class XLAScaledMMLinearKernel(ScaledMMLinearKernel):
@classmethod
def get_min_capability(cls) -> int:
raise NotImplementedError(
"TPU platform does have a concept of compute capability, "
"this method should not be called.")
@classmethod
def can_implement(
cls, c: ScaledMMLinearLayerConfig) -> tuple[bool, Optional[str]]:
if not current_platform.is_tpu():
return False, "ScaledMMXLA requires running on TPU."
if c.is_static_input_scheme:
return False, "ScaledMMXLA requires dynamic activation scales."
if not c.input_symmetric:
return False, "ScaledMMXLA requires symmetric activation scales."
if not c.is_channelwise:
return False, "ScaledMMXLA requires channelwise weight scales"
return True, None
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# WEIGHT
# [out, in] (different than cutlass_scaled_mm)
weight = getattr(layer, self.w_q_name)
replace_parameter(layer, self.w_q_name,
torch.nn.Parameter(weight.data, requires_grad=False))
# WEIGHT SCALE
# XLA kernels support only per-tensor and per-channel.
# If we have a fused module (QKV, MLP) with per tensor scales (thus N
# scales being passed to the kernel), convert to the per-channel case.
is_fused_module = len(layer.logical_widths) > 1
weight_scale = getattr(layer, self.w_s_name)
if is_fused_module and not self.config.is_channelwise:
weight_scale = convert_to_channelwise(weight_scale,
layer.logical_widths)
# [out_channel,] (different than cutlass_scaled_mm)
weight_scale = weight_scale.squeeze(-1)
replace_parameter(
layer, self.w_s_name,
torch.nn.Parameter(weight_scale.data, requires_grad=False))
# Only support symmetric dynamic activation quantization.
setattr(layer, self.i_s_name, None)
setattr(layer, self.i_zp_name, None)
setattr(layer, self.azp_adj_name, None)
# Filter warning for cond usage in apply_weights. It is okay
# to specialize the graph since bias is not dynamic.
warnings.filterwarnings(
"ignore",
message=
"Pred is a Python constant. When used with torch.cond, it specializes on one of the branches." # noqa: E501
)
def no_add_bias(self, x: torch.Tensor, bias: Optional[torch.Tensor]):
return x
def add_bias(self, x: torch.Tensor, bias: Optional[torch.Tensor]):
return x + bias
def apply_weights(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
w_q, w_s, _, _, _ = self._get_weight_params(layer)
import torch_xla.experimental.xla_quantized_matmul # noqa: F401
out = torch.ops.xla.quantized_matmul(x,
w_q,
w_s,
zero_point=None,
block_size=-1,
int4_weight=False,
quantize_activation=True)
# `quantized_matmul` output is fp32, cast it down to bf16 for perf
out = out.to(x.dtype)
# Explicitly capture control flow to make dynamo happy.
# https://pytorch.org/docs/main/generated/exportdb/index.html#cond-branch-class-method # noqa: E501
return cond(bias is None, self.no_add_bias, self.add_bias, [out, bias])