Skip to content

vllm.model_executor.layers.mamba.ops.ssd_chunk_scan

TRITON_22 module-attribute

TRITON_22 = parse(__version__) >= parse('2.2.0')

_chunk_scan_fwd

_chunk_scan_fwd(
    cb,
    x,
    dt,
    dA_cumsum,
    C,
    states,
    D=None,
    z=None,
    seq_idx=None,
    chunk_indices=None,
    chunk_offsets=None,
    initial_states=None,
)
Source code in vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py
def _chunk_scan_fwd(
    cb,
    x,
    dt,
    dA_cumsum,
    C,
    states,
    D=None,
    z=None,
    seq_idx=None,
    chunk_indices=None,
    chunk_offsets=None,
    initial_states=None,
):
    batch, seqlen, nheads, headdim = x.shape
    _, _, nchunks, chunk_size = dt.shape
    _, _, ngroups, dstate = C.shape
    assert nheads % ngroups == 0
    assert C.shape == (batch, seqlen, ngroups, dstate)
    assert cb.shape == (batch, nchunks, ngroups, chunk_size, chunk_size)
    if z is not None:
        assert z.shape == x.shape
    if D is not None:
        assert D.shape == (nheads, headdim) or D.shape == (nheads, )
    assert dt.shape == (batch, nheads, nchunks, chunk_size)
    assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
    assert states.shape == (batch, nchunks, nheads, headdim, dstate)

    if seq_idx is not None:
        assert seq_idx.shape == (batch, seqlen)

        if initial_states is not None:
            # with initial states, we need to take care of how
            # seq_idx crosses the boundaries
            assert batch == 1, "chunk scan only supports initial states with batch 1"

            if initial_states.shape[0] == 1:
                # no in this case no point to use initial states
                initial_states = None
            else:
                assert chunk_indices is not None and chunk_offsets is not None, \
                    (
                        "chunk_indices and chunk_offsets should have been set"
                    )
        else:
            chunk_indices, chunk_offsets = None, None
    else:
        chunk_indices, chunk_offsets = None, None

    # Allocates output.
    out = torch.empty(batch,
                      seqlen,
                      nheads,
                      headdim,
                      device=x.device,
                      dtype=x.dtype)
    if z is not None:
        out_x = torch.empty(batch,
                            seqlen,
                            nheads,
                            headdim,
                            device=x.device,
                            dtype=x.dtype)
        assert out_x.stride() == out.stride()
    else:
        out_x = None

    grid = lambda META: (
        triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(
            headdim, META['BLOCK_SIZE_N']), batch * nchunks
        if chunk_offsets is None else len(chunk_offsets), nheads)
    z_strides = ((z.stride(0), z.stride(1), z.stride(2),
                  z.stride(3)) if z is not None else (0, 0, 0, 0))
    _chunk_scan_fwd_kernel[grid](
        cb,
        x,
        z,
        out,
        out_x,
        dt,
        dA_cumsum,
        seq_idx,
        C,
        states,
        D,
        initial_states,
        chunk_indices,
        chunk_offsets,
        len(chunk_indices) if chunk_indices is not None else 0,
        chunk_size,
        headdim,
        dstate,
        batch,
        seqlen,
        nheads // ngroups,
        cb.stride(0),
        cb.stride(1),
        cb.stride(2),
        cb.stride(3),
        cb.stride(4),
        x.stride(0),
        x.stride(1),
        x.stride(2),
        x.stride(3),
        z_strides[0],
        z_strides[1],
        z_strides[2],
        z_strides[3],
        out.stride(0),
        out.stride(1),
        out.stride(2),
        out.stride(3),
        dt.stride(0),
        dt.stride(2),
        dt.stride(1),
        dt.stride(3),
        dA_cumsum.stride(0),
        dA_cumsum.stride(2),
        dA_cumsum.stride(1),
        dA_cumsum.stride(3),
        *((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else
          (0, 0)),
        C.stride(0),
        C.stride(1),
        C.stride(2),
        C.stride(3),
        states.stride(0),
        states.stride(1),
        states.stride(2),
        states.stride(3),
        states.stride(4),
        *((initial_states.stride(0), initial_states.stride(1),
           initial_states.stride(2),
           initial_states.stride(3)) if initial_states is not None else
          (0, 0, 0, 0)),
        D.stride(0) if D is not None else 0,
        True,
        D is not None,
        D.dim() == 2 if D is not None else True,
        BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
        HAS_Z=z is not None,
        HAS_SEQ_IDX=seq_idx is not None,
        IS_TRITON_22=TRITON_22,
        HAS_INITSTATES=initial_states is not None,
    )
    return out, out_x

