class model_aware_kv_ops_helper:
def __init__(self, config: VllmConfig):
self.is_deepseek_mla = config.model_config.is_deepseek_mla
self.use_mla_opt = not envs.VLLM_MLA_DISABLE
self.tp_size = config.parallel_config.tensor_parallel_size
def get_model_args(self, model_executable: torch.nn.Module):
model_config = model_executable.model.config
self.model_executable = model_executable
num_heads = int(model_config.num_key_value_heads / self.tp_size)
hidden_size = model_config.hidden_size
num_attention_heads = model_config.num_attention_heads
# Deepseek's MLA (Multi-head Latent Attention) uses two different
# kv_cache shapes based on whether VLLM_MLA_DISABLE is set to 0.
# When VLLM_MLA_DISABLE=0 (default), forward absorb is applied,
# resulting in a kv_cache shape of [num_blks, blk_size, 1,
# kv_lora_rank + qk_rope_head_dim].
# When VLLM_MLA_DISABLE=1, standard FA is used instead, leading
# to a kv_cache shape of [2, num_blks, blk_size,
# num_key_value_heads / tp, qk_nope_head_dim + qk_rope_head_dim].
# For more details, see vllm/attention/backends/mla/common.py.
if self.is_deepseek_mla and self.use_mla_opt:
head_size = model_config.kv_lora_rank + \
model_config.qk_rope_head_dim
num_heads = 1
elif self.is_deepseek_mla and not self.use_mla_opt:
head_size = model_config.qk_nope_head_dim + \
model_config.qk_rope_head_dim
else:
head_size = getattr(model_config, "head_dim", None)
if head_size is None:
head_size = int(hidden_size // num_attention_heads)
return num_heads, head_size
def get_kv_from_cache(self, kv_cache, num_heads, head_size):
if self.is_deepseek_mla and self.use_mla_opt:
key_cache = kv_cache.reshape(-1, num_heads, head_size)
value_cache = kv_cache.reshape(-1, num_heads, head_size)
else:
key_cache = kv_cache[0].reshape(-1, num_heads, head_size)
value_cache = kv_cache[1].reshape(-1, num_heads, head_size)
return key_cache, value_cache
def put_kv_to_cache(self, model_executable: torch.nn.Module, keys, values,
layer, kv_cache, slot_mapping, start_pos, end_pos):
model_config = model_executable.model.config
if self.is_deepseek_mla and self.use_mla_opt:
layer.self_attn.attn = layer.self_attn.mla_attn
k_c_normed_k_pe = keys.squeeze(1)
k_c_normed = k_c_normed_k_pe[:, :model_config.kv_lora_rank]
k_pe = k_c_normed_k_pe[:, model_config.kv_lora_rank:]
ops.concat_and_cache_mla(
k_c_normed.to(kv_cache.device),
k_pe.to(kv_cache.device),
kv_cache,
slot_mapping[start_pos:end_pos],
layer.self_attn.attn.kv_cache_dtype,
layer.self_attn.attn._k_scale,
)
else:
key_cache, value_cache = kv_cache[0], kv_cache[1]
ops.reshape_and_cache_flash(
keys.to(key_cache.device),
values.to(value_cache.device),
key_cache,
value_cache,
slot_mapping[start_pos:end_pos],
layer.self_attn.attn.kv_cache_dtype,
layer.self_attn.attn._k_scale,
layer.self_attn.attn._v_scale,
)