vllm.v1.attention.backends.mla.common
MLA Common Components¶
This file implements common components for MLA implementations.
First we define:
Sq as Q sequence length Skv as KV sequence length
MLA has two possible ways of computing, a data-movement friendly approach and a compute friendly approach, we generally want to use the compute friendly approach for "prefill" (i.e. the ratio Sq / Skv is "small", is near 1) and the data-movement friendly approach for "decode" (i.e. the ratio Sq / Skv is "large").
NOTE what we deem small and large is currently determined by if its labelled prefill or decode by the scheduler, but this is something we should probably tune.
Main reference: DeepseekV2 paper, and FlashInfer Implementation (https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).
Deepseek's MLA attention works the following way: * Use a single latent vector to represent the per-token entry of the KV cache. * For decode (i.e. the memory friendly approach) the attention "simulates" a multi-head attention, while the compute is similar to multi-query attention.
Below is example of both paths assuming batchsize = 1
More Extent Definitions:¶
C Context length, Skv - Sq
H hidden size
N number of attention heads
Lq latent dimension for Q 1536 in DSV3
Lkv latent dimension for K/V 512 in DSV3
P nope dimension, no rope. 128 in DSV3
R rope dimension, goes through rope. 64 in DSV3
V V head dim. 128 in DSV3
Vector/Matrix Definitions¶
h_t hidden states (input to attention) shape [Sq, H] q_c latent/compressed Q shape [Sq, Lq] q_nope uncompressed Q (no-rope) shape [Sq, N, P] q_pe uncompressed Q (rope) shape [Sq, N, R] kv_c latent/compressed KV shape [Skv, Lkv] k_pe decoupled k position embeddings shape [Skv, R] new_kv_c new kv_c from current iter shape [Sq, Lkv] new_k_pe new k_pe from current iter shape [Sq, R] cache_kv_c cached k_c from previous iters shape [C, Lkv] cache_k_pe cached k_pe from previous iters shape [C, R] W_DQ project h_t to q_c shape [H, Lq] W_UQ project q_c to q_nope shape [Lq, N * P] W_QR project q_c to q_pe shape [Lq, N * R] W_DKV project h_t to kv_c shape [H, Lkv] W_UK project kv_c to k_nope shape [Lkv, N, P] W_KR project h_t to k_pe shape [H, R] W_UV project kv_c to v shape [Lkv, N, V] W_O project v to h_t shape [N * V, H]
Compute Friendly Approach (i.e. "_forward_prefill"):¶
q_c = h_t @ W_DQ q_nope = (q_c @ W_UQ).view(Sq, N, P) q_pe = RoPE(q_c @ W_QR).view(Sq, N, R) new_kv_c = h_t @ W_DKV new_k_pe = RoPE(h_t @ W_KR) kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0) k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0) k_nope = (kv_c @ W_UK.view(Lkv, N * P)).view(Skv, N, P) v = (kv_c @ W_UV.view(Lkv, N * V)).view(Skv, N, V)
// MHA with QK headdim = P + R // V headdim = V // spda_o shape [Sq, N, V] spda_o = scaled_dot_product_attention( torch.cat([q_nope, q_pe], dim=-1), torch.cat([k_nope, k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1), v ) return spda_o @ W_O
in the actual code,
kv_b_proj
is [W_UK; W_UV] concatenated per head
q_b_proj
is [W_UQ; W_QR] concatenated per head
out_proj
is W_O
Data-Movement Friendly Approach (i.e. "_forward_decode"):¶
Runtime q_c = h_t @ W_DQ q_nope = (q_c @ W_UQ).view(-1, N, P) ql_nope = einsum("snh,lnh->snl", q, W_UK) q_pe = RoPE(q_c @ W_QR).view(Sq, N, R) new_kv_c = h_t @ W_DKV new_k_pe = RoPE(h_t @ W_KR) kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0) k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0)
// MQA with QK headdim = Lkv + R // V headdim = Lkv // spda_o shape [Sq, N, Lkv] // NOTE: this is less compute-friendly since Lkv > P // but is more data-movement friendly since its MQA vs MHA spda_o = scaled_dot_product_attention( torch.cat([ql_nope, q_pe], dim=-1), torch.cat([kv_c, k_pe], dim=-1), kv_c )
o = einsum("snl,lnv->snv", spda_o.reshape(-1, N, Lkv), W_UV) return o.view(-1, N * V) @ self.num_heads @ W_O
Chunked Prefill¶
For chunked prefill we want to use the compute friendly algorithm. We are
assuming sufficiently large Sq / Skv ratio, in the future may want to switch to
the data-movement friendly approach if the chunk (i.e. Sq
) is small.
