Skip to content

vllm.v1.spec_decode.medusa

logger module-attribute

logger = init_logger(__name__)

MedusaProposer

Medusa proposer class for generating token sequences

Source code in vllm/v1/spec_decode/medusa.py
class MedusaProposer:
    """
    Medusa proposer class for generating token sequences
    """

    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        # Save config parameters
        self.vllm_config = vllm_config
        self.device = device
        self.max_num_tokens = (
            vllm_config.scheduler_config.max_num_batched_tokens)
        self.hidden_size = vllm_config.speculative_config.\
            draft_model_config.get_hidden_size(
        )
        self.dtype = vllm_config.model_config.dtype

    def propose(
        self,
        target_hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        # Generate blocks and compute logits
        blocks = self.model(target_hidden_states)
        logits = self.model.compute_logits(blocks, None)

        # Get draft tokens and transpose the result
        draft_tokens = [logit.argmax(dim=-1).tolist() for logit in logits]
        return [list(row) for row in zip(*draft_tokens)]

    def load_model(self, target_model: nn.Module) -> None:
        from vllm.compilation.backends import set_model_tag
        with set_model_tag("medusa_head"):
            self.model = get_model(vllm_config=self.vllm_config,
                                   model_config=self.vllm_config.
                                   speculative_config.draft_model_config)

    @torch.inference_mode()
    def dummy_run(self, num_tokens: int) -> None:
        hidden_states = torch.zeros((self.max_num_tokens, self.hidden_size),
                                    dtype=self.dtype,
                                    device=self.device)
        with set_forward_context(None, self.vllm_config,
                                 num_tokens=num_tokens):
            self.model(hidden_states)

device instance-attribute

device = device

dtype instance-attribute

dtype = dtype

hidden_size instance-attribute

hidden_size = get_hidden_size()

max_num_tokens instance-attribute

max_num_tokens = max_num_batched_tokens

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(vllm_config: VllmConfig, device: device)
Source code in vllm/v1/spec_decode/medusa.py
def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
):
    # Save config parameters
    self.vllm_config = vllm_config
    self.device = device
    self.max_num_tokens = (
        vllm_config.scheduler_config.max_num_batched_tokens)
    self.hidden_size = vllm_config.speculative_config.\
        draft_model_config.get_hidden_size(
    )
    self.dtype = vllm_config.model_config.dtype

dummy_run

dummy_run(num_tokens: int) -> None
Source code in vllm/v1/spec_decode/medusa.py
@torch.inference_mode()
def dummy_run(self, num_tokens: int) -> None:
    hidden_states = torch.zeros((self.max_num_tokens, self.hidden_size),
                                dtype=self.dtype,
                                device=self.device)
    with set_forward_context(None, self.vllm_config,
                             num_tokens=num_tokens):
        self.model(hidden_states)

load_model

load_model(target_model: Module) -> None
Source code in vllm/v1/spec_decode/medusa.py
def load_model(self, target_model: nn.Module) -> None:
    from vllm.compilation.backends import set_model_tag
    with set_model_tag("medusa_head"):
        self.model = get_model(vllm_config=self.vllm_config,
                               model_config=self.vllm_config.
                               speculative_config.draft_model_config)

propose

propose(
    target_hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Tensor
Source code in vllm/v1/spec_decode/medusa.py
def propose(
    self,
    target_hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    # Generate blocks and compute logits
    blocks = self.model(target_hidden_states)
    logits = self.model.compute_logits(blocks, None)

    # Get draft tokens and transpose the result
    draft_tokens = [logit.argmax(dim=-1).tolist() for logit in logits]
    return [list(row) for row in zip(*draft_tokens)]