ids[last_req_index] = None
        self.req_output_token_ids[empty_index] = output_token_ids
        self.req_output_token_ids[last_req_index] = None
        self.req_id_to_index[req_id] = empty_index

        num_tokens = self.num_tokens[last_req_index]
        self.token_ids_cpu[empty_index, :num_tokens] = self.token_ids_cpu[
            last_req_index, :num_tokens]
        self.num_tokens[empty_index] = num_tokens
        self.num_tokens_no_spec[empty_index] = self.num_tokens_no_spec[
            last_req_index]
        self.num_prompt_tokens[empty_index] = self.num_prompt_tokens[
            last_req_index]
        self.num_computed_tokens_cpu[
            empty_index] = self.num_computed_tokens_cpu[last_req_index]
        self.block_table.move_row(last_req_index, empty_index)
        self.temperature_cpu[empty_index] = self.temperature_cpu[
            last_req_index]
        self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index]
        self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index]
        self.frequency_penalties_cpu[
            empty_index] = self.frequency_penalties_cpu[last_req_index]
        self.presence_penalties_cpu[
            empty_index] = self.presence_penalties_cpu[last_req_index]
        self.repetition_penalties_cpu[
            empty_index] = self.repetition_penalties_cpu[last_req_index]
        generator = self.generators.pop(last_req_index, None)
        if generator is not None:
            self.generators[empty_index] = generator

        self.request_lora_mapping[empty_index] = self.request_lora_mapping[
            last_req_index]

        # TODO convert these to LogitsProcessors
        if self.allowed_token_ids_mask_cpu_tensor is not None:
            self.allowed_token_ids_mask_cpu_tensor[
                empty_index] = self.allowed_token_ids_mask_cpu_tensor[
                    last_req_index]

        bad_words_token_ids = self.bad_words_token_ids.pop(
            last_req_index, None)
        if bad_words_token_ids is not None:
            self.bad_words_token_ids[empty_index] = bad_words_token_ids

        # Decrement last_req_index since it is now empty.
        last_req_index -= 1

    # Trim lists to the batch size.
    del self._req_ids[self.num_reqs:]
    del self.req_output_token_ids[self.num_reqs:]

make_lora_inputs

make_lora_inputs(
    num_scheduled_tokens: ndarray,
) -> tuple[
    tuple[int, ...], tuple[int, ...], set[LoRARequest]
]

Given the num_scheduled_tokens for each request in the batch, return datastructures used to activate the current LoRAs. Returns: 1. prompt_lora_mapping: A tuple of size self.num_reqs where, prompt_lora_mapping[i] is the LoRA id to use for the ith prompt. 2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens) where, token_lora_mapping[i] is the LoRA id to use for ith token. 3. lora_requests: Set of relevant LoRA requests.

Source code in vllm/v1/worker/gpu_input_batch.py
def make_lora_inputs(
    self, num_scheduled_tokens: np.ndarray
) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
    """
    Given the num_scheduled_tokens for each request in the batch, return
    datastructures used to activate the current LoRAs.
    Returns:
        1. prompt_lora_mapping: A tuple of size self.num_reqs where,
           prompt_lora_mapping[i] is the LoRA id to use for the ith prompt.
        2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens)
           where, token_lora_mapping[i] is the LoRA id to use for ith token.
        3. lora_requests: Set of relevant LoRA requests.
    """

    req_lora_mapping = self.request_lora_mapping[:self.num_reqs]
    prompt_lora_mapping = tuple(req_lora_mapping)
    token_lora_mapping = tuple(
        req_lora_mapping.repeat(num_scheduled_tokens))
    active_lora_requests: set[LoRARequest] = set(
        self.lora_id_to_lora_request.values())

    return prompt_lora_mapping, token_lora_mapping, active_lora_requests

refresh_metadata

refresh_metadata()

Apply batch updates, reset input batch at end of step

  • Apply batch add/remove/permute to logits procs' states
  • If batch state is modified, update sampling metadata
Source code in vllm/v1/worker/gpu_input_batch.py
def refresh_metadata(self):
    """Apply batch updates, reset input batch at end of step

    * Apply batch add/remove/permute to logits procs' states
    * If batch state is modified, update sampling metadata
    """
    batch_update = self.batch_update_builder.get_and_reset(self.num_reqs)
    for logit_proc in self.logitsprocs.all:
        logit_proc.update_state(batch_update)
    if batch_update:
        self.sampling_metadata = self._make_sampling_metadata()

remove_request

remove_request(req_id: str) -> Optional[int]

This method must always be followed by a call to condense().

Parameters:

Name Type Description Default
req_id str

request to remove

required

Returns:

Type Description
Optional[int]

Removed request index, or None if req_id not recognized

Source code in vllm/v1/worker/gpu_input_batch.py
def remove_request(self, req_id: str) -> Optional[int]:
    """This method must always be followed by a call to condense().