However, the compute-friendly approach can potentially run out of memory if Skv
is large due to: k_nope = (kv_c @ W_UK).view(Skv, N, P)
To mitigate this, we chunk the computation of attention with respect to the
current context (i.e. cache_kv_c
and cache_k_pe
) so that we can used a
fixed workspace size.
The chunked prefill approach is as follows:
MCC Max chunk of context to process per iter, computed dynamically, used to bound the memory usage
q_c = h_t @ W_DQ q_nope = (q_c @ W_UQ).view(Sq, N, P) q_pe = RoPE(q_c @ W_QR).view(Sq, N, R) new_kv_c = h_t @ W_DKV new_k_pe = RoPE(h_t @ W_KR) new_k_nope = (new_kv_c @ W_UK.view(Lkv, N * P)).view(Sq, N, P) new_v = (new_kv_c @ W_UV.view(Lkv, N * V)).view(Sq, N, V)
// MHA between queries and new KV // with QK headdim = P + R // V headdim = V // curr_o shape [Sq, N, V] // curr_lse shape [N, Sq], this is just order FA returns curr_o, curr_lse = scaled_dot_product_attention( torch.cat([q_nope, q_pe], dim=-1), torch.cat([new_k_nope, new_k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1), new_v, casual=True, return_softmax_lse=True )
// Compute attention with the already existing context for chunk_idx in range(cdiv(C, MCC)): chunk_start = chunk_idx * MCC chunk_end = min(chunk_start + MCC, C) Sc = chunk_end - chunk_start cache_kv_c_chunk = cache_kv_c[chunk_start:chunk_end] cache_k_pe_chunk = cache_k_pe[chunk_start:chunk_end] cache_k_nope_chunk = (cache_kv_c_chunk @ W_UK).view(-1, N, P) cache_v_chunk = (cache_kv_c_chunk @ W_UV).view(-1, N, V)
chunk_o, chunk_lse = scaled_dot_product_attention(
torch.cat([q_nope, q_pe], dim=-1),
torch.cat([cache_k_nope_chunk,
cache_k_pe_chunk.unsqueeze(1).expand(-1, N, -1)],
dim=-1),
cache_v_chunk,
casual=False,
return_softmax_lse=True
)
curr_o, curr_lse = merge_attn_states(
suffix_output=curr_o,
suffix_lse=curr_lse,
prefix_output=chunk_o,
prefix_lse=chunk_lse,
)
return curr_o @ W_O
MLACommonBackend
¶
Bases: AttentionBackend
Source code in vllm/v1/attention/backends/mla/common.py
get_builder_cls
staticmethod
¶
get_builder_cls() -> type[MLACommonMetadataBuilder]
get_kv_cache_shape
staticmethod
¶
get_metadata_cls
staticmethod
¶
get_metadata_cls() -> type[AttentionMetadata]
MLACommonDecodeMetadata
dataclass
¶
Source code in vllm/v1/attention/backends/mla/common.py
MLACommonImpl
¶
Bases: MLAAttentionImpl[M]
, Generic[M]
NOTE: Please read the comment at the top of the file before trying to understand this class
Source code in vllm/v1/attention/backends/mla/common.py
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 |
|
_pad_v
instance-attribute
¶
_pad_v = (
vllm_flash_attn_version is None
or not vllm_flash_attn_version == 3
and get_device_capability()[0] == 9
)
__init__
¶
__init__(
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
q_lora_rank: Optional[int],
kv_lora_rank: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
qk_head_dim: int,
v_head_dim: int,
kv_b_proj: ColumnParallelLinear,
) -> None
Source code in vllm/v1/attention/backends/mla/common.py
_compute_prefill_context
¶
_compute_prefill_context(
q: Tensor,
kv_c_and_k_pe_cache: Tensor,
attn_metadata: MLACommonMetadata,
)
Source code in vllm/v1/attention/backends/mla/common.py
_flash_attn_varlen_diff_headdims
¶
_flash_attn_varlen_diff_headdims(
q,
k,
v,
return_softmax_lse=False,
