Skip to content

vllm.transformers_utils.processors.ovis

IGNORE_ID module-attribute

IGNORE_ID = -100

__all__ module-attribute

__all__ = ['OvisProcessor']

OvisProcessor

Bases: ProcessorMixin

Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor. [OvisProcessor] offers all the functionalities of [Qwen2VLImageProcessor] and [Qwen2TokenizerFast]. See the [~OvisProcessor.__call__] and [~OvisProcessor.decode] for more information. Args: image_processor ([Qwen2VLImageProcessor], optional): The image processor is a required input. tokenizer ([Qwen2TokenizerFast], optional): The tokenizer is a required input. chat_template (str, optional): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.

Source code in vllm/transformers_utils/processors/ovis.py
class OvisProcessor(ProcessorMixin):
    r"""
    Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor.
    [`OvisProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template", "image_pad_token", "image_segment_len"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        image_pad_token=None,
        image_segment_len=255,
        **kwargs,
    ):
        self.image_token = "<image>"
        self.image_pad_token = image_pad_token
        self.image_segment_len = image_segment_len
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    @cached_property
    def extra_special_tokens(self):
        image_pad_token_id = self.tokenizer.get_vocab()[self.image_pad_token]
        extra_special_tokens = {
            "image_token": -200,
            "image_atom": -300,
            "image_start": -301,
            "image_prefix": -302,
            "image_col_sep": -303,
            "image_row_sep": -304,
            "image_end": -305,
            'image_pad': image_pad_token_id,
        }
        return extra_special_tokens

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
        **kwargs: Unpack[OvisProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
            Args:
                images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                    The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                    tensor. Both channels-first and channels-last formats are supported.
                text (`str`, `list[str]`, `list[list[str]]`):
                    The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                    (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                    `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
                videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                    The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                    tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
                return_tensors (`str` or [`~utils.TensorType`], *optional*):
                    If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
            Returns:
                [`BatchFeature`]: A [`BatchFeature`] with the following fields:
                - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
                - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
                  `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
                  `None`).
                - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
                - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
                - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
                - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
                - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            OvisProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        # Process all images first
        image_features = {}
        if images is not None:
            processed_images = []
            image_placeholders_list = []
            grids = []

            # Process each image
            for image in images if isinstance(images, list) else [images]:
                pixel_values, image_placeholders, grid = self.preprocess_image(
                    image=image, **output_kwargs["images_kwargs"]
                )
                processed_images.append(pixel_values)
                image_placeholders_list.append(image_placeholders)
                grids.append(grid)

            # assign all processed images
            if processed_images:
                image_features["image_placeholders"] = image_placeholders_list

        # Process text input
        if text is not None:

            if not isinstance(text, list):
                text = [text]

            tokenized_batched_text = self._tokenize_with_image_symbol(text)
            image_token_id = self.get_token_value("image_token")
            replaced_ids_list = []
            idx = 0
            for ids_tensor in tokenized_batched_text:
                if image_token_id in ids_tensor and "image_placeholders" in image_features:
                    if idx < len(image_features["image_placeholders"]):
                        # Converts in list for ease of use
                        ids_list = ids_tensor.tolist()

                        new_ids = []

                        # replace placeholders
                        for i, token_id in enumerate(ids_list):
                            if token_id == image_token_id:
                                placeholder_ids = image_features["image_placeholders"][idx]
                                new_ids.extend(placeholder_ids)
                                idx += 1
                            else:
                                new_ids.append(token_id)

                        # Converts back to tensors
                        ids_tensor = torch.tensor(new_ids, dtype=torch.long)
                    else:
                        raise RuntimeError(
                            'Mismatch between the images you provided and the number of placeholder present in the text')

                replaced_ids_list.append(ids_tensor)

            if replaced_ids_list:
                replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
            else:
                replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)

            # Create the output with text features
            output = BatchFeature(
                data={
                    "input_ids": replaced_and_tokenized_ids,
                }
            )