_chunk_scan_fwd_kernel

_chunk_scan_fwd_kernel(
    cb_ptr,
    x_ptr,
    z_ptr,
    out_ptr,
    out_x_ptr,
    dt_ptr,
    dA_cumsum_ptr,
    seq_idx_ptr,
    C_ptr,
    states_ptr,
    D_ptr,
    initstates_ptr,
    chunk_indices_ptr,
    chunk_offsets_ptr,
    chunk_meta_num,
    chunk_size,
    hdim,
    dstate,
    batch,
    seqlen,
    nheads_ngroups_ratio,
    stride_cb_batch,
    stride_cb_chunk,
    stride_cb_head,
    stride_cb_csize_m,
    stride_cb_csize_k,
    stride_x_batch,
    stride_x_seqlen,
    stride_x_head,
    stride_x_hdim,
    stride_z_batch,
    stride_z_seqlen,
    stride_z_head,
    stride_z_hdim,
    stride_out_batch,
    stride_out_seqlen,
    stride_out_head,
    stride_out_hdim,
    stride_dt_batch,
    stride_dt_chunk,
    stride_dt_head,
    stride_dt_csize,
    stride_dA_cs_batch,
    stride_dA_cs_chunk,
    stride_dA_cs_head,
    stride_dA_cs_csize,
    stride_seq_idx_batch,
    stride_seq_idx_seqlen,
    stride_C_batch,
    stride_C_seqlen,
    stride_C_head,
    stride_C_dstate,
    stride_states_batch,
    stride_states_chunk,
    stride_states_head,
    stride_states_hdim,
    stride_states_dstate,
    stride_init_states_batch,
    stride_init_states_head,
    stride_init_states_hdim,
    stride_init_states_dstate,
    stride_D_head,
    IS_CAUSAL: constexpr,
    HAS_D: constexpr,
    D_HAS_HDIM: constexpr,
    HAS_Z: constexpr,
    HAS_SEQ_IDX: constexpr,
    BLOCK_SIZE_M: constexpr,
    BLOCK_SIZE_N: constexpr,
    BLOCK_SIZE_K: constexpr,
    BLOCK_SIZE_DSTATE: constexpr,
    IS_TRITON_22: constexpr,
    HAS_INITSTATES: constexpr,
)
Source code in vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
@triton.autotune(
    configs=[
        triton.Config(
            {
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 256,
                'BLOCK_SIZE_K': 64
            },
            num_stages=3,
            num_warps=8),
        triton.Config(
            {
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 256,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 64
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 128,
                'BLOCK_SIZE_K': 64
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 128,
                'BLOCK_SIZE_N': 32,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=4),
        triton.Config(
            {
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 32,
                'BLOCK_SIZE_K': 32
            },
            num_stages=5,
            num_warps=2),
        triton.Config(
            {
                'BLOCK_SIZE_M': 32,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 32
            },
            num_stages=5,
            num_warps=2),
        triton.Config(
            {
                'BLOCK_SIZE_M': 64,
                'BLOCK_SIZE_N': 64,
                'BLOCK_SIZE_K': 32
            },
            num_stages=4,
            num_warps=2),
    ],
    key=['chunk_size', 'hdim', 'dstate', 'IS_CAUSAL'],
)
@triton.jit
def _chunk_scan_fwd_kernel(
    # Pointers to matrices
    cb_ptr,
    x_ptr,
    z_ptr,
    out_ptr,
    out_x_ptr,
    dt_ptr,
    dA_cumsum_ptr,
    seq_idx_ptr,
    C_ptr,
    states_ptr,
    D_ptr,
    initstates_ptr,
    chunk_indices_ptr,
    chunk_offsets_ptr,
    chunk_meta_num,
    # Matrix dimensions
    chunk_size,
    hdim,
    dstate,
    batch,
    seqlen,
    nheads_ngroups_ratio,
    # Strides
    stride_cb_batch,
    stride_cb_chunk,
    stride_cb_head,
    stride_cb_csize_m,
    stride_cb_csize_k,
    stride_x_batch,
    stride_x_seqlen,
    stride_x_head,
    stride_x_hdim,
    stride_z_batch,
    stride_z_seqlen,
    stride_z_head,
    stride_z_hdim,
    stride_out_batch,
    stride_out_seqlen,
    stride_out_head,
    stride_out_hdim,
    stride_dt_batch,
    stride_dt_chunk,
    stride_dt_head,
    stride_dt_csize,
    stride_dA_cs_batch,
    stride_dA_cs_chunk,
    stride_dA_cs_head,
    stride_dA_cs_csize,
    stride_seq_idx_batch,
    stride_seq_idx_seqlen,
    stride_C_batch,
    stride_C_seqlen,
    stride_C_head,
    stride_C_dstate,
    stride_states_batch,
    stride_states_chunk,
    stride_states_head,
    stride_states_hdim,
    stride_states_dstate,
    stride_init_states_batch,
    stride_init_states_head,
    stride_init_states_hdim,
    stride_init_states_dstate,
    stride_D_head,
    # Meta-parameters
    IS_CAUSAL: tl.constexpr,
    HAS_D: tl.constexpr,
    D_HAS_HDIM: tl.constexpr,
    HAS_Z: tl.constexpr,
    HAS_SEQ_IDX: tl.constexpr,
    BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr,
    BLOCK_SIZE_K: tl.constexpr,
    BLOCK_SIZE_DSTATE: tl.constexpr,
    IS_TRITON_22: tl.constexpr,
    HAS_INITSTATES: tl.constexpr,
):
    pid_bc = tl.program_id(axis=1).to(tl.int64)
    pid_c = pid_bc // batch
    pid_b = pid_bc - pid_c * batch
    if not HAS_INITSTATES:
        c_idx = pid_c
        c_off = 0
    else:
        c_idx = tl.load(chunk_indices_ptr + pid_c, mask=pid_c > -1, other=0)
        c_off = tl.load(chunk_offsets_ptr + pid_c, mask=pid_c > -1, other=0)

