def replace_parameter(mod: torch.nn.Module, name: str,
new: Union[torch.Tensor, torch.nn.Parameter]) -> None:
old = getattr(mod, name)
if type(old) is type(new) and old.dtype == new.dtype and \
old.untyped_storage().nbytes() == new.untyped_storage().nbytes():
# If we can just update in-place to avoid re-registering
# can be faster if the underlying storage is the same
update_tensor_inplace(old, new)
else:
# Fallback re-register parameter, convert to Parameter if necessary
# this not only ensures we don't register a tensor as a parameter, but
# also ensures that all parameter subclasses get re-registered as
# parameters for `torch.compile` compatibility
if not isinstance(new, torch.nn.Parameter):
new = torch.nn.Parameter(new, requires_grad=False)
mod.register_parameter(name,
torch.nn.Parameter(new, requires_grad=False))