softmax_scale=None,
**kwargs,
)
Source code in vllm/v1/attention/backends/mla/common.py
_forward_decode
abstractmethod
¶
_forward_prefill
¶
_forward_prefill(
q: Tensor,
kv_c_normed: Tensor,
k_pe: Tensor,
kv_c_and_k_pe_cache: Tensor,
attn_metadata: MLACommonMetadata,
) -> Tensor
Source code in vllm/v1/attention/backends/mla/common.py
_v_up_proj
¶
Source code in vllm/v1/attention/backends/mla/common.py
forward
¶
forward(
layer: AttentionLayer,
q: Tensor,
k_c_normed: Tensor,
k_pe: Tensor,
kv_cache: Tensor,
attn_metadata: M,
output: Optional[Tensor] = None,
output_scale: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/v1/attention/backends/mla/common.py
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 |
|
process_weights_after_loading
¶
process_weights_after_loading(act_dtype: dtype)
Source code in vllm/v1/attention/backends/mla/common.py
MLACommonMetadata
dataclass
¶
Metadata for MLACommon.
NOTE: Please read the comment at the top of the file before trying to understand this class
Source code in vllm/v1/attention/backends/mla/common.py
__init__
¶
__init__(
num_actual_tokens: int,
query_start_loc: Tensor,
slot_mapping: Tensor,
num_decodes: int,
num_decode_tokens: int,
num_prefills: int,
head_dim: Optional[int] = None,
decode: Optional[D] = None,
prefill: Optional[MLACommonPrefillMetadata] = None,
) -> None
__post_init__
¶
Source code in vllm/v1/attention/backends/mla/common.py
MLACommonMetadataBuilder
¶
Bases: AttentionMetadataBuilder[M]
NOTE: Please read the comment at the top of the file before trying to understand this class
Source code in vllm/v1/attention/backends/mla/common.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
|
chunked_prefill_workspace
instance-attribute
¶
chunked_prefill_workspace = empty(
(chunked_prefill_workspace_size, get_head_size()),
dtype=dtype,
device=device,
)
chunked_prefill_workspace_size
instance-attribute
¶
chunked_prefill_workspace_size = min(
max(8 * max_model_len, 4 * max_num_seqs * block_size),
128 * 1024,
)
metadata_cls
instance-attribute
¶
metadata_cls = (
metadata_cls
if metadata_cls is not None
else MLACommonMetadata
)
__init__
¶
__init__(
runner: GPUModelRunner,
kv_cache_spec: AttentionSpec,
block_table: BlockTable,
metadata_cls: Optional[type[M]] = None,
)
Source code in vllm/v1/attention/backends/mla/common.py
_build_decode
¶
build
¶
build(
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
) -> M
Source code in vllm/v1/attention/backends/mla/common.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
|
build_for_cudagraph_capture
¶
build_for_cudagraph_capture(
common_attn_metadata: CommonAttentionMetadata,
) -> M
This method builds the metadata for full cudagraph capture. Currently, only decode is supported for full cudagraphs with MLA.
Source code in vllm/v1/attention/backends/mla/common.py
can_run_in_cudagraph
¶
can_run_in_cudagraph(
common_attn_metadata: CommonAttentionMetadata,
) -> bool
reorder_batch
¶
reorder_batch(
input_batch: InputBatch,
scheduler_output: SchedulerOutput,
) -> bool
Source code in vllm/v1/attention/backends/mla/common.py
MLACommonPrefillMetadata
dataclass
¶
Prefill Specific Metadata
Source code in vllm/v1/attention/backends/mla/common.py
chunked_context
class-attribute
instance-attribute
¶
chunked_context: Optional[ChunkedContextMetadata] = None