    pid_h = tl.program_id(axis=2)
    num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
    pid_m = tl.program_id(axis=0) // num_pid_n
    pid_n = tl.program_id(axis=0) % num_pid_n
    cb_ptr += pid_b * stride_cb_batch + c_idx * stride_cb_chunk + (
        pid_h // nheads_ngroups_ratio) * stride_cb_head
    x_ptr += pid_b * stride_x_batch + c_idx * chunk_size * stride_x_seqlen + pid_h * stride_x_head
    dt_ptr += pid_b * stride_dt_batch + c_idx * stride_dt_chunk + pid_h * stride_dt_head
    dA_cumsum_ptr += pid_b * stride_dA_cs_batch + c_idx * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
    C_ptr += pid_b * stride_C_batch + c_idx * chunk_size * stride_C_seqlen + (
        pid_h // nheads_ngroups_ratio) * stride_C_head

    # M-block offsets and prev states
    #  - logic in next block may override these if there is an active offset
    offs_m = pid_m * BLOCK_SIZE_M + c_off + tl.arange(0, BLOCK_SIZE_M)
    prev_states_ptr = states_ptr + pid_b * stride_states_batch + c_idx * stride_states_chunk + pid_h * stride_states_head
    prev_states_hdim = stride_states_hdim
    prev_states_dstate = stride_states_dstate

    chunk_size_limit = min(chunk_size, seqlen - c_idx * chunk_size)
    if HAS_SEQ_IDX:
        seq_idx_ptr += pid_b * stride_seq_idx_batch + c_idx * chunk_size * stride_seq_idx_seqlen

        # - we only need seq_idx_prev to be aligned to chunk boundary
        seq_idx_prev = tl.load(seq_idx_ptr - stride_seq_idx_seqlen,
                               mask=c_idx >= 1,
                               other=0)

        if HAS_INITSTATES:
            # if there are init states, we only need seq_idx_m to point
            # what is the current seq_idx

            # get current seq idx
            if (pid_m * BLOCK_SIZE_M + c_off) < chunk_size_limit:
                seq_idx_m = tl.load(
                    seq_idx_ptr +
                    (pid_m * BLOCK_SIZE_M + c_off) * stride_seq_idx_seqlen, )

                # - recall that in ssd_state_passing, for the case c_off == 0
                # i.e., the very first sequence, we made states_ptr hold its initial state
                # so this edge case is taken care of
                if ((c_off == 0) and
                    (seq_idx_prev != seq_idx_m
                     )  # if a seq is changed exactly on boundary
                        or (c_off > 0)  # implies a new example (pseudo chunk)
                    ):

                    # - replace prev_states_ptr with init_states
                    prev_states_ptr = initstates_ptr + seq_idx_m * stride_init_states_batch + pid_h * stride_init_states_head
                    prev_states_hdim = stride_init_states_hdim  # override strides
                    prev_states_dstate = stride_init_states_dstate

    offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dA_cs_m = tl.load(dA_cumsum_ptr + offs_m * stride_dA_cs_csize,
                      mask=offs_m < chunk_size,
                      other=0.0).to(tl.float32)

