Skip to content

vllm.attention.ops.triton_merge_attn_states

merge_attn_states

merge_attn_states(
    output: Tensor,
    prefix_output: Tensor,
    prefix_lse: Tensor,
    suffix_output: Tensor,
    suffix_lse: Tensor,
    output_lse: Optional[Tensor] = None,
) -> None
Source code in vllm/attention/ops/triton_merge_attn_states.py
def merge_attn_states(
    output: torch.Tensor,
    prefix_output: torch.Tensor,
    prefix_lse: torch.Tensor,
    suffix_output: torch.Tensor,
    suffix_lse: torch.Tensor,
    output_lse: Optional[torch.Tensor] = None,
) -> None:
    num_tokens = output.shape[0]
    num_query_heads = output.shape[1]
    head_size = output.shape[2]
    padded_head_size = triton.next_power_of_2(head_size)

    # TODO(woosuk): Use CUDA kernel instead of Triton to minimize CPU overhead.
    merge_attn_states_kernel[(num_tokens, num_query_heads)](
        output,
        output_lse,
        prefix_output,
        prefix_lse,
        suffix_output,
        suffix_lse,
        head_size,
        padded_head_size,
        output_lse is not None,
    )

merge_attn_states_kernel

merge_attn_states_kernel(
    output,
    output_lse,
    prefix_output,
    prefix_lse,
    suffix_output,
    suffix_lse,
    HEAD_SIZE: constexpr,
    PADDED_HEAD_SIZE: constexpr,
    OUTPUT_LSE: constexpr,
)
Source code in vllm/attention/ops/triton_merge_attn_states.py
@triton.jit
def merge_attn_states_kernel(
    output,  # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
    output_lse,  # [NUM_HEADS, NUM_TOKENS]
    prefix_output,  # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
    prefix_lse,  # [NUM_HEADS, NUM_TOKENS]
    suffix_output,  # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
    suffix_lse,  # [NUM_HEADS, NUM_TOKENS]
    HEAD_SIZE: tl.constexpr,
    PADDED_HEAD_SIZE: tl.constexpr,
    OUTPUT_LSE: tl.constexpr,
):
    token_idx = tl.program_id(0)
    num_tokens = tl.num_programs(0)
    head_idx = tl.program_id(1)
    num_heads = tl.num_programs(1)

    p_lse = tl.load(prefix_lse + head_idx * num_tokens + token_idx)
    s_lse = tl.load(suffix_lse + head_idx * num_tokens + token_idx)

    # FA2 and FA3 have different behavior for when the sum-exp is 0, this namely
    # arises with 0 len seqlens. FA3 returns -inf here while FA2 returns inf.
    # If we see an inf assume FA2 and convert inf to -inf for consistency
    # and correctness. Inf generally doesn't make sense in this context outside
    # of undefined-behavior/FA2-case, so I think this a safe assumption.
    p_lse = float('-inf') if p_lse == float('inf') else p_lse
    s_lse = float('-inf') if s_lse == float('inf') else s_lse

    max_lse = tl.maximum(p_lse, s_lse)
    p_lse = p_lse - max_lse
    s_lse = s_lse - max_lse
    # Will reuse precomputed Exp values for scale factor computation.
    p_se = tl.exp(p_lse)
    s_se = tl.exp(s_lse)
    out_se = (p_se + s_se)

    if OUTPUT_LSE:
        out_lse = tl.log(out_se) + max_lse
        tl.store(output_lse + head_idx * num_tokens + token_idx, out_lse)

    head_arange = tl.arange(0, PADDED_HEAD_SIZE)
    head_mask = head_arange < HEAD_SIZE
    p_out = tl.load(prefix_output + token_idx * num_heads * HEAD_SIZE +
                    head_idx * HEAD_SIZE + head_arange,
                    mask=head_mask)
    s_out = tl.load(suffix_output + token_idx * num_heads * HEAD_SIZE +
                    head_idx * HEAD_SIZE + head_arange,
                    mask=head_mask)

    # NOTE(woosuk): Be careful with the numerical stability.
    # We should compute the scale first, and then multiply it with the output.
    # Do not multiply the output with tl.exp(p_lse) or tl.exp(s_lse) directly.
    p_scale = p_se / out_se
    s_scale = s_se / out_se
    out = p_out * p_scale + s_out * s_scale
    tl.store(output + token_idx * num_heads * HEAD_SIZE +
             head_idx * HEAD_SIZE + head_arange,
             out,
             mask=head_mask)