            # Add image features if present
            if image_features:
                output["pixel_values"] = processed_images
                output['grids'] = grids

            return output

        # If only images were provided
        return BatchFeature(data=image_features)

    def _tokenize_with_image_symbol(self, text_list: list[str]) -> torch.LongTensor:
        batch_token_ids = []
        for text in text_list:
            text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
                           text.split(self.image_token)]
            token_ids = []
            num_chuck = len(text_chunks)
            for i, chunk in enumerate(text_chunks):
                token_ids.extend(chunk)
                if i < num_chuck - 1:
                    token_ids.append(self.get_token_value("image_token"))
            batch_token_ids.append(token_ids)
        return torch.tensor(batch_token_ids, dtype=torch.long)

    def get_image_size(self):
        size = self.image_processor.size
        if 'shortest_edge' in size:
            width = height = size['shortest_edge']
        elif "height" in size and "width" in size:
            width = size['width']
            height = size['height']
        else:
            raise ValueError( "Can't parse image size from image_processor config.")
        return height, width

    def get_token_value(self, tok):
        return self.extra_special_tokens[tok]

    def construct_image_indicators(self, grid):
        image_placeholders = [self.get_token_value('image_start'),
                              self.get_token_value('image_atom'),
                              self.get_token_value('image_prefix')]
        if grid[0] * grid[1] > 1:
            for r in range(grid[0]):
                for c in range(grid[1]):
                    image_placeholders.append(self.get_token_value('image_atom') )
                    if c < grid[1] - 1:
                        image_placeholders.append(self.get_token_value('image_col_sep'))
                if r < grid[0] - 1:
                    image_placeholders.append(self.get_token_value('image_row_sep'))
        image_placeholders.append(self.get_token_value('image_end'))
        return image_placeholders

    def construct_image_placeholders(self, grid):

        image_placeholders = self.construct_image_indicators(grid)

        image_atom_token_id = self.get_token_value('image_atom')
        # Extract the padding token ID from tokenizer
        image_padding_token_id = self.get_token_value('image_pad')

        # Create a new list with padding tokens inserted
        padded_placeholder_tokens = []
        for token in image_placeholders:
            padded_placeholder_tokens.append(image_padding_token_id)
            if token == image_atom_token_id:
                padded_placeholder_tokens.extend([image_padding_token_id] * self.image_segment_len)
        return padded_placeholder_tokens

    def preprocess_image(self, image: PIL.Image.Image, max_partition, covering_threshold, convert_to_rgb, return_tensors):
        def _preprocess(img: PIL.Image.Image, side):
            # first resize and preprocess
            w, h = img.size
            if w == h:
                new_width = new_height = side
            elif w > h:
                new_width = side
                new_height = int(h / w * new_width)
            else:
                new_height = side
                new_width = int(w / h * new_height)
            new_size = dict(height=new_height, width=new_width)
            pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors=return_tensors)['pixel_values']

            # then pad to square
            square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
            new_height, new_width = pixel_values.shape[2:]
            if new_height == new_width:
                square_values[:, :, :, :] = pixel_values
            elif new_height > new_width:
                from_index = (side - new_width) // 2
                square_values[:, :, :, from_index:from_index + new_width] = pixel_values
            else:
                from_index = (side - new_height) // 2
                square_values[:, :, from_index:from_index + new_height, :] = pixel_values

            return square_values

        def _partition(img, grid) -> list[tuple[int, int, int, int]]:
            w, h = img.size
            row_height = h // grid[0]
            col_width = w // grid[1]

            partition = []
            for row in range(grid[0]):
                for col in range(grid[1]):
                    left = col * col_width
                    upper = row * row_height
                    right = w if col == grid[1] - 1 else (col + 1) * col_width
                    lower = h if row == grid[0] - 1 else (row + 1) * row_height
                    partition.append((left, upper, right, lower))