    Args:
      req_id: request to remove

    Returns:
      Removed request index, or `None` if `req_id` not recognized
    """

    req_index = self.req_id_to_index.pop(req_id, None)
    if req_index is None:
        return None
    self.batch_update_builder.removed_append(req_index)
    self._req_ids[req_index] = None
    self.req_output_token_ids[req_index] = None

    self.greedy_reqs.discard(req_id)
    self.random_reqs.discard(req_id)
    self.top_p_reqs.discard(req_id)
    self.top_k_reqs.discard(req_id)
    self.spec_decode_unsupported_reqs.discard(req_id)
    self.frequency_penalties_reqs.discard(req_id)
    self.presence_penalties_reqs.discard(req_id)
    self.repetition_penalties_reqs.discard(req_id)
    self.generators.pop(req_index, None)
    self.num_logprobs.pop(req_id, None)
    self.num_prompt_logprobs.pop(req_id, None)
    self.in_progress_prompt_logprobs_cpu.pop(req_id, None)

    # LoRA
    lora_id = self.request_lora_mapping[req_index]
    if lora_id != 0:
        self.lora_id_to_request_ids[lora_id].discard(req_id)
        if len(self.lora_id_to_request_ids[lora_id]) == 0:
            self.lora_id_to_request_ids.pop(lora_id)
            self.lora_id_to_lora_request.pop(lora_id)
        self.request_lora_mapping[req_index] = 0

    self.has_allowed_token_ids.discard(req_id)
    if self.allowed_token_ids_mask_cpu_tensor is not None:
        # False means we don't fill with -inf.
        self.allowed_token_ids_mask_cpu_tensor[req_index].fill_(False)
    self.bad_words_token_ids.pop(req_index, None)
    self.pooling_params.pop(req_id, None)
    return req_index

swap_states

swap_states(i1: int, i2: int) -> None
Source code in vllm/v1/worker/gpu_input_batch.py
def swap_states(self, i1: int, i2: int) -> None:
    self.batch_update_builder.moved.append(
        (i1, i2, MoveDirectionality.SWAP))
    old_id_i1 = self._req_ids[i1]
    old_id_i2 = self._req_ids[i2]
    self._req_ids[i1], self._req_ids[i2] =\
        self._req_ids[i2], self._req_ids[i1] # noqa
    self.req_output_token_ids[i1], self.req_output_token_ids[i2] =\
        self.req_output_token_ids[i2], self.req_output_token_ids[i1]
    assert old_id_i1 is not None and old_id_i2 is not None
    self.req_id_to_index[old_id_i1], self.req_id_to_index[old_id_i2] =\
        self.req_id_to_index[old_id_i2], self.req_id_to_index[old_id_i1]
    self.num_tokens[i1], self.num_tokens[i2] =\
        self.num_tokens[i2], self.num_tokens[i1]
    self.num_tokens_no_spec[i1], self.num_tokens_no_spec[i2] =\
        self.num_tokens_no_spec[i2], self.num_tokens_no_spec[i1]
    self.num_prompt_tokens[i1], self.num_prompt_tokens[i2] =\
        self.num_prompt_tokens[i2], self.num_prompt_tokens[i1]
    self.num_computed_tokens_cpu[i1], self.num_computed_tokens_cpu[i2] =\
        self.num_computed_tokens_cpu[i2], self.num_computed_tokens_cpu[i1]
    self.temperature_cpu[i1], self.temperature_cpu[i2] =\
        self.temperature_cpu[i2], self.temperature_cpu[i1]
    self.top_p_cpu[i1], self.top_p_cpu[i2] =\
        self.top_p_cpu[i2], self.top_p_cpu[i1]
    self.top_k_cpu[i1], self.top_k_cpu[i2] =\
        self.top_k_cpu[i2], self.top_k_cpu[i1]
    self.frequency_penalties_cpu[i1], self.frequency_penalties_cpu[i2] =\
        self.frequency_penalties_cpu[i2], self.frequency_penalties_cpu[i1]
    self.presence_penalties_cpu[i1], self.presence_penalties_cpu[i2] =\
        self.presence_penalties_cpu[i2], self.presence_penalties_cpu[i1]
    self.repetition_penalties_cpu[i1], self.repetition_penalties_cpu[i2] =\
        self.repetition_penalties_cpu[i2], self.repetition_penalties_cpu[i1]

    # NOTE: the following is unsafe
    # self.token_ids_cpu[i1, ...], self.token_ids_cpu[i2, ...], =\
    #     self.token_ids_cpu[i2, ...], self.token_ids_cpu[i1, ...]
    # instead, we need to temporiarily copy the data for one of the indices
    # TODO(lucas): optimize this by only copying valid indices
    tmp = self.token_ids_cpu[i1, ...].copy()
    self.token_ids_cpu[i1, ...] = self.token_ids_cpu[i2, ...]
    self.token_ids_cpu[i2, ...] = tmp

    swap_dict_values(self.generators, i1, i2)
    swap_dict_values(self.bad_words_token_ids, i1, i2)

    self.request_lora_mapping[i1], self.request_lora_mapping[i2] =\
        self.request_lora_mapping[i2], self.request_lora_mapping[i1]

    if self.allowed_token_ids_mask_cpu_tensor is not None:
        self.allowed_token_ids_mask_cpu_tensor[i1], \
            self.allowed_token_ids_mask_cpu_tensor[i2] =\
            self.allowed_token_ids_mask_cpu_tensor[i2], \
                self.allowed_token_ids_mask_cpu_tensor[i1]
    self.block_table.swap_row(i1, i2)