vllm.transformers_utils.processors.ovis
OvisProcessor
¶
Bases: ProcessorMixin
Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor.
[OvisProcessor
] offers all the functionalities of [Qwen2VLImageProcessor
] and [Qwen2TokenizerFast
]. See the
[~OvisProcessor.__call__
] and [~OvisProcessor.decode
] for more information.
Args:
image_processor ([Qwen2VLImageProcessor
], optional):
The image processor is a required input.
tokenizer ([Qwen2TokenizerFast
], optional):
The tokenizer is a required input.
chat_template (str
, optional): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
Source code in vllm/transformers_utils/processors/ovis.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
image_processor_class
class-attribute
instance-attribute
¶
valid_kwargs
class-attribute
instance-attribute
¶
__call__
¶
__call__(
images: ImageInput = None,
text: Union[
TextInput,
PreTokenizedInput,
list[TextInput],
list[PreTokenizedInput],
] = None,
**kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the text
and kwargs
arguments to Qwen2TokenizerFast's [~Qwen2TokenizerFast.__call__
] if text
is not None
to encode
the text. To prepare the vision inputs, this method forwards the vision_infos
and kwrags
arguments to
Qwen2VLImageProcessor's [~Qwen2VLImageProcessor.__call__
] if vision_infos
is not None
.
Args:
images (PIL.Image.Image
, np.ndarray
, torch.Tensor
, list[PIL.Image.Image]
, list[np.ndarray]
, list[torch.Tensor]
):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (str
, list[str]
, list[list[str]]
):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
is_split_into_words=True
(to lift the ambiguity with a batch of sequences).
videos (np.ndarray
, torch.Tensor
, list[np.ndarray]
, list[torch.Tensor]
):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (str
or [~utils.TensorType
], optional):
If set, will return tensors of a particular framework. Acceptable values are:
- 'tf'
: Return TensorFlow tf.constant
objects.
- 'pt'
: Return PyTorch torch.Tensor
objects.
- 'np'
: Return NumPy np.ndarray
objects.
- 'jax'
: Return JAX jnp.ndarray
objects.
Returns:
[BatchFeature
]: A [BatchFeature
] with the following fields:
- input_ids -- List of token ids to be fed to a model. Returned when text
is not None
.
- attention_mask -- List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True
or if "attention_mask" is in self.model_input_names
and if text
is not
None
).
- pixel_values -- Pixel values to be fed to a model. Returned when images
is not None
.
- pixel_values_videos -- Pixel values of videos to be fed to a model. Returned when videos
is not None
.
- image_grid_thw -- List of image 3D grid in LLM. Returned when images
is not None
.
- video_grid_thw -- List of video 3D grid in LLM. Returned when videos
is not None
.
- second_per_grid_ts -- List of video seconds per time grid. Returned when videos
is not None
.
Source code in vllm/transformers_utils/processors/ovis.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
__init__
¶
__init__(
image_processor=None,
tokenizer=None,
chat_template=None,
image_pad_token=None,
image_segment_len=255,
**kwargs,
)
Source code in vllm/transformers_utils/processors/ovis.py
_tokenize_with_image_symbol
¶
Source code in vllm/transformers_utils/processors/ovis.py
batch_decode
¶
This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.batch_decode
]. Please
refer to the docstring of this method for more information.
Source code in vllm/transformers_utils/processors/ovis.py
construct_image_indicators
¶
Source code in vllm/transformers_utils/processors/ovis.py
construct_image_placeholders
¶
Source code in vllm/transformers_utils/processors/ovis.py
decode
¶
This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.decode
]. Please refer to
the docstring of this method for more information.
Source code in vllm/transformers_utils/processors/ovis.py
get_image_size
¶
Source code in vllm/transformers_utils/processors/ovis.py
get_token_value
¶
post_process_image_text_to_text
¶
Post-process the output of the model to decode the text.
Args:
generated_outputs (torch.Tensor
or np.ndarray
):
The output of the model generate
function. The output is expected to be a tensor of shape (batch_size, sequence_length)
or (sequence_length,)
.
Returns:
list[str]
: The decoded text.
Source code in vllm/transformers_utils/processors/ovis.py
preprocess_image
¶
preprocess_image(
image: Image,
max_partition,
covering_threshold,
convert_to_rgb,
return_tensors,
)
Source code in vllm/transformers_utils/processors/ovis.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
OvisProcessorKwargs
¶
Bases: ProcessingKwargs
Source code in vllm/transformers_utils/processors/ovis.py
_defaults
class-attribute
instance-attribute
¶
_defaults = {
"text_kwargs": {"padding": False},
"images_kwargs": {
"max_partition": 9,
"covering_threshold": 0.9,
"convert_to_rgb": True,
"return_tensors": "pt",
},
}