            return partition

        def _covering_area(left, upper, right, lower, side):
            w = right - left
            h = lower - upper
            w, h = max(w, h), min(w, h)
            if w > side:
                h = h / w * side
                w = side
            return w * h

        def _get_best_grid(img, side):
            img_area = img.size[0] * img.size[1]

            candidate_grids = []
            for i in range(1, max_partition + 1):
                for j in range(1, max_partition + 1):
                    if i * j <= max_partition:
                        candidate_grids.append((i, j))

            all_grids = []
            good_grids = []
            for grid in candidate_grids:
                partition = _partition(img, grid)
                covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
                assert covering_ratio <= 1.0
                all_grids.append((grid, covering_ratio))
                if covering_ratio > covering_threshold:
                    good_grids.append((grid, covering_ratio))

            if len(good_grids) > 0:
                # pick the good partition with minimum #sub_images and break the tie using covering_ratio
                return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
            else:
                # pick the partition with maximum covering_ratio and break the tie using #sub_images
                return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]

        if convert_to_rgb:
            image = convert_image_mode(image, 'RGB')


        sides = self.get_image_size()
        if sides[0] != sides[1]:
            raise ValueError('get_image_size() returns non-square size')
        side = sides[0]
        grid = _get_best_grid(image, side)
        partition = _partition(image, grid)
        crops = [image.crop(p) for p in partition]
        if len(crops) > 1:
            crops.insert(0, image)
        pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
        image_placeholders = self.construct_image_placeholders(grid)
        return pixel_values, image_placeholders, grid

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.
        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
        Returns:
            `list[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        return names_from_processor + ["second_per_grid_ts"]

attributes class-attribute instance-attribute

attributes = ['image_processor', 'tokenizer']

extra_special_tokens cached property

extra_special_tokens

image_pad_token instance-attribute

image_pad_token = image_pad_token

image_processor_class class-attribute instance-attribute

image_processor_class = 'AutoImageProcessor'

image_segment_len instance-attribute

image_segment_len = image_segment_len

image_token instance-attribute

image_token = '<image>'

model_input_names property

model_input_names

tokenizer_class class-attribute instance-attribute

tokenizer_class = 'AutoTokenizer'

valid_kwargs class-attribute instance-attribute

valid_kwargs = [
    "chat_template",
    "image_pad_token",
    "image_segment_len",
]

__call__

__call__(
    images: ImageInput = None,
    text: Union[
        TextInput,
        PreTokenizedInput,
        list[TextInput],
        list[PreTokenizedInput],
    ] = None,
    **kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature

Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the text and kwargs arguments to Qwen2TokenizerFast's [~Qwen2TokenizerFast.__call__] if text is not None to encode the text. To prepare the vision inputs, this method forwards the vision_infos and kwrags arguments to Qwen2VLImageProcessor's [~Qwen2VLImageProcessor.__call__] if vision_infos is not None. Args: images (PIL.Image.Image, np.ndarray, torch.Tensor, list[PIL.Image.Image], list[np.ndarray], list[torch.Tensor]): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (str, list[str], list[list[str]]): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set is_split_into_words=True (to lift the ambiguity with a batch of sequences). videos (np.ndarray, torch.Tensor, list[np.ndarray], list[torch.Tensor]): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. return_tensors (str or [~utils.TensorType], optional): If set, will return tensors of a particular framework. Acceptable values are: - 'tf': Return TensorFlow tf.constant objects. - 'pt': Return PyTorch torch.Tensor objects. - 'np': Return NumPy np.ndarray objects. - 'jax': Return JAX jnp.ndarray objects. Returns: [BatchFeature]: A [BatchFeature] with the following fields: - input_ids -- List of token ids to be fed to a model. Returned when text is not None. - attention_mask -- List of indices specifying which tokens should be attended to by the model (when return_attention_mask=True or if "attention_mask" is in self.model_input_names and if text is not None). - pixel_values -- Pixel values to be fed to a model. Returned when images is not None. - pixel_values_videos -- Pixel values of videos to be fed to a model. Returned when videos is not None. - image_grid_thw -- List of image 3D grid in LLM. Returned when images is not None. - video_grid_thw -- List of video 3D grid in LLM. Returned when videos is not None. - second_per_grid_ts -- List of video seconds per time grid. Returned when videos is not None.

