vllm.model_executor.layers.quantization.compressed_tensors.schemes
Modules:
__all__
module-attribute
¶
__all__ = [
"CompressedTensorsScheme",
"CompressedTensorsWNA16",
"CompressedTensorsW8A16Fp8",
"CompressedTensorsW4A16Sparse24",
"CompressedTensorsW8A8Int8",
"CompressedTensorsW8A8Fp8",
"WNA16_SUPPORTED_BITS",
"W4A16SPARSE24_SUPPORTED_BITS",
"CompressedTensors24",
"CompressedTensorsW4A16Fp4",
"CompressedTensorsW4A4Fp4",
]
CompressedTensors24
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
do_sparse_decompress
instance-attribute
¶
model_compressor
instance-attribute
¶
model_compressor = (
from_compression_config(model_compression_config)
if model_compression_config is not None
else None
)
__init__
¶
__init__(
quantized: bool = False,
weight_quant: Optional[QuantizationArgs] = None,
input_quant: Optional[QuantizationArgs] = None,
model_compression_config: Optional[
dict[str, Any]
] = None,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
_decompress_bitmask_compressed_weight
¶
_decompress_bitmask_compressed_weight(
compressed: Tensor, bitmask: Tensor, layer: Module
) -> Tensor
Decompress a compressed 2:4 sparse weight tensor using the bitmask and return the result.
This function also supports sharded decompression.
:param compressed: The 2:4 sparse weight tensor compressed using the
sparse-24-bitmask compressor. This is different from
cutlass_sparse_compress
which uses a different scheme (2 bits for
every nonzero element that represent the coordinate within the block
of 4). The bitmask compression here uses a bitmask to indicate the
positions of non-zero elements.
:param bitmask: The 2:4 bitmask associated with the compressed weights,
representing the positions of non-zero elements in the compressed
tensor.
:param layer: The layer whose weights need to be processed after
loading.
:return: The decompressed 2:4 sparse weight tensor.
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
_get_params_dtype
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
apply_weights
¶
Returns the output tensor for the layer with 2:4 sparse compressed weights, given the input tensor and bias
:param layer: The layer with 2:4 sparse compressed weights to be used for the computation :param x: The input tensor to the layer :param bias: The bias to be added to the output tensor :return: The output tensor of the layer
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
create_weights
¶
create_weights(
layer: Module,
input_size: int,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
process_weights_after_loading
¶
process_weights_after_loading(layer: Module) -> None
Compress weights after loading. Store compressed weight and meta tensor
:post-condition: layer.w_compressed and layer.meta are set to the compressed weight and meta tensor in the format expected by the Cutlass kernels :param layer: The layer with the weights to be processed
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
CompressedTensorsScheme
¶
Bases: ABC
Abstract class used to describe the weight creation and forward pass of different quantization schemes supported by CompressedTensors.
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py
apply_weights
abstractmethod
¶
Run the forward pass for the particular scheme. This is where scheme-specific dequant/quant steps/kernels should be applied.
:param layer: torch.nn.Module with the registered weights and other parameters relevant to the particular scheme. :param x: input to the layer :param bias: bias parameter
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py
create_weights
abstractmethod
¶
Weight creation for the particular scheme. Inputs to this function
CompressedTensorsW4A16Fp4
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py
apply_weights
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py
create_weights
¶
create_weights(
layer: Module,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py
process_weights_after_loading
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py
CompressedTensorsW4A16Sparse24
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
__init__
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
apply_weights
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
create_weights
¶
create_weights(
layer: Module,
input_size: int,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
process_weights_after_loading
¶
process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
CompressedTensorsW4A4Fp4
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
__init__
¶
apply_weights
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py
create_weights
¶
create_weights(
layer: Module,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py
process_weights_after_loading
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py
swizzle_blockscale
¶
swizzle_blockscale(scale: tensor)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py
CompressedTensorsW8A16Fp8
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
__init__
¶
apply_weights
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py
create_weights
¶
create_weights(
layer: Module,
input_size: int,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py
process_weights_after_loading
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py
CompressedTensorsW8A8Fp8
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
__init__
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py
apply_weights
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py
create_weights
¶
create_weights(
layer: Module,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py
process_weights_after_loading
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py
CompressedTensorsW8A8Int8
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py
_kernel_backends_being_used
class-attribute
instance-attribute
¶
__init__
¶
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py
apply_weights
¶
create_weights
¶
create_weights(
layer: Module,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py
CompressedTensorsWNA16
¶
Bases: CompressedTensorsScheme
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
_kernel_backends_being_used
class-attribute
instance-attribute
¶
quant_type
instance-attribute
¶
quant_type = (
WNA16_ZP_SUPPORTED_TYPES_MAP[num_bits]
if not symmetric
else WNA16_SUPPORTED_TYPES_MAP[num_bits]
)
__init__
¶
__init__(
strategy: str,
num_bits: int,
group_size: Optional[int] = None,
symmetric: Optional[bool] = True,
actorder: Optional[ActivationOrdering] = None,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py
apply_weights
¶
create_weights
¶
create_weights(
layer: Module,
output_size: int,
input_size: int,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: dtype,
weight_loader: Callable,
**kwargs,
)
Source code in vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|