def merge_attn_states(
output: torch.Tensor,
prefix_output: torch.Tensor,
prefix_lse: torch.Tensor,
suffix_output: torch.Tensor,
suffix_lse: torch.Tensor,
output_lse: Optional[torch.Tensor] = None,
) -> None:
# NOTE(DefTruth): Currently, custom merge_attn_states CUDA kernel
# is not support for FP8 dtype, fallback to use Triton kernel.
def supported_dtypes(o: torch.Tensor) -> bool:
return o.dtype in [torch.float32, torch.half, torch.bfloat16]
# NOTE(DefTruth): Currently, custom merge_attn_states CUDA
# kernel load/store 128b(16 bytes) per memory issue within
# thread. Namely, the headsize(headdim) must be multiple of
# pack_size (float32 -> 4, half/bfloat16 -> 8).
def supported_headdim(o: torch.Tensor) -> bool:
headdim = o.shape[2] # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
if o.dtype == torch.float32:
return headdim % 4 == 0
return headdim % 8 == 0
if (current_platform.is_cuda() and supported_dtypes(output)
and supported_headdim(output)):
from vllm._custom_ops import merge_attn_states
return merge_attn_states(output, prefix_output, prefix_lse,
suffix_output, suffix_lse, output_lse)
else:
from vllm.attention.ops.triton_merge_attn_states import (
merge_attn_states)
return merge_attn_states(output, prefix_output, prefix_lse,
suffix_output, suffix_lse, output_lse)