Source code in vllm/transformers_utils/processors/ovis.py
def __call__(
    self,
    images: ImageInput = None,
    text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
    **kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature:
    """
    Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
    and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
    the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
    Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:
            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
    """
    output_kwargs = self._merge_kwargs(
        OvisProcessorKwargs,
        tokenizer_init_kwargs=self.tokenizer.init_kwargs,
        **kwargs,
    )

    # Process all images first
    image_features = {}
    if images is not None:
        processed_images = []
        image_placeholders_list = []
        grids = []

        # Process each image
        for image in images if isinstance(images, list) else [images]:
            pixel_values, image_placeholders, grid = self.preprocess_image(
                image=image, **output_kwargs["images_kwargs"]
            )
            processed_images.append(pixel_values)
            image_placeholders_list.append(image_placeholders)
            grids.append(grid)

        # assign all processed images
        if processed_images:
            image_features["image_placeholders"] = image_placeholders_list

    # Process text input
    if text is not None:

        if not isinstance(text, list):
            text = [text]

        tokenized_batched_text = self._tokenize_with_image_symbol(text)
        image_token_id = self.get_token_value("image_token")
        replaced_ids_list = []
        idx = 0
        for ids_tensor in tokenized_batched_text:
            if image_token_id in ids_tensor and "image_placeholders" in image_features:
                if idx < len(image_features["image_placeholders"]):
                    # Converts in list for ease of use
                    ids_list = ids_tensor.tolist()

                    new_ids = []

                    # replace placeholders
                    for i, token_id in enumerate(ids_list):
                        if token_id == image_token_id:
                            placeholder_ids = image_features["image_placeholders"][idx]
                            new_ids.extend(placeholder_ids)
                            idx += 1
                        else:
                            new_ids.append(token_id)

                    # Converts back to tensors
                    ids_tensor = torch.tensor(new_ids, dtype=torch.long)
                else:
                    raise RuntimeError(
                        'Mismatch between the images you provided and the number of placeholder present in the text')

            replaced_ids_list.append(ids_tensor)

        if replaced_ids_list:
            replaced_and_tokenized_ids = torch.stack(replaced_ids_list)
        else:
            replaced_and_tokenized_ids = torch.tensor([], dtype=torch.long)

        # Create the output with text features
        output = BatchFeature(
            data={
                "input_ids": replaced_and_tokenized_ids,
            }
        )

        # Add image features if present
        if image_features:
            output["pixel_values"] = processed_images
            output['grids'] = grids

        return output

    # If only images were provided
    return BatchFeature(data=image_features)

__init__

__init__(
    image_processor=None,
    tokenizer=None,
    chat_template=None,
    image_pad_token=None,
    image_segment_len=255,
    **kwargs,
)
Source code in vllm/transformers_utils/processors/ovis.py
def __init__(
    self,
    image_processor=None,
    tokenizer=None,
    chat_template=None,
    image_pad_token=None,
    image_segment_len=255,
    **kwargs,
):
    self.image_token = "<image>"
    self.image_pad_token = image_pad_token
    self.image_segment_len = image_segment_len
    super().__init__(image_processor, tokenizer, chat_template=chat_template)

_tokenize_with_image_symbol

_tokenize_with_image_symbol(
    text_list: list[str],
) -> LongTensor
Source code in vllm/transformers_utils/processors/ovis.py
def _tokenize_with_image_symbol(self, text_list: list[str]) -> torch.LongTensor:
    batch_token_ids = []
    for text in text_list:
        text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
                       text.split(self.image_token)]
        token_ids = []
        num_chuck = len(text_chunks)
        for i, chunk in enumerate(text_chunks):
            token_ids.extend(chunk)
            if i < num_chuck - 1:
                token_ids.append(self.get_token_value("image_token"))
        batch_token_ids.append(token_ids)
    return torch.tensor(batch_token_ids, dtype=torch.long)

batch_decode

batch_decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.batch_decode]. Please refer to the docstring of this method for more information.