    # - handle chunk state limit
    if HAS_INITSTATES:

        # have to split this if otherwise compilation will have problems
        dA_cs_m_boundary = 0.0

        # get the c_idx for the next (logica) chunk
        c_idx_n = tl.load(
            chunk_indices_ptr + (pid_c + 1),
            mask=pid_c > -1 and (pid_c + 1) < chunk_meta_num,
            other=-1  # to trigger different chunk
        )

        # - there are things to consider
        # A. if c_off > 0 then we need to move the dA_cs boundary to ensure correct
        #    contribution of past states
        # B. if c_off_n < chunk_size_limit, then we need to adjust this so as not to
        #    encroach into the next sequence, where c_off_n is the offset of the next
        #    (logical) chunk.
        # An equivalent check for B is c_idx == c_idx_n, where there is repetition in
        # (logical) chunk indices.

        if (c_idx == c_idx_n) or c_off > 0:

            # get the next offset
            c_off_n = tl.load(chunk_offsets_ptr + (pid_c + 1),
                              mask=pid_c > -1 and (pid_c + 1) < chunk_meta_num,
                              other=chunk_size)

            # in this case, adjust down the chunk_size_limit
            if c_idx == c_idx_n:
                chunk_size_limit = min(c_off_n, chunk_size_limit)

            # get the cs at the offset boundary
            # - c_off == 0 is a passthrough
            dA_cs_m_boundary = tl.load(
                dA_cumsum_ptr +
                (pid_m * BLOCK_SIZE_M + c_off - 1) * stride_dA_cs_csize,
                mask=(((pid_m * BLOCK_SIZE_M + c_off - 1) > -1)
                      and ((pid_m * BLOCK_SIZE_M + c_off) < chunk_size)),
                other=0.0).to(tl.float32)

    if HAS_SEQ_IDX:
        # - handle seq idx when HAS_INITSTATES==False
        if not HAS_INITSTATES:
            seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen,
                                mask=offs_m < chunk_size_limit,
                                other=-1)

    acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)

    # Without the if (pid_c > -1), with Triton 2.1.0, I get
    # Assertion `!(srcMmaLayout && dstMmaLayout) && "Unexpected mma -> mm a layout conversion"' failed.
    # With Triton 2.2.0, this works
    if IS_TRITON_22 or c_idx > -1:
        # Faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
        offs_k_dstate = tl.arange(
            0, BLOCK_SIZE_DSTATE if BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K)
        C_ptrs = C_ptr + (offs_m[:, None] * stride_C_seqlen +
                          offs_k_dstate[None, :] * stride_C_dstate)

        prev_states_ptrs = prev_states_ptr + (
            offs_n[None, :] * prev_states_hdim +
            offs_k_dstate[:, None] * prev_states_dstate)
        if HAS_SEQ_IDX:

            if not HAS_INITSTATES:
                # - this is for continuous batching where there is no init states
                scale_m = tl.where(seq_idx_m == seq_idx_prev, tl.exp(dA_cs_m),
                                   0.0)
            else:
                # - if there is initstates, we will rely on prev_states, no zeroing
                #   required.
                scale_m = tl.exp(dA_cs_m - dA_cs_m_boundary)
        else:
            scale_m = tl.exp(dA_cs_m)
        if BLOCK_SIZE_DSTATE <= 128:
            C = tl.load(C_ptrs,
                        mask=(offs_m[:, None] < chunk_size_limit) &
                        (offs_k_dstate[None, :] < dstate),
                        other=0.0)

            prev_states = tl.load(prev_states_ptrs,
                                  mask=(offs_k_dstate[:, None] < dstate) &
                                  (offs_n[None, :] < hdim),
                                  other=0.0)
            prev_states = prev_states.to(C_ptr.dtype.element_ty)
            acc = tl.dot(C, prev_states) * scale_m[:, None]
        else:
            for k in range(0, dstate, BLOCK_SIZE_K):
                C = tl.load(C_ptrs,
                            mask=(offs_m[:, None] < chunk_size_limit) &
                            (offs_k_dstate[None, :] < dstate - k),
                            other=0.0)
                # C = (C * scale_m[:, None]).to(C_ptr.dtype.element_ty)
                prev_states = tl.load(
                    prev_states_ptrs,
                    mask=(offs_k_dstate[:, None] < dstate - k) &
                    (offs_n[None, :] < hdim),
                    other=0.0)
                prev_states = prev_states.to(C_ptr.dtype.element_ty)
                acc += tl.dot(C, prev_states)
                C_ptrs += BLOCK_SIZE_K
                prev_states_ptrs += BLOCK_SIZE_K
            acc *= scale_m[:, None]

    offs_k = tl.arange(0, BLOCK_SIZE_K) + c_off
    cb_ptrs = cb_ptr + (offs_m[:, None] * stride_cb_csize_m +
                        offs_k[None, :] * stride_cb_csize_k)
    x_ptrs = x_ptr + (offs_k[:, None] * stride_x_seqlen +
                      offs_n[None, :] * stride_x_hdim)
    dt_ptrs = dt_ptr + offs_k * stride_dt_csize
    dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
    K_MAX = chunk_size_limit if not IS_CAUSAL else min(
        (pid_m + 1) * BLOCK_SIZE_M, chunk_size_limit)
    for k in range(0, K_MAX, BLOCK_SIZE_K):
        cb = tl.load(cb_ptrs,
                     mask=(offs_m[:, None] < chunk_size) &
                     (offs_k[None, :] < chunk_size - k),
                     other=0.0).to(tl.float32)
        dA_cs_k = tl.load(dA_cumsum_ptrs,
                          mask=offs_k < chunk_size - k,
                          other=0.0).to(tl.float32)
        # If there's seq_idx, we already set cb[i, j] = 0 for seq_idx[i] != seq_idx[j].
        # So we don't need masking wrt seq_idx here.
        cb *= tl.exp(dA_cs_m[:, None] - dA_cs_k[None, :])
        dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size - k,
                       other=0.0).to(tl.float32)
        cb *= dt_k
        if IS_CAUSAL:
            mask = offs_m[:, None] >= k + offs_k[None, :]
            cb = tl.where(mask, cb, 0.0)
        cb = cb.to(x_ptr.dtype.element_ty)
        x = tl.load(x_ptrs,
                    mask=(offs_k[:, None] < chunk_size_limit - k) &
                    (offs_n[None, :] < hdim),
                    other=0.0)
        acc += tl.dot(cb, x)
        cb_ptrs += BLOCK_SIZE_K * stride_cb_csize_k
        x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
        dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
        dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize

    offs_out_m = pid_m * BLOCK_SIZE_M + c_off + tl.arange(0, BLOCK_SIZE_M)
    offs_out_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)

    if HAS_D:
        if D_HAS_HDIM:
            D = tl.load(D_ptr + pid_h * stride_D_head + offs_n,
                        mask=offs_n < hdim,
                        other=0.0).to(tl.float32)
        else:
            D = tl.load(D_ptr + pid_h * stride_D_head).to(tl.float32)
        x_residual = tl.load(x_ptr + (offs_m[:, None] * stride_x_seqlen +
                                      offs_n[None, :] * stride_x_hdim),
                             mask=(offs_m[:, None] < chunk_size_limit) &
                             (offs_n[None, :] < hdim),
                             other=0.0).to(tl.float32)
        acc += x_residual * D

    if HAS_Z:
        out_x_ptr += pid_b * stride_out_batch + c_idx * chunk_size * stride_out_seqlen + pid_h * stride_out_head
        out_x_ptrs = out_x_ptr + (stride_out_seqlen * offs_out_m[:, None] +
                                  offs_out_n[None, :])
        tl.store(out_x_ptrs,
                 acc,
                 mask=(offs_out_m[:, None] < chunk_size_limit) &
                 (offs_out_n[None, :] < hdim))

        z_ptr += pid_b * stride_z_batch + c_idx * chunk_size * stride_z_seqlen + pid_h * stride_z_head
        z_ptrs = z_ptr + (stride_z_seqlen * offs_out_m[:, None] +
                          stride_z_hdim * offs_out_n[None, :])
        z = tl.load(z_ptrs,
                    mask=(offs_out_m[:, None] < chunk_size_limit) &
                    (offs_out_n[None, :] < hdim),
                    other=0.0).to(tl.float32)
        acc *= z * tl.sigmoid(z)

    out_ptr += pid_b * stride_out_batch + c_idx * chunk_size * stride_out_seqlen + pid_h * stride_out_head
    out_ptrs = out_ptr + (stride_out_seqlen * offs_out_m[:, None] +
                          offs_out_n[None, :] * stride_out_hdim)
    tl.store(out_ptrs,
             acc,
             mask=(offs_out_m[:, None] < chunk_size_limit) &
             (offs_out_n[None, :] < hdim))