Source code in vllm/transformers_utils/processors/ovis.py
def batch_decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
    refer to the docstring of this method for more information.
    """
    return self.tokenizer.batch_decode(*args, **kwargs)

construct_image_indicators

construct_image_indicators(grid)
Source code in vllm/transformers_utils/processors/ovis.py
def construct_image_indicators(self, grid):
    image_placeholders = [self.get_token_value('image_start'),
                          self.get_token_value('image_atom'),
                          self.get_token_value('image_prefix')]
    if grid[0] * grid[1] > 1:
        for r in range(grid[0]):
            for c in range(grid[1]):
                image_placeholders.append(self.get_token_value('image_atom') )
                if c < grid[1] - 1:
                    image_placeholders.append(self.get_token_value('image_col_sep'))
            if r < grid[0] - 1:
                image_placeholders.append(self.get_token_value('image_row_sep'))
    image_placeholders.append(self.get_token_value('image_end'))
    return image_placeholders

construct_image_placeholders

construct_image_placeholders(grid)
Source code in vllm/transformers_utils/processors/ovis.py
def construct_image_placeholders(self, grid):

    image_placeholders = self.construct_image_indicators(grid)

    image_atom_token_id = self.get_token_value('image_atom')
    # Extract the padding token ID from tokenizer
    image_padding_token_id = self.get_token_value('image_pad')

    # Create a new list with padding tokens inserted
    padded_placeholder_tokens = []
    for token in image_placeholders:
        padded_placeholder_tokens.append(image_padding_token_id)
        if token == image_atom_token_id:
            padded_placeholder_tokens.extend([image_padding_token_id] * self.image_segment_len)
    return padded_placeholder_tokens

decode

decode(*args, **kwargs)

This method forwards all its arguments to Qwen2TokenizerFast's [~PreTrainedTokenizer.decode]. Please refer to the docstring of this method for more information.

Source code in vllm/transformers_utils/processors/ovis.py
def decode(self, *args, **kwargs):
    """
    This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
    the docstring of this method for more information.
    """
    return self.tokenizer.decode(*args, **kwargs)

get_image_size

get_image_size()
Source code in vllm/transformers_utils/processors/ovis.py
def get_image_size(self):
    size = self.image_processor.size
    if 'shortest_edge' in size:
        width = height = size['shortest_edge']
    elif "height" in size and "width" in size:
        width = size['width']
        height = size['height']
    else:
        raise ValueError( "Can't parse image size from image_processor config.")
    return height, width

get_token_value

get_token_value(tok)
Source code in vllm/transformers_utils/processors/ovis.py
def get_token_value(self, tok):
    return self.extra_special_tokens[tok]

post_process_image_text_to_text

post_process_image_text_to_text(generated_outputs)

Post-process the output of the model to decode the text. Args: generated_outputs (torch.Tensor or np.ndarray): The output of the model generate function. The output is expected to be a tensor of shape (batch_size, sequence_length) or (sequence_length,). Returns: list[str]: The decoded text.

Source code in vllm/transformers_utils/processors/ovis.py
def post_process_image_text_to_text(self, generated_outputs):
    """
    Post-process the output of the model to decode the text.
    Args:
        generated_outputs (`torch.Tensor` or `np.ndarray`):
            The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
            or `(sequence_length,)`.
    Returns:
        `list[str]`: The decoded text.
    """
    return self.tokenizer.batch_decode(
        generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

preprocess_image

preprocess_image(
    image: Image,
    max_partition,
    covering_threshold,
    convert_to_rgb,
    return_tensors,
)
Source code in vllm/transformers_utils/processors/ovis.py
def preprocess_image(self, image: PIL.Image.Image, max_partition, covering_threshold, convert_to_rgb, return_tensors):
    def _preprocess(img: PIL.Image.Image, side):
        # first resize and preprocess
        w, h = img.size
        if w == h:
            new_width = new_height = side
        elif w > h:
            new_width = side
            new_height = int(h / w * new_width)
        else:
            new_height = side
            new_width = int(w / h * new_height)
        new_size = dict(height=new_height, width=new_width)
        pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors=return_tensors)['pixel_values']

        # then pad to square
        square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
        new_height, new_width = pixel_values.shape[2:]
        if new_height == new_width:
            square_values[:, :, :, :] = pixel_values
        elif new_height > new_width:
            from_index = (side - new_width) // 2
            square_values[:, :, :, from_index:from_index + new_width] = pixel_values
        else:
            from_index = (side - new_height) // 2
            square_values[:, :, from_index:from_index + new_height, :] = pixel_values

        return square_values

    def _partition(img, grid) -> list[tuple[int, int, int, int]]:
        w, h = img.size
        row_height = h // grid[0]
        col_width = w // grid[1]

        partition = []
        for row in range(grid[0]):
            for col in range(grid[1]):
                left = col * col_width
                upper = row * row_height
                right = w if col == grid[1] - 1 else (col + 1) * col_width
                lower = h if row == grid[0] - 1 else (row + 1) * row_height
                partition.append((left, upper, right, lower))

        return partition

    def _covering_area(left, upper, right, lower, side):
        w = right - left
        h = lower - upper
        w, h = max(w, h), min(w, h)
        if w > side:
            h = h / w * side
            w = side
        return w * h

    def _get_best_grid(img, side):
        img_area = img.size[0] * img.size[1]

        candidate_grids = []
        for i in range(1, max_partition + 1):
            for j in range(1, max_partition + 1):
                if i * j <= max_partition:
                    candidate_grids.append((i, j))

        all_grids = []
        good_grids = []
        for grid in candidate_grids:
            partition = _partition(img, grid)
            covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
            assert covering_ratio <= 1.0
            all_grids.append((grid, covering_ratio))
            if covering_ratio > covering_threshold:
                good_grids.append((grid, covering_ratio))

        if len(good_grids) > 0:
            # pick the good partition with minimum #sub_images and break the tie using covering_ratio
            return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
        else:
            # pick the partition with maximum covering_ratio and break the tie using #sub_images
            return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]

    if convert_to_rgb:
        image = convert_image_mode(image, 'RGB')


    sides = self.get_image_size()
    if sides[0] != sides[1]:
        raise ValueError('get_image_size() returns non-square size')
    side = sides[0]
    grid = _get_best_grid(image, side)
    partition = _partition(image, grid)
    crops = [image.crop(p) for p in partition]
    if len(crops) > 1:
        crops.insert(0, image)
    pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
    image_placeholders = self.construct_image_placeholders(grid)
    return pixel_values, image_placeholders, grid

OvisProcessorKwargs

Bases: ProcessingKwargs

Source code in vllm/transformers_utils/processors/ovis.py
class OvisProcessorKwargs(ProcessingKwargs, total=False):   # type: ignore[call-arg]
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "images_kwargs": {
            'max_partition':9,
            'covering_threshold':0.9,
            'convert_to_rgb':True,
        'return_tensors':'pt'},
    }

_defaults class-attribute instance-attribute

_defaults = {
    "text_kwargs": {"padding": False},
    "images_kwargs": {
        "max_partition": 9,
        "covering_threshold": 0.9,
        "convert_to_rgb": True,
        "return_tensors": "pt